
HAL Id: hal-02390009
https://hal.science/hal-02390009

Submitted on 25 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A massively parallel CFD/DEM approach for reactive
gas-solid flows in complex geometries using unstructured

meshes
Yann Dufresne, Vincent Moureau, Ghislain Lartigue, Olivier Simonin

To cite this version:
Yann Dufresne, Vincent Moureau, Ghislain Lartigue, Olivier Simonin. A massively parallel CFD/DEM
approach for reactive gas-solid flows in complex geometries using unstructured meshes. Computers
and Fluids, 2020, 198, pp.104402. �10.1016/j.compfluid.2019.104402�. �hal-02390009�

https://hal.science/hal-02390009
https://hal.archives-ouvertes.fr

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in: https://oatao.univ-toulouse.fr/26710

To cite this version:

Dufresne, Yann and Moureau, Vincent and Lartigue, Ghislain
and Simonin, Olivier A massively parallel CFD/DEM approach
for reactive gas-solid flows in complex geometries using
unstructured meshes. (2020) Computers and Fluids, 198.
104402. ISSN 0045-7930

Official URL:

https://doi.org/10.1016/j.compfluid.2019.104402

Open Archive Toulouse Archive Ouverte

A massively parallel CFD/DEM approach for reactive gas-solid flows in

complex geometries using unstructured meshes

Yann Dufresne

a , ∗, Vincent Moureau

a , Ghislain Lartigue

a , Olivier Simonin

b

a CORIA-UMR6614, Normandie Université, CNRS, INSA and UniRouen, Rouen, 760 0 0, France
b Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, INPT, UPS, Toulouse, France

a b s t r a c t

Despite having been thoroughly described in various simple configurations, the study of gas-fluidized

systems in a CFD/DEM (Discrete Element Method) formalism becomes challenging as the computational

domain size and complexity rise. For a while, attention has been drawn to the design of physical models

for fluid-particles interactions, but a recent challenge for numerical tools has been to take advantage from

the increasing power of distributed memory machines, in order to simulate realistic industrial systems.

Furthermore, unstructured meshes are appealing for their ability to describe complex geometries and

to perform local refinements, but lead to significant coding effort involving sophisticated algorithm. In

a attempt to design a numerical tool able to cope with these limitations, the methodology presented

here proposes an efficient non-blocking algorithm for massive parallelism management, as well as an

exhaustive contact scheme to deal with arbitrarily complex geometries, all to be operated on unstructured

meshes. The aim is two-fold: (i) To assist larger scale codes in their endeavor to close the solid stress

tensor for example, (ii) to pave the way for complex industrial-scale systems modeling using DEM. The

methodology is successfully applied to a pilot-scale fluidized bed gathering 9.6M spherical particles and

enables to reach interesting physical times using reasonable computational resources.

1

w

t

a

a

e

t

r

m

s

L

i

P

n

c

E

G

l

m

t

o

a

b

t

e

t

n

o

o
. Introduction

In Fluidized Bed Reactors (FBR), the fluidization regime occurs

hen the fluid that passes through the granular material exceeds

he minimum fluidization velocity. In this regime, the drag force

pplied to the solid grains counterbalances gravity, which leads to

 strong mixing of the fluid and solid phases. This mixing ensures

fficient heat and mass transfers across the reactor and minimizes

emperature and species concentration gradients in the fluidized

egion. These properties are particularly beneficial in the field of

etallurgy, energy and chemical industry for instance, in large

cale operations such as chemical synthesis, coating or drying [1] .

ow-temperature combustion with high conversion efficiency and
Nomenclature for non-obvious or recurrent abbreviations (by order of appearance

n the text): DEM, Discrete Element Method; ELGRP, Mesh element Group; PTGRP,

article Group; INTCOMM, Internal Communicator; EXTCOMM, External Commu-

icator; MPI, Message Passing Interface; PTEXTCOMM, Particle External Communi-

ator; PGTS, Particle Group To Send; VR , Voronoi Region; F, E,V, boundary Face,

dge, Vertex; BFG, Boundary Face Group; BSBFG, Bounding Sphere of Boundary Face

roup; BSF, Bounding Sphere of Face.
∗ Corresponding author.

E-mail addresses: yann.dufresne@insa-rouen.fr, yann.dufresne@coria.fr

l

i

s

t

t

p

t

d

a
ow pollutant emissions such as nitrogen oxides is one of the nu-

erous achievement of FBR. In the past, a lack of understanding of

he complex dynamic behavior of such devices has been pointed

ut [2] as one of the cause of the severe difficulties in their design

nd scale-up [3] . Thus, much time and resource is spent on the

uilding of preliminary tests on pilot-scale reactors that will lead

o the design of the final industrial-scale reactor by the mean of

mpirical processes [4] .

Computational Fluid Dynamics (CFD) has already contributed to

he understanding of many elementary physical principle through

umerous studies on various system sizes, ranging from the study

f heat and mass transfer at the particle scale [5] to the modeling

f complete industrial units [6] . The prime difficulty resides in the

arge spectrum of length and involved time scales. Indeed, even in

ndustrial scale systems where the ratio of the reactor size to the

olid particle diameter is very large, the fluidization regime fea-

ures macroscopic structures such as recirculations, particle clus-

ers and gas bubbles of which dynamics prediction strongly de-

ends on the microscopic description of particle contacts, in par-

icular.

Today, the most promising framework for the modeling of in-

ustrial units remains the Two Fluid Model (TFM) also referred to

s Euler-Euler method, in which it is assumed that both the gas

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2019.104402&domain=pdf
mailto:yann.dufresne@insa-rouen.fr
mailto:yann.dufresne@coria.fr

o

m

n

e

s

a

E

a

t

p

m

t

T

p

v

2

s

g

s

p

t

i

2

f

S

c

c

t

t

u

n

n

fi

ω

T

v

o

τ

w

s
and the particle phase are inter-penetrating continua [6] . Its un-

derlying assumption is the existence of a separation of scales: the

size of the averaging region is much larger than the particle scale.

This class of methods is computationally effective but the estab-

lishment of an accurate continuous description of the solid phase

is challenging and its formulation requires semi-empirical closures

and detailed validations. On the other hand, the Discrete Element

Method (DEM) also referred to as discrete particle method allows

for a more detailed description of particle-particle and particle-

wall interactions. This deterministic approach finds its origins in

the molecular dynamics methods initiated by Alder and Wain-

wright [7] and has been benefiting from its advances ever since.

In CFD/DEM, or Euler-Lagrange methods, the gas phase is still con-

sidered continuous and its time evolution is obtained from a clas-

sical CFD-type Eulerian code, but the particles are described indi-

vidually assuming that their motion obeys Newton’s second law

of motion, which is solved using standard schemes for ordinary

differential equations. This level of modeling designated as meso-

scale still requires closures for drag, collision and other forces as a

CFD grid cell typically contains up to a few tens of particles, but

its advantages lie in its ability to account for the particle-wall and

particle-particle interactions in a more realistic manner than Euler-

Euler methods.

For the time being, apart from the closures still needed when

using CFD/DEM, two main factors limit its utilization for realistic

industrial system study: i) The solving of the momentum balance

for each particle gives rise to substantial costs that can only be

overcome by the mean of optimized parallelism management and

ii) industrial system geometries are often composed of cylindrical

and irregular parts that prevent the use of conventional Cartesian

meshes and necessitate a proper methodology to treat particle-

wall contacts. Reaching sufficient computational performances in

CFD/DEM simulations serves two purposes: the first is to develop

closure laws which can represent the effective averaged interac-

tions in the larger scale models such as TFM, and the second is to

pave the way for pilot and industrial scale system simulations in

the long run.

Many open-source or commercial CFD/DEM packages have al-

ready shown good capabilities for simulating such systems or more

complex ones. Among them, one can cite NGA [8] and MFIX-

DEM [9] parallel solvers which are both capable to simulate reac-

tive flows based on Cartesian meshes. Other codes relying on un-

structured meshes are built based on the coupling of one solver

dedicated to the fluid phase and another to the solid phase, such

as OpenFoam®+LIGGGHTS® [10] and Fluent®+EDEM CFD® [11] .

This study presents the design of a massively parallel code for

simulating both phases on unstructured meshes. Concerning com-

plex geometries, contrary to the algorithm suggested by Lin and

Canny [12] implemented in the popular I-Collide [13] collision de-

tection package, the method proposed in this work is able to re-

turn the measure of a particle penetration depth into the wall,

while being simpler than the Voronoi-clip algorithm [14] , which is

designed for arbitrary complex 3D polyhedra collisions. This code

can also work in reacting conditions.

An approach combining DEM to represent the solid phase with

Large-Eddy Simulation (LES) equations solved on an Eulerian un-

structured grid for the fluid phase has been implemented in the

finite-volume code YALES2 [15] , a LES and DNS (Direct Numeri-

cal Simulation) solver based on unstructured meshes. This code

solves the low-Mach number Navier-Stokes equations for turbulent

reactive flows using a time-staggered projection method for con-

stant [16] or variable density flows [17] .

There is abundant literature on the subject of the different ex-

isting models for drag [18] , collision force [19] and other closures

that may be used for turbulence or heat transfer modeling. These

discussions don’t fall within the scope of this work, which focuses
n a methodology for performance increase. Thus, only elementary

odels are used in the present work. Furthermore, as heat transfer

either plays a significant role in code performances nor involves

xtra specific numerical methodology, our attention turns to the

tudy of an isothermal gas-solid dense fluidized bed experimented

t the University of Birmingham [20] .

In this context, this paper is organized in seven parts. The

uler–Lagrange formalism is first described for both the gaseous

nd the particle phase in Section 2 . Some noteworthy features of

he YALES2 code are then briefly introduced in Section 3 . The pur-

ose of Section 4 is to present an efficient algorithm for parallelism

anagement. Then, a viable manner to treat spherical particle con-

acts with arbitrary complex geometries is presented in Section 5 .

he main case under study is described in Section 6 . Finally, the

erformances of the code are measured in Section 7 . Useful abbre-

iations can be found in footnote 1 .

. The Euler–Lagrange formalism

This section exposes the main models and numerics used for

olving the low-Mach number Navier–Stokes equations derived for

ranular flows in a LES framework. Then, a description of the clo-

ures and numerics for solid phase modeling is presented. The cou-

ling between the phases is provided in the Appendix A , including

he interpolation/projection technique and the description of filter-

ng steps suited for unstructured meshes.

.1. Gas phase modeling

The LES governing equations for granular flows are obtained

rom the filtering of the unsteady, low-Mach number Navier–

tokes equations, taking the local fluid and solid fractions into ac-

ount. Further details concerning the volume filtering operations

an be found in [21] . The governing equations for mass conserva-

ion, momentum transport, sensible enthalpy transport and species

ransport finally read:

∂

∂t
(ε ̄ρ) + ∇ · (ε ̄ρ ˜ u) = 0 , (1)

∂

∂t
(ε ̄ρ ˜ u) + ∇ · (ε ̄ρ ˜ u � ˜ u) = −∇ ̄P + ∇ · (ε ̄τ) + ε ̄ρg + F p→ f , (2)

∂

∂t

(
ε ̄ρ ˜ h s

)
+ ∇ ·

(
ε ̄ρ ˜ u ̃

 h s

)
= ∇ ·

(
μt

P r t
∇ ̃

 h s

)
+ dP 0

dt
+ ∇ ·

(
ελ∇ ̃

 T
)

+ ε ˙ ω T + Q p→ f , (3)

∂

∂t

(
ε ̄ρ˜ Y k

)
+ ∇ ·

(
ε ̄ρ ˜ u ̃Y k

)
= ∇ ·

(
μt

Sc k,t

∇ ̃Y k

)
+ ∇ ·

(
ε ̄ρD k ∇ ̃

 Y k
)

+ ε ˙ ω k . (4)

 , ρ , μ, P, h s , P 0 , T, λ, D k , Y k , ε are the gas velocity, density, dy-

amic viscosity, dynamic pressure, sensible enthalpy, thermody-

amic pressure, temperature, thermal conductivity, diffusion coef-

cient, mass fraction of species k , and fluid fraction, respectively.

˙ k is the chemical source term and ˙ ω T the enthalpy source term.

he turbulent variables noted μt , Pr t and Sc k,t are the gas turbulent

iscosity, turbulent Prandtl number and turbulent Schmidt number

f species k . The viscous strain tensor τ̄ is calculated as:

¯ = (μ + μt)
[
∇ ̃

 u + ∇ ̃

 u

T − 2

3

(∇ · ˜ u) I
]
, (5)

here I is the identity tensor. F p→ f and Q p→ f are the momentum

ource term and the heat source due to the coupling with particles,

r

D

i

g

P

w

c

s

T̃

F

s

t

2

i

s

s

h

m

I

w

t

F

g

∇
t

s

o

c

r

c

o

m

w

a

i

l

c

s

t

c

a

m

a

w

2

t

a

Fig. 1. Soft sphere representation of two particles undergoing collision.

d

F

s

a

t

b

f

n

μ
i

u

t

T

a

s

n

T

u

u

I

t

t

T

espectively. There is no species transfer between gas and particles.

etails concerning the computation of these terms can be found

n the Appendix A . These equations are supplemented by the ideal

as Equation-Of-State (EOS):

 0 = ρ̄ ˜ r ̃ T with ˜ r =
∑

k ∈ S

R ̃

 Y k

W k

, (6)

ith r being the ideal gas mass constant, R being the ideal gas

onstant, W k the molar mass of species k , and S being the set of

pecies.

For the sake of clarity, the fluid filtered quantities ˜ u , ρ̄, P̄ , ˜ h s ,

 , ˜ Y k , τ̄ , ˜ r , F p→ f and Q p→ f will be written u , ρ , P, h s , T, Y k , τ , r ,

 p → f and Q p → f in the following sections.

Eqs. (2) –(4) are integrated using an explicit variable density

olver providing a fully mass, momentum and enthalpy conserving

ime advancement.

.2. Particle phase modeling

The translational motion of a particle’s center of gravity and

ts rotational motion around the center of gravity can be fully de-

cribed by the following system of equations given by Newton’s

econd law, assuming spherical and constant mass particle with

igh solid/gas density ratio:

 p
du p

dt
= F D + F G + F P + F C with

dx p

dt
= u p , (7)

 p
d ω p

dt
= M D + M C , (8)

here m p , u p , x p , I p and ω p are the particle mass, velocity, posi-

ion, moment of inertia and angular velocity, F D is the drag force,

 G = m p g is the gravity force and F P = −V p ∇P @ p is the pressure

radient force. In the last term, V p is the particle’s volume and

P @ p is the local pressure gradient interpolated at the center of

he particle. As in many dense gas-fluidized bed cases, a soft-

phere model [22] is employed, in which particles are allowed to

verlap other particles or walls in a controlled manner. A resulting

ontact force F C accounting for particle-particle and particle-wall

epulsion is thus added in the momentum balance of each parti-

le. M C is the torque of the contact force F C and M D is the torque

f fluid drag forces. The particle temperature evolution is given by:

 p C p,p
dT p

dt
= Q F , (9)

here C p,p and T p are the particle mass heat capacity and temper-

ture, and Q F is the heat flux exchanged with the fluid.

The source terms for particles F D and M D are calculated us-

ng a combination of the Ergun [23] and Wen and Yu [24] drag

aws, and a closure from the work of Dennis [25] , respectively. The

losures used for the computation of Q F won’t be detailed in this

tudy, which focuses on an isothermal application. The relation be-

ween F D , F P and F p → f , between Q F and Q p → f , as well as details

oncerning the interpolation kernels are given in the Appendix A .

A second-order explicit Runge-Kutta (RK2) algorithm is used to

dvance the particles in time. The use of a soft-sphere model de-

ands that �t p < T C , where �t p is the particle timestep and T C is

 contact time described in Section 2.2.1 . In this work, �t p = T C / 10

as considered, to ensure a reasonable precision.

.2.1. Modeling of collisions

The total collision force F C acting on particle a is computed as

he sum of all pair-wise forces f col
b→ a

exerted by the N p particles

nd N w

walls in contact. As particles and walls are treated similarly
uring collisions, the b index refers to both:

 C =

N p + N w∑

b=1

f col
b→ a with f col

b→ a = f col
n,b→ a + f col

t,b→ a . (10)

Here a linear-spring/dashpot [22] model is used along with a

imple Coulomb sliding model accounting for the normal
(
f col

n,b→ a

)
nd tangential

(
f col
t,b→ a

)
components of the contact force, respec-

ively, as in the work of Capecelatro [21] . For one particle (or wall)

 acting on a particle a :

col
n,b→ a =

{
−k n δab n ab − 2 γn M ab u ab,n

0

and

f col
t,b→ a =

{
−μtan || f col

n,b→ a
|| t ab if δab > 0 ,

0 else .
(11)

Fig. 1 shows a representation of two colliding particles. k n is the

ormal spring stiffness, γ n is the normal damping parameter, and

tan is the friction coefficient. The term δab = r a + r b − || x b − x a ||
s defined as the overlap between the a and b entities expressed

sing each particle radius r p and center coordinates x p . The sys-

em effective mass M ab is expressed as M ab = (1 /m a + 1 /m b)
−1 .

he unit normal vector n ab from particle a towards entity b and

 unit tangential vector t ab are defined using particles’ relative po-

ition and velocity. n ab and t ab are calculated as follows:

 ab =

x b − x a

|| x b − x a || and

t ab =

{

u ab − u ab,n

|| u ab − u ab,n || if || u ab − u ab,n || > 0 ,

0 else .
(12)

he relative velocity of the colliding system at the contact point

 ab is written:

 ab = (u a − u b) + (r a ω a + r b ω b) ∧ n ab . (13)

ts normal component is then given by u ab,n = (u ab · n ab) n ab .

Using Newton’s third law yields an analytical expression for

he system’s natural frequency ω 0 =

√

k n /M ab and the contact

ime [26] :

 C =

π√
ω

2
0

− γ 2
n

(
∝

√
m p

k n

)
. (14)

Fig. 3. Internal (INTCOMM) and External (EXTCOMM) communicators correspond-

ing to Fig. 2 .

u

c

c

a

d

f

o

a

a

s

(

e

c

a

4

t

r

a

d

t

d

a

(

a

t

a
As the particles are all spherical with homogeneous density, the

moment of inertia simply is I p = m p d
2
p / 10 , and the total torque M C

applied by all entities b in contact with a particle a only depends

on the tangential component of the individual contact forces:

M C = r a

N p + N w∑

b=1

n ab ∧ f col
t,b→ a . (15)

In case of a particle-wall collision, the wall is considered as a par-

ticle with infinite mass and null radius.

The search for potential collision partners is accelerated by the

use of a standard linked-cell data structure [27] . This Cartesian

grid, superimposed on the unstructured Eulerian mesh, is dynam-

ically computed. The description of this usual step has been omit-

ted.

3. Specific features of the YALES2 solver

In this section, some properties of the unstructured mesh parti-

tioning used in YALES2 are highlighted. The specific data architec-

ture strongly influences the methodologies that are to be discussed

at a later stage, and is thus also presented. Further detail concern-

ing these features can be found in [15] .

3.1. Two-level domain decomposition for unstructured grid

As mentioned previously, the low-Mach number Navier–Stokes

equations are solved on unstructured meshes in order to fully ben-

efit from high-performance computing on massively parallel ma-

chines. A two-level domain decomposition (Double Domain De-

composition, abbreviated DDD) is employed and organized as fol-

lows: at a high level, mesh cells are dispatched over processors.

It consists in splitting the computational domain into sub-meshes

that are affected to each computational core. At the lower level, at

the processor scale, mesh cells are gathered in cell groups called

ELement GRouPs (ELGRPs) as sketched in Fig. 2 . This double do-

main decomposition allows for easily optimizing the use of pro-

cessor memory for cache-aware algorithms and may also be ex-

ploited by deflation algorithms [28] . In 3D cases, ELGRPs typically

contains O(10 3) cells. Following the same pattern, particles located

in an ELGRP are stored in ParTicle GRouPs (PTGRPs) containing up

to 500 particles each, here again to improve performances.

3.2. Data structures

Using DDD reinforces the need to work with a specific data

structure. Indeed in this context, each ELGRP stands for an individ-
Fig. 2. Double Domain Decomposition (DDD). The highlighted elements are partic-

ipating in the communications inside and outside each processor and those sur-

rounded in black are participating in the communications between processors. Ex-

tracted from [15] .

p

C

(

p

s

d

F

i

F

t

al mesh block, but communications occur between ELGRPs when

omputing gradients or for residual assembly. Thus, besides classi-

al inter-processor connectivities, some geometrical elements, such

s nodes, faces or edges, need to exchange data inside the core

uring the communication steps. Another data structure is there-

ore needed to connect the geometrical elements at the border

f the ELGRPs. Rather than making use of a ghost cell method,

n INTernal COMMunicator (INTCOMM) that contains a copy of

ll the nodes, faces or edges involved in the communications in-

ide or outside the cores is deployed. EXTernal COMMunicators

EXTCOMMs) also contain their own copy of the nodes, faces and

dges that are located at the interface between other computing

ores. This architecture is depicted in Fig. 3 , where the boundaries

re also represented.

. Parallelism management

Moving towards pilot-scale CFD/DEM simulations imposes

hat a satisfactory scalability on massively parallel machines be

eached. Parallel simulations require special treatment for particles,

s collision might occur between some of them although they are

ispatched on different processor domains that have no connec-

ion. To cope with this requirement and in accordance with the

ata structures for unstructured meshes explored in Section 3.2 ,

 ghost particle method is used in a Message Passing Interface

MPI) paradigm. MPI parallel domain decomposition is indeed an

ttractive option to parallelize CFD/DEM problems, especially with

he emergence of massively parallel distributed memory systems

nd for its high scalability possibilities even for large numbers of

rocessors. Note that a combination of a CFD code executed on

PUs (Central Processing Units) and a DEM code executed on GPUs

Graphics Processing Unit) has been reported as a promising high-

erformance method for coupled CFD/DEM simulations [29] . This

ection tackles the design of an efficient parallel strategy using MPI

omain decomposition.

The currently implemented global algorithm is sketched in

ig. 4 and can be resumed as follows: first, ghost particles are

dentified using a cell halo surrounding each processor domain.
ig. 4. Global algorithm for parallelism management on unstructured meshes. The

wo first steps are detailed in this work.

Fig. 5. Flagging of one layer of elements () at the interface of two processor domains. Left: on unstructured mesh, the red particle p don’t belong to any flagged element.

Right: on Cartesian mesh this instruction is sufficient to identify ghost particles. (For interpretation of the references to colour in this figure legend, the reader is referred to

the web version of this article.)

Fig. 6. Flagging of layers of elements () at the interface of two processor domains with a distance instruction. Left : on unstructured mesh, all particles p are now

identified. Right : on Cartesian mesh this instruction leads to the same result.

N

a

a

l

e

i

c

w

i

t

t

v

p

4

c

b

p

l

c

r

s

f

e

c

c

t

d

s

c

c

t

m

i

M

f

o

i

c

a

t

a

d

a

m

t

t

i

t

w

a

t

c

t

t

p

d

r

e

a

t

g

m

i

o

s

i

E

n

P

i

e
ext, the necessary data of particles belonging to the cell halo

re packed, and exchanged between involved processors. Finally,

fter unpacking on each processor, ghost particles are treated as

ocal particles to treat collisions. The following subsections detail

ach step of this algorithm. All tests have been run on the Birm-

ngham fluidized bed case (see Section 6), on the Curie super-

omputer from CEA in France. Unless otherwise specified, statistics

ere collected over 1 s of physical time, and started after having

nitiated fluidization for 2.5 s. It will be seen in Section 6 that these

ime scales are sufficient to ensure that both the bed height and

he pressure loss across the bed are oscillating around their mean

alue. This leads us to think that this case is relevant enough for

erformances’ measurements.

.1. Initialization: Cell halo identification

The first step consists in defining a cell halo around each pro-

essor domain, in order to identify the closest particles on neigh-

or processors. A better selection will limit the number of ghost

articles to be exchanged, thus facilitating the building of the col-

ision partners’ detection grid and increasing the collision force

omputation speed.

The cell halo identification can be straightforwardly achieved on

egular Cartesian meshes, and in most cases one layer of cells is a

ufficient criterion for the halo building and no collision can be

orgotten. However, when dealing with mesh size heterogeneities

ncountered on o-grid or unstructured meshes for instance, this

riterion can either lead to an excessive halo width sacrificing the

ode performances, or the forgetting of many contacts impacting

he simulation physical meaning, as sketched in Fig. 5 . This un-

erlines the need for an adaptive element flagging method which

hould ideally be based on an exact distance computation. As

omputing the exact distance between a mesh node and a pro-

essor domain border would involve numerous calculation steps

hat could necessitate inter-processor communications, the imple-

ented approach uses an approximate distance. The algorithm

s inspired by fast-marching algorithms developed for Level-Set

ethods [30,31] . In particular, it relies on the mapping of the sur-

ace of the processor domain border using points called markers,
f which coordinates are automatically generated. The general idea

s to propagate from node to node these coordinates, from the pro-

essors’ interface towards neighboring processors. Each step of this

lgorithm is thoroughly detailed in the Appendix B .

Performing these steps allows, at the beginning of a simulation,

o identify the required elements for ghost particles treatment, as

ny element containing a node closer to the processor domain bor-

er than a particle radius is flagged (see Fig. 6). It also works on

ny mesh element type; tetrahedron, hexahedron, prisms, pyra-

ids, and hybrid meshes.

As a result, Table 1 yields the relative CPU time measured for

he main steps of the collision force computation algorithm for

he slower processor regarding different methods for the cell halo

dentification. The reference is the adaptive method studied in

his section. The three other methods correspond to simpler ones

here the given instruction is to identify the closer, the two closer

nd the three closer layers of elements for the halo. For this test

he Birmingham fluidized bed (see Section 6) was run on 512 pro-

essors. It should be noticed that in this case the particle radius

hat is targeted for the adaptive method is supposed to be smaller

han the average mesh cell size, otherwise these results are ex-

ected to be different. The obtained values clearly indicate a strong

ependency upon the number of identified cells, as it obviously

esults in different quantities of ghost particles that have to be

xchanged between processors, then located in the detection grid

nd finally treated for collisions. In the tested case it appears that

he contact force computation is the most sensitive part of the al-

orithm. A thorough analysis of the identified cells reveals that the

ethod using one layer of elements may identify additional cells

n negative curvature border areas, hence the slightly better results

btained with the adaptive method.

To benefit from this efficient cell halo identification, a new data

tructure called ParTicle EXTernal COMMunicator (PTEXTCOMM)

s created, playing the same role as the previously mentioned

XTCOMM but dedicated to the particles. At this point, the

ew architecture is sketched in Fig. 7 . On each processor, one

TEXTCOMM is allocated for each other processor impacted dur-

ng the cell halo definition, that will support point-to-point MPI

xchanges during the simulation. To make sure that for any

Table 1

Influence of cell halo identification method on the CPU time for various operations.

Relative CPU time for some key phases measured for slowest processor

Method used Ghost particle communications Potential collision partners identification Particle-particle contact force computation

adaptive method 1.00 1.00 1.00

one layer of elements 1.04 1.07 1.35

two layers of elements 1.69 1.66 1.98

three layers of elements 2.63 2.55 3.07

Fig. 7. Improved communicators structure containing Particle EXTernal COMMunicators (PTEXTCOMMs) and ghost ParTicle GRouPS (GHOST PTGRPS).

Fig. 8. Ghost particle method principle shown for a part of a cylindrical domain.

The different processor domains are colored accordingly. The processor of interest

is ranked #1 () and its closest neighbors are ranked #2 , #3 , #4 , #5 and #6 . A

particle entering the white cell halo around #1 will be sent to #1 as a ghost particle

by the processor it belongs to.

t

t

l

o

i

i

b

s

t

e

f
processor n sharing a PTEXTCOMM with a processor m , the re-

verse is true as well, a pre-communication step is performed when

the last processor exits the cell halo definition loop. As shown

in Fig. 7 , each PTEXTCOMM can contain several dedicated PTGRPS

called PGTS (Particle Group To Send), of which role is detailed in

Section 4.2 . They also contain information about elements flagged

during cell halo building. It is important to notice that the list of

PTEXTCOMMS can differ from the list of EXTCOMMS, as the cell

halo size can locally exceed the mesh element size and thus im-

pact distant processors.

4.2. Ghost particle treatment

When the collision force computing is needed, i.e. at each RK

step, the particles’ data have been updated and ghost particles

have to be exchanged. Ghost particles are identified using the cell

halo surrounding each processor domain as shown in Fig. 8 for

processor ranked #1 in a cylindrical geometry discretized with

an unstructured mesh. This halo has been defined in previous

Section 4.1 .

Before computing the collision force on a processor # p, the fol-

lowing treatment is applied:

1. the particles of any processor # n located in a mesh element

which belongs to processor # p halo are copied into the accord-

ing PTEXTCOMM of # n and dispatched among its PGTS.

2. Each processor # n sends its PGTS to processor # p.

3. Processor # p stores all the received particles in ghost PTGRPs.

Eventually, ghost particles are treated by proc # p as local par-

ticles when computing contact forces, before all ghost particles

are discarded to prepare for the next time step. Simulations of

the Birmingham fluidized bed performed on 512 processors have

shown that a naive coding of the ghost particle exchange could

lead it to taking 45% of the total simulation time. This section fo-

cuses on the implementation of an efficient parallel strategy to re-

duce the cost of the 2nd step of the previous algorithm.

A packing strategy, consisting in arranging all the PGTS of a

PTEXTCOMM into a unique vector before sending it, is here em-

ployed to circumvent the problem of small messages latency (de-
ailed in the Appendix C), as shown in Fig. 9 . When the recep-

ion of all particle data packet is done, an unpacking step al-

ows to rebuild ghost PTGRPs from it. In order to avoid numer-

us memory (de)allocation operations, the allocated size of a pack

s only enlarged if not sufficient but is never downsized, target-

ng buffers reuse. Fig. 10 displays the distribution of the num-

er of MPI messages as a function of the message sizes for two

trategies: the one without packing of the halo data corresponds

o a naive coding in which, for each PGTS of a PTEXTCOMM,

ach particle data array is sent individually, as well as its size

or preliminary memory allocation. The other strategy involves the

Fig. 9. Before packing, a PTEXTCOMM contains two PGTS. Each PGTS is composed of as many arrays as particle data. The packing consists in arranging all these arrays in

one unique vector which is the pack to send, thus simplifying MPI communications.

Fig. 10. Distribution of the number of MPI messages as a function of the message sizes for two strategies; : without packing of the halo data, : with packing of

the halo data. Records come from runs performed on the Birmingham configuration on 512 processors over 30 solver iterations. The sums under each curve indicates the

total amount of messages exchanged.

a

f

c

l

s

s

s

m

t

t

P

w

s

f

a

s

t

w

w

t

w

u

s

d

t

F

i

t

e

p

o

t

s

a

s

t

a

d

b

c

c

p

b

forementioned packing/unpacking of the halo data. Records come

rom runs performed on the Birmingham configuration on 512 pro-

essors over 30 solver iterations. It is clear that the naive coding

eads to very large amounts of messages: approximately one thou-

and times more than the packing/unpacking strategy. These mes-

ages are also much smaller in the first strategy, roughly one thou-

and time smaller, and more than 40% of the total amount are 4B

essages, whereas the largest ones are 12kB messages. As regards

he packing strategy, the observed message sizes corresponds to

he packing of discrete numbers of PGTS, here ranging from one

GTS (representing 45kB messages containing up to 500 particles)

hich are the more represented, up to twenty-nine PGTS (repre-

enting 1.28MB messages containing up to 14500 particles).

The total time spent in the communications is estimated as a

unction of the message size in Fig. 11 . The total time is calculated

s follows for the strategy without packing, k denotes a message

ize:

otal time (k) = τlatency (k) × number of messages (k) , (16)

here τ latency is the global latency, and as follows for the strategy

ith packing:

otal time (k) =

[
τlatency (k) + τpack (k) + τunpack (k)

]
×number of messages (k) , (17)
here τ pack and τ unpack stand for the CPU cost of the packing and

npacking operations, respectively. The performances of the Curie

upercomputer’s network are assessed in the Appendix C in or-

er to quantify τ latency (k), as well as τ pack (k) and τ unpack (k). Here

he global latency is taken from extra node communications (see

ig. C.35), and the packing/unpacking costs are taken with prelim-

nary particle data selection (see Fig. C.36).

It can be observed that even when accounting for the cost of

he packing and unpacking steps of each message, the second strat-

gy is still 12 times quicker than the naive coding without data

acking, approximately. It should be noted that these calculations

nly give maximum times because the underlying hypothesis is

hat exchanges only occur one at a time, while in a real simulation

ome are done simultaneously. It can also be argued that even on

n ideal network with null latency and infinite bandwidth, mes-

ages cannot be treated concurrently at the time of their recep-

ion, hence additional contention that should be avoided. Eventu-

lly, these results are all in favor of an MPI strategy involving fewer

ata packets to exchange. Simulations of the Birmingham fluidized

ed running on 512 processors show that MPI communications

ould represent up to 45% of the total simulation cost without spe-

ial treatment of the data exchanges. Results using the presented

acking/unpacking strategy exhibit a communication cost divided

y 3, allowing the overall simulation to run 30% faster.

Fig. 11. Theoretical maximum time spent in communications as a function of the message sizes for two strategies; : without packing of the halo data, : with

packing of the halo data. As an indication, stands for the case with packing but only accounting for the cost of communications. Records come from runs performed

on the Birmingham configuration on 512 processors over 30 solver iterations. The sums close to each curve indicates the total amount of time.

l

p

t

a

c

c

t

o

A

p

o

p

t

a

s

b

a

g

s

a

t

“

L

C

r

b

g

l

m

s

t

t

N

p

o

t

m

s

p

r

o
To accelerate the treatment of data packets, a fully asyn-

chronous algorithm featuring computation/communication overlap

is implemented, as sketched in Fig. 12 . The objective of such a

method is to try to perform on-the-fly packing and unpacking

operations in order to overlap with communication times due to

global latency. It is divided into two nested parts, the first one be-

ing the exchange of pack sizes to allocate the necessary memory

on the receiver’s side, and the second one being the exchange of

the actual packs. The main idea is to probe the non-blocking re-

ceive requests in order to perform the packing and unpacking op-

erations as soon as some data are available, while waiting for the

next ones to be completed. By checking the size of a pack to send

and the one of the pack to receive, any PTEXTCOMM empty of par-

ticles is discarded from the second part of the algorithm, as well

as all the PTEXTCOMM that would have to exchange particles with

it.

Theoretically, this algorithm should reveal its full potential in

cases where the packing and unpacking computational costs are

close to the global latency. Indeed in this configuration, the pack-

ing and unpacking operations can occur between two reception

completions without any time loss. The capacity of this algorithm

to provide computation/communication overlap can be assessed

by comparing its performances with the ones of a blocking cod-

ing also including the packing and unpacking features. In the lat-

ter case, pack sizes are all exchanged in an orderly manner before

packing is carried out, then actual packs are treated the same be-

fore unpacking is performed. Run on 512 processors, the Birming-

ham fluidized bed case demonstrates that the computational cost

for ghost particles treatment decreased by a factor 2.6 when us-

ing the asynchronous method along with packing/unpacking, com-

pared to packing/unpacking with blocking communications, there-

fore providing a gain of 11.5% on the overall simulation time.

5. Complex boundaries management

As industrial systems often contain non-planar boundaries, such

as cylindrical parts or more complex elements like pipe junctions,

a special treatment is required to treat particle-wall contacts. Sev-

eral options have been proposed by different authors to address

this problem. Among them, the most simple method is the one

of the glued particles to approximate geometric surfaces and thus

treat particle-wall interactions the same fashion as particle-particle

interactions ([32] , [33]). However, this simplification suffers from a
ack of accuracy as it doesn’t represent complex shapes exactly, es-

ecially in the vicinity of convex parts. It can also result in uncon-

rolled wall roughness and larger computational overheads associ-

ted with the use of additional particles [34] . Further coding effort

an also be needed for surface particles generation [35] .

The explicit methods for the treatment of the contact between

omplex objects can be of two types : “simplex based” algorithms

reat a polyhedron as the convex hull of a point set and perform

perations on simplices defined by subsets of these points [14] .

mong these, the Discrete Function Representation algorithm pro-

osed by Williams [36] allows the treatment of numerous varieties

f shapes but may imply fine discretization with consequent set of

oints for edgier bodies. The iterative algorithm originating from

he work of Gilbert, Johnson & Keerthi [37] , which has served as

 basis for several other methods, may be the most famous repre-

entative among this type of methods. On the contrary, “feature-

ased” algorithms treat a polyhedron as a set of points, segments

nd faces. The finite wall method studied by Kremmer [38] is a

ood candidate, but starts with the assumption that the boundary

urfaces can be discretized into triangular elements, the positions

nd dimensions of which are known and controllable, which is not

he case in general CFD simulations. It also requires an empirical

shrink factor” to be defined. The popular algorithm suggested by

in and Canny (Lin–Canny algorithm) [12] , implemented in the I-

ollide [13] collision detection package, is a “feature-based” algo-

ithm designed for arbitrary complex 3D polyhedra collisions. It is

ased on the existence of a unique decomposition into Voronoi re-

ions of the wall geometry. The Lin–Canny algorithm raises prob-

ems due to its lack of robustness, and is not able to return the

easure of the penetration depth, therefore it is not suited to a

oft-sphere model implementation. It has been improved by Mir-

ich (Voronoi-clip algorithm) [14] in order to overcome these limi-

ations, however it can still only treat spheres by tessellating them.

ote that analytical contacts can be elegantly resolved for some

articular shapes [39] , but to the author’s knowledge, this option

ffers f ew prospects for general 3D applications.

Here is thus proposed an algorithm for detecting the interac-

ions between a spherical particle and an arbitrarily complex geo-

etric surface and mesh in the framework of the DEM, and con-

istent with massive parallelism. This last point is of particular im-

ortance, as this aspect is seldomly addressed in the literature. It

elies on the fact that a particle can collide with only three types

f geometrical entities: either a vertex (V), or an edge (E), or a

Fig. 12. Flow chart of the final asynchronous algorithm for ghost particle treatment featuring packing/unpacking of the halo data and communication/computation overlap.

: pack sizes communication parts. : pack communication parts.

f

i

d

o

o

t

T

a

a

j

s

a

f

t

b

l

c

5

c

t

f

o

o

t

e

F

ace (F), or with any combination of these objects simultaneously

n any fashion. It thus belongs to the “feature-based” algorithms. It

oesn’t require any input parameter nor preprocessing of the ge-

metry, and doesn’t use any iterative process. It is also only based

n the present state of the contact configuration (it’s an “exhaus-

ive” scheme [36]), and also relies on a Voronoi decomposition.

he global algorithm is sketched in Fig. 13 . As for most of the

bove mentioned methods, a first phase of spatial sorting seeks to

void an all-to-all body comparison by culling the number of ob-

ects which are potential contactors of a given particle. In a further

tage, all possible contact conditions including contact with Fs, Es

nd Vs (Faces, Edges and Vertices) are explicitly determined. The

ollowing subsections detail these steps the other way around, as

he last ones are actually at the core of the method. All tests have

een run on the Curie super-computer from CEA in France. Un-

ess otherwise specified, statistics were collected over 1 s of physi-

al time, and started after having initiated fluidization for 2.5 s.
.1. Use of Voronoi regions

Voronoi regions are used for their ability to yield an object’s

losest boundary feature(s) and then the shortest distance between

his object and the boundary. The definition of the Voronoi regions

or several geometrical features is given: for a feature X ∈ [F, E, V]

n a polyhedron, the Voronoi Region VR (X) is the set of points

utside the polyhedron that are closer to X than to any other fea-

ure on the polyhedron. The Voronoi regions collectively cover the

ntire space outside the polyhedron. Examples of VR are shown in

ig. 14 .

It stems from the building of the boundary features’ VR s that:

• The number of planes delimiting VR s (F) is equal to the num-

ber of edges of F, say three for a triangle, and the normals to

each of these planes are given by the normals of each edge con-

tained in the plane defined by F.

Fig. 13. Global algorithm for arbitrarily complex geometries management.

Fig. 14. Voronoi regions of convex node (VR (V)), convex edge (VR (E)) and face

(VR (F)).

Fig. 15. On the left, VR (V) normals v 1 , v 2 and v 3 are elucidated along with the

approaching particle’s corresponding vectors p 1 , p 2 and p 3 for dot products calcu-

lations. On the right, VR (E) normals e 1 , e 2 , e 3 and e 4 are elucidated along with the

approaching particle’s corresponding vectors p 1 , p 2 and p 4 for dot product calcula-

tions. p 3 is equal to p 2 .

1

k

i

t

f

h

a

h

c

e

g

t

f
• The number of planes delimiting VR s (V) is equal to the num-

ber of edges connected to V, and the normals to each of these

planes are simply equal to the direction vectors carried by each

edge. This number can a priori reach any value.
• VR s (E) are all limited by four planes. The normals to two of

them are given by the normals of E contained in the planes de-

fined by each faces connected by E. The two others are obtained

by taking the direction vector of E and its opposite.

It appears that the knowledge of the VR s normals of each

boundary feature should be sufficient to identify an object’s clos-

est boundary feature in convex parts, and eventually, all VR s (E)

and VR s (V) normals are built and stored. The VR s normals of the

features that are common to several processors are entirely known

to each of these processors. To identify an object’s closest point on

the boundary, the following methodology is retained. Here the ex-

ample of a particle of radius r p of center P approaching a boundary

composed of several triangular faces is taken:

1. Projection P′ of the point P onto the plane defined by the first

boundary face F .

2. Computation of the distance d pF between P and P ′ .
3. In case of overlap (d pF < r p), to determine whether P′ belongs

to F or not. To this end, the coordinates of P ′ are expressed

in the face’s barycentric coordinates. The full description of the

operation is in the Appendix D .

4. In case P ′ belongs to F, then the particle is actually colliding

with F, its shortest distance to the boundary is d pF and the con-

tact treatment can be applied (see Section 5.2). In this case the

algorithm moves on to the next boundary face. Otherwise the

contact between P and any E ∈ F has to be checked.

5. To check a particle-edge contact, the distance d pE between the

particle and the line defined by the direction vector of E is cal-

culated first.

6. In case of overlap (d pE < r p), the belonging of P to VR (E) is

checked by performing dot products between each VR (E) nor-

mal and the appropriate vector for P , as sketched in Fig. 15 , so

that:

P ∈ VR (E) if ∀ i ∈ � 1 ; 4 � , p i · e i < 0 . (18)

For an edge, p 3 is equal to p 2 . To quicken these operations, P

is first assumed to belong to VR (E) , then each dot product is
consecutively checked and the test ends as soon as one gives a

positive result.

7. In case P ∈ VR (E) , the particle is actually colliding with E, its

shortest distance to the boundary is d pE and the contact treat-

ment can be applied (see Section 5.2). In this case the algo-

rithm moves on to the next boundary face. Otherwise the con-

tact between P and any V ∈ F has to be checked.

8. To check a particle-vertex contact, the distance d pV between the

particle and V is calculated first.

9. In case of overlap (d pV < r p), the belonging of P to VR (V) is

checked by performing dot products between each VR (V) nor-

mal and the appropriate vector for P , as sketched in Fig. 15 , so

that:

P ∈ VR (V) if ∀ i ∈ � 1 ; number of edges connected t o V � , p i · e i < 0

(19)

To quicken these operations, P ∈ VR (V) is first assumed to be

true, then each dot product is consecutively checked and the

test ends as soon as one gives a positive result.

0. In case P ∈ VR (V) , the particle is actually colliding with V, its

shortest distance to the boundary is d pV and the contact treat-

ment can be applied (see Section 5.2). In this case the algo-

rithm moves on to the next boundary face.

This algorithm allows several simultaneous contacts with any

ind of boundary feature in convex geometrical parts. Furthermore,

n concave areas such as the one depicted in Fig. 16 , vectors orien-

ation invariably prevents the particle from accounting the concave

eature E for collision, while allowing both the side faces, which

as a physical meaning. Fig. 16 also reveals a good behavior of the

lgorithm in more complex cases that can occur for nodes which

ave more than three connected edges. By providing suitable exit

onditions it also prevents contacts from being detected with sev-

ral entities belonging to the same face: indeed when a contact is

oing to be treated between a particle and the face F, no further

ests are performed for Es and Vs ∈ F . Also, as soon as a particle is

ound overlapping an E ∈ F , the remaining Es and Vs are discarded

Fig. 16. Left part: classical concave case. The particle is overlapping faces F 1 , F 2 and edge E in pale red areas. The algorithm for the use of VR s will detect that P ∈ VR (F 1) ,

P ∈ VR (F 2) but P / ∈ VR (E) . Hence, repulsion forces on the particle will be calculated for F 1 and F 2 even if the particle actually overlaps E . Right part: neither convex nor

concave case featuring an angle > 180 ◦ () and an angle < 180 ◦(). The particle is overlapping all edges and vertex V . The algorithm will detect that P ∈ VR (E 1) ,

P ∈ VR (E 2) but P / ∈ VR (V) , P / ∈ VR (E 3) and P / ∈ VR (E 4) . Hence, repulsion forces on the particle will be calculated for E 1 and E 2 only. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)

a

a

c

a

t

d

t

f

e

f

5

a

f

t

i

t

m

p

w

p

i

d

f

t

t

c

p

t

a

t

o

n

δ

w

n

t

i

m

n

a

p

n

δ

w

p

e

d

n

δ

w

n

t

F

f

f

f

nd the algorithm repeats for the next face. In a last case, as soon

s a particle is found overlapping a V ∈ F , the remaining Vs are dis-

arded and the algorithm is repeated for the next face. These exits

re thus essential for computational cost saving. Lastly, it appears

hat for contacts with nodes and edges, each connected face can

etect the contact, resulting in a repulsion force accounted several

imes instead of one. To cope with this limitation, all the contact

orces exerted by edges are divided by two, while contact forces

xerted by nodes are divided by the node’s number of connected

aces. This multiplicity is computed in a parallel fashion.

.2. Contact resolution

Having identified the type of contact point for a particle, the

lgorithm finishes with the calculation of the effective repulsive

orces and torques exerted on the particle. As shown in Eq. 10 , the

otal collision force exerted on a particle in contact with a wall

s taken as the sum of the forces exerted by each colliding fea-

ure of the wall. These particle-wall forces are composed of nor-

al and tangential components written the same fashion as for

article-particle contacts (see Eq. 11 and Eq. 15), by treating the

all parts as a particle with null radius and infinite mass. The

arameters k n , γ n and μtan can be set to different values regard-

ng the type of contact, either particle-particle or particle-wall. To

escribe the repulsion force exerted on a particle by a boundary

eature, a unit normal vector and a measure of the interpenetra-

ion distance (overlap) between the sphere and wall element are

o be yielded. As in a majority of works, contacts are here treated

onsidering a unique contact point, despite the actual overlapping

arts may reveal an extensive set of possibilities.

Referring to the different contact cases sketched in Fig. 17 , the

reatment of particle-face contact is trivial and consists in building

 unit vector n pF normal to the face plane and an overlapping dis-
ig. 17. A particle of radius r p with center coordinates x p overlapping (here unreasonably

or collision force computation are indicated by n pV , n pE and n pF , respectively. Interpen

eatures, the method used considers the contact the same manner as the one with the pa

eature. (For interpretation of the references to colour in this figure legend, the reader is
ance δpF . Let N E be the number of edges of a face, n pF and δpF are

btained by:

 pF =

n

∗
pF

|| n

∗
pF

|| with n

∗
pF =

1

N E

∑

i ∈N E
e i ∧ e i+1 , (20)

pF = r p − (x F − x p) · n pF , (21)

here e i is the direction vector of edge E i oriented in such a man-

er that e i ∧ e i +1 yields a vector oriented towards the outside of

he domain, and x F is the face center coordinates. As n pF is unique,

ts value is stored in the appropriate data structure. The treat-

ent of particle-edge contact consists in building a unit vector n pE

ormal to the edge oriented from the particle center to the edge

nd an overlapping distance δpE . Let E i be this edge, composed of

oints A and B :

 pE =

n

∗
pE

|| n

∗
pE

|| with n

∗
pE = [(x p − x A) · e i] e i − (x p − x A) , (22)

pE = r p − [((x p − x A) · e i) e i − (x p − x A)] · n pE , (23)

here e i = x B − x A is the direction vector of E i . The treatment of

article-vertex contact consists in building a unit vector n pV ori-

nted from the particle center to the vertex and an overlapping

istance δpV such as:

 pV =

n

∗
pV

|| n

∗
pV

|| with n

∗
pV = x V − x p , (24)

pV = r p − (x V − x p) · n pV , (25)

here x V are the vertex coordinates. In this formalism, it can be

oticed that the resolution of a particle-edge contact is tantamount

o a particle-face contact of which face plane would be orthogonal
) a vertex (left), an edge (center) and a face (right). Unit normal vectors considered

etration distances are indicated by δpV , δpE and δpF , respectively. For these three

le red plane, which is orthogonal to the normal vector and contains the boundary

referred to the web version of this article.)

Fig. 18. Non-dimensional overlap (left) and non-dimensional normal velocity (right) as a function of the non-dimensional time during a particle-face (), a particle-edge ()

and a particle-vertex () contact. RK2 method with �t p = T C / 100 is used. Comparison with analytical method ().

Fig. 19. Cylindrical domain meshed with tetrahedra. A Boundary Face Group (BFG)

with its Bounding Sphere (BSBFG) is represented in blueish colors. Some orange

Bounding Sphere of Faces (BSFs) are also visible.

e

a

s

i

F

l

F

c

f

u

t

a

f

i

d

s

fi

l

t
to n pE . Equally, the resolution of a particle-vertex contact is tan-

tamount to a particle-face contact of which face plane would be

orthogonal to n pV . The time evolution of a particle’s overlap and

translational velocity during the contact with a face, an edge and

a vertex have been plotted in Fig. 18 . Results are tested against the

following non-dimensional analytical solution of the contact equa-

tion (see [4]) and exhibit the expected behaviors:

δ�
ab (t) =

δab (t)

δmax
ab

=

ω 0

0

exp

(
γn

[
1

0

arcsin

(

0

ω 0

)
− t

])
sin (
0 t) ,

(26)

u�
ab,n (t) =

u ab,n (t)

u0
ab,n

=

1

0

e −γn t [−γn sin (
0 t) +
0 cos (
0 t)] , (27)

with

0 =

√
ω

2
0

− γ 2
n , (28)

and u

0
ab,n

being the particle’s initial normal velocity.

5.3. Spatial sorting and null object detector

Numerous works interested in collisions involving complex

shapes report drastic costs, and it clearly appears that setting a

list of potential contacts between objects is of paramount impor-

tance to prevent a vast majority of unuseful operations from be-

ing performed. In this regards, various methods of spatial sorting

such as the grid method, the octree technique, and the body-base

approach have been reported in the literature [36] . This overcost

is particularly verified in the case of so-called exhaustive contact

schemes, which make no a priori assumptions about the problem

evolution and reason based only on the present state of the ge-

ometry, such as the presented approach. As an example, the case

of the Birmingham fluidized-bed run on 512 processors shows that

more than 99.9% of the total CPU time would be dedicated to the

treatment of boundaries in a brute-force approach for which all

particles have to check collisions with every boundary faces. How-

ever, a deeper analysis of this case indicates that only 1% of the

particles are actually colliding a boundary feature at a given in-

stant, thus promising improvement prospects if a spatial sorting

step is used to discard particles distant from the walls. In this case,

it also reveals that each colliding particle hardly hit more than one

object at a given instant, say barely 0.0 0 05% of the total amount of

boundary features, approximately. A part of the algorithm referred

to as null object detector is thus mandatory in order to quickly dis-

card a particle’s farthest objects. First, the null object detector is

described.
A priori , the VR s belonging tests introduced in Section 5.1 for

ach particle have to be performed and for each V, E and F of

ll boundaries. To minimize the cost of this search, a new data

tructure is created from groups of adjacent wall faces belong-

ng to the same boundary, called Boundary Face Groups (BFG, see

ig. 19). This additional coloring is obtained thanks to the METIS

ibrary [40] . The associated improved data structure is sketched in

ig. 20 . These BFGs contain all the necessary boundary metrics and

onnectivities along with the VR s normals, computed in a parallel

ashion. They also support other relevant geometrical data that are

sed for quick distance checking:

• the center x BSBFG and radius r BSBFG of each BFG Bounding Sphere

(BSBFG) are computed using the BFG nodes mean coordinates

and the distance between the center and the most remote BFG

node, respectively, and stored.
• The center x BSF and radius r BSF of each Bounding Sphere of Face

(BSF) are also computed using the face barycenter and its dis-

tance to the farther node of the face, respectively, and stored.

These preliminary operations find their justification in the fact

hat checking the intersection between two spheres is simple, but

lso among the quickest tests. In the literature, this is often re-

erred to as the “sphere-tree” technique [41] . It consists in prior-

tizing the tests by using sets of spheres that describe the three-

imensional surface of an object at different levels of detail. In this

tudy, a two-level hierarchy is employed : The BSBFGs stand for the

rst level, each one composed of several BSFs, which is the second

evel.

Because of the various geometrical and mesh configurations

hat can occur in complex cases, an object may be found very close

Fig. 20. Improved communicators structure containing Particle External communicators (PTEXTCOMMs) and Boundary Face Groups (BFGs).

t

l

B

i

m

t

o

t

m

T

B

a

n

l

a

B

s

i

s

i

t

i

o

d

c

d

t

i

t

a

i

i

r

c

c

g

T

m

m

d

t

A

o

s

r

c

p

t

p

p

t

m

t

F

m

e

j

V

t

t

i

i

i

i

p

m

t

p

w

e

h

W

w

s

C

v

B

w

k

o a boundary that doesn’t share elements with the processor it is

ocated in. To cope with this fact, it is conceivable to dispatch all

FGs on all processors, so that no omission is allowed. Implement-

ng this solution could however result in unnecessary tests, all the

ore since most particles reside in the bottom of the reactor in

he majority of fluidized-bed systems. The option selected is to rely

n the list of processors sharing PTEXTCOMMs. By using an addi-

ional method looking alike the one explored in Section 4.1 , this

akes it possible to identify the closest BFGs of closest processors.

he identified BFGs are then exchanged to constitute the ghost

FGs of each processor. In case of static mesh, these calculations

re performed once during the solver initialization. As a prelimi-

ary analysis to the algorithm introduced in Section 5.1 , the fol-

owing method referred to as null object detector allows to identify

 particle’s closest boundary faces relying on the local and ghost

FGs:

1. The particle of interest p of center coordinates x p and radius r p
loops over local and ghost BFGs. Distant BFGs are discarded if

|| x BSBF G − x p || 2 > (r BSBF G + r p)
2 .

2. For each intersected BFG, p loops over all its faces’ BSF. Distant

faces are discarded if || x BSF − x p || 2 > (r BSF + r p)
2 .

3. Eventually, only the faces of which bounding sphere is inter-

secting p are treated by the algorithm presented in Section 5.1 .

All x BSBFG , r BSBFG , x BSF and r BSF having been precalculated, only

quare distances have to be quantified during the run, thus avoid-

ng costly square roots.

A spatial sorting step is added in order to prevent unneces-

ary bounding sphere intersection tests. Indeed, an optimal sort-

ng would be able to discard all the particles of which distance to

he wall exceeds their radius. In the same fashion as the cell halo

dentification dealt with in Section 4.1 , this very first step focuses

n flagging layers of mesh elements covering physical boundaries

uring the simulation initialization, so that only the particles lo-

ated in these elements will be treated by the previous null object

etector during the run. The problem can thus be formulated in

he same terms: this close-boundary element flagging can be eas-

ly operated on Cartesian meshes, but requires further coding effort

o deal with unstructured meshes, as mesh size heterogeneities

re frequently encountered. Here again, the first option consists

n flagging successive layers of cells in order to ensure sufficient

dentification, but without yielding certainty on the distance crite-

ion, this method can result in the flagging of numerous unwanted

ells in addition. On the contrary, the implemented approach fo-

uses on local exact wall distance calculation, allowing the flag-

ing of more elements in refined area and fewer in coarse ones.

he objective is to compute the distance between some interior

esh nodes and the wall features to deduce whether a mesh ele-

ent has to be flagged or not, relying on the previous null object
etector , the VR s introduced in Section 5.1 and the contact resolu-

ion presented in Section 5.2 . Each of these steps is detailed in the

ppendix E . In case of a static mesh, these steps are performed

nce during the solver initialization. Mean results obtained from

imulations of 1s physical time of the Birmingham fluidized-bed

un on various number of processors show that 91% of the parti-

les are eliminated by the spatial sorting test. Then, each near wall

article intersects 2.5 BSF in average thanks to the null object de-

ector , thus drastically reducing the number of costly VR tests to

erform. Eventually, these gains in selectivity enable the slowest

rocessor to spend approximately 4% of its computation time in

he treatment of boundary contacts.

The definitive procedure for particle-boundary contact treat-

ent involving boundaries’ closest element flagging, null object de-

ector , use of Voronoi regions and contact resolution is displayed in

ig. 21 .

Note that the parts concerning the Voronoi regions manage-

ent and the contact resolution presented here could be consid-

red as particular cases of the collision of two complex shape ob-

ect (two non-spherical particles for instance). In this latter case,

oronoi regions are required on both colliding objects to find out

he pair of closest features, then compute their overlapping dis-

ance and normal vector [14] . One of these objects being a sphere

n our case, some simplifications arise. Many already existing parts

n the current algorithm could be useful and directly applicable

n more complex cases, for instance when considering the bound-

ng sphere of non-spherical particles for quick discarding tests pur-

oses.

As an illustration, numerical simulations were performed to

easure the solid mass flow rate W across the orifice of diame-

er D 0 of an hourglass meshed with tetrahedron for six values of

article diameter d p ranging from 7.5% to 15% D 0 . No fluid phase

as accounted in these simulations. Results were compared to the

mpirical law of Beverloo [42] , frequently encountered in silos or

opper discharge studies, that can be written:

 = Cρp

√

g (D 0 − kd p)
5 / 2 , (29)

here C and k are empirical discharge and shape coefficients re-

pectively. Comparison is shown in Fig. 22 , for which the constant

 was set to a classical value of 0.55 [42] . In order to extract a

alue for k in this configuration, the following form of the law of

everloo is plotted :

1

D 0

(
W

Cρp
√

g

)
2 / 5 = 1 − k

d p

D 0

, (30)

ith which the numerical results exhibit a good agreement for

 ≈ 1.18. This value seems consistant with the literature [43] .

Fig. 21. Flow chart of the definitive procedure followed by each particle for boundary contacts treatment, adapted for arbitrary complex walls. : initializing part and

output. : spatial sorting. : null object detector . : contact resolution parts. : VR tests.

i

f

m

3

t

c

o

o

i

c

2

r

6

c
6. The Birmingham gas-fluidized bed

6.1. Configuration

All the performance measurements assessed in the previous

sections were performed for an isothermal dense gas-fluidized bed

experimented at the University of Birmingham, which was previ-

ously already simulated by using TFM approach [20] . This pressur-

ized lab-scale reactor is axisymmetric and composed of a cylin-

drical column of internal radius R = 77 mm widening to a inter-

nal radius of 127 mm. The vertical distance between the horizontal

gas fluidization distributor plate and the top of the exhaust, corre-

sponding to the computational domain, is 1.75 m. Nitrogen enters

the distribution plate with a fluidization velocity u inlet of 0.32 m/s

and the pressure in the fluidized bed is 12 bar. The particle phase

is almost monodisperse with a median diameter of 875 μm and a

material density of 740 kg/m

3 . The reactor is filled with approx-
mately 9.6M particles (2.5 kg of solid material). Details can be

ound in [20] . The experimental setup and the computational do-

ain are sketched in Fig. 23 . The employed mesh is composed of

.7M tetrahedra and divided in a refined zone in the smaller sec-

ion part, with an average mesh element size of 1.85 mm, and a

oarser zone in the upper part, with an average mesh element size

f 3.9 mm. The tests were carried out on the Curie supercomputer

f the TGCC center (Très Grand Centre de Calcul, France), featur-

ng an InfiniBand QDR Full Fat Tree interconnect. The nodes used

omprise two Intel Sandy Bridge octo-core processors running at

.7GHz with 64GB RAM (about 4GB per core). The numerical pa-

ameters used for the simulations are summarized in Table 2 .

.2. Statistics

The numerical simulations are performed during 20 s of physi-

al time. A first period of 10 s is employed to establish converged

Fig. 22. Non-dimensional solid mass flow rate obtained for six different values of particle diameter () compared with Beverloo law with C = 0 . 55 (). The value of

k ≈ 1.18 is extracted from the slope (see Eq. 30). On the left, the mesh is displayed and the cells used for the spatial sorting are colored in red. On the right, the particles

are shown at t = 0 s and colored by the fluid fraction. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

Fig. 23. Lab-scale Birmingham gas-fluidized bed. On the left, experimental setup extracted from [20] . In the center, front view of the computational domain meshed with

3.7 M tetrahedra, accounting for the parts beyond the gas distribution plate, for a total height of 1.75 m. On the top, top-view featuring the chimney. On the bottom,

distribution plate. On the right, domain decomposition into tori for statistics computation.

Table 2

Numerical parameters of the particle-particle

and particle-wall soft-sphere collision model.

PARTICLE PHASE

Spring stiffness k n [N/m] 75

Normal restitution coefficient e n [-] 0.9

Dynamic friction coefficient μtan [-] 0.3

s

F

p

i

t

t

v

s

e

b

t

m
tate regarding bed expansion (see Fig. 24) and pressure loss (see

ig. 25) through the bed, then time-averaged statistics are com-

uted during the remaining 10s. It should be noted that the orig-
nal simulations involving TFM [20] were carried out during 360s,

he last 240s being used to compute statistics. Even these dura-

ions couldn’t ensure complete statistical convergence.

The profile of the time-averaged pressure across the reactor is

isible in Fig. 26 . As expected, the profile displays two distinct

lopes: for lower altitudes the slope corresponds to the pressure

volution across a particle bed with a given fluid fraction described

y Ergun for fixed particle beds [23] , while only gas is present in

he higher region.

In order to assess possible comparisons with Euler-Euler for-

alism, particle physical quantities have to be translated into solid

Fig. 24. Profile of the fluidized bed expansion () and its time-averaged value () measured in the simulation. The instantaneous bed expansion is extracted as the

height of the 99th percentile of the particles. The time-averaged value is ≈ 0.47 m. At t = 0 s, the particles were seeded in a regular packing.

Fig. 25. Profile of the pressure loss across the fluidized bed () and its time-averaged value () measured between the inlet and the outlet in the simulation which is

≈ 1677 Pa. The value of the mean pressure loss neglecting walls’ influence �P ≈ (m s + ερV total)
g

S inlet

predicts a value of 1575 Pa. At t = 0 s, the particles were seeded in a

regular packing.

c

c

t

t

a

k

<

T

t

<

I

n
quantities onto the Eulerian grid. N p (C, t) is the instantaneous

amount of particles of which center is located inside the mesh cell

C of volume V C . The instantaneous solid velocity in C is:

u p (C, t) = 1

N p (C, t)

∑

p∈ C
u p . (31)

In case N p (C, t) is null, u p (C, t) is set to zero. The time-averaged

solid velocity on a time T in the cell C is then defined by:

< u p (C) > T =

∑

T

u p (C, t) N p (C, t)�t∑
T

N p (C, t)�t
. (32)

In case
∑

T N p (C, t)�t is null, < u p (C) > T is set to zero. Owing to

the axisymmetry of the reactor geometry, the spatial averaging of

the time-averaged variables can be performed in the azimuthal di-

rection. To this end, once these time-averaged fields in each mesh
ell are computed, spatial means are performed by summing the

ontributions of all mesh cells of which center belongs to a given

orus. Each torus has a height �z = 12 mm and a difference be-

ween its exterior and interior radius �r = 3 . 85 mm (see Fig. 23),

s advocated by [20] to prevent too few accounted events while

eeping relevant spatial information. In each torus is computed:

 N p (torus) > T =

∑

C∈ torus

∑

T

N p (C, t)�t . (33)

hen, the spatial average of the time-averaged solid velocity in the

orus is:

 u p (torus) > T =

∑

C∈ torus

< u p (C) > T

∑

T

N p (C, t)�t

< N p (torus) > T

. (34)

n case < N p (torus) > T is null, < u p (torus) > T is set to zero. The

ecessary passing in cylindrical coordinates to compute the spatial

Fig. 26. Profile of the time-averaged pressure minus the minimum pressure both taken at the central axis of the cylinder (). The pressure loss across a particle bed given

by Ergun empirical correlation [23] calculated for ε = 0 . 66 () and the pressure loss given by hydrostatic law (), both shifted to ease comparison, are indicated. In

the simulation, the mean fluid fraction measured inside the bed is ≈ 0.62.

Fig. 27. Radial profile of time-averaged solid vertical velocity normalized by the fluidization velocity measured in the tori at z = 3 . 45 R () compared with experimental

values with error bars ().

a

o

o

m

i

I

m

≈

m

a

m

T

t

s

f

h

t

b

t

e

s

p

v

t

7

t

(

p

b

verages of quantities related to velocity is not detailed here, as

nly vertical components are shown. These statistics are assessed

nce every 10 fluid timesteps.

The radial profile of time-averaged solid vertical velocity nor-

alized by the fluidization velocity measured at z = 3 . 45 R are vis-

ble in Fig. 27 , for which experimental values are available [20] .

n the center of the reactor the experiment exhibits an upward

ean solid velocity for 0 ≤ r ≤ 0.6 R , of which maximum reaches

1.6 u inlet . Beyond 0.6 R a downward solid flow is observed. The

aximum of the downward solid velocity is found at r ≈ 0.75 R

nd reaches ≈ 0.6 u inlet . At r ≈ 0.75 R , the slope changes and the

easured mean solid velocity at the wall is nearly equal to zero.

he predictions are in good accordance with the experiments at

he center of the reactor but in the near wall region the downward

olid velocity is overestimated by the numerical simulation, that

ails in reproducing the location of the slope twist. This problem

as already been reported for TFM simulations [20] and was in-
erpreted as an underestimation of the particle-wall friction. It has

een addressed by accounting for a wall roughness effect through

he particle velocity boundary conditions. But the increase of the

ffective particle-wall friction may also be due to the non-spherical

hape of the real particles. The CFD/DEM approach looks very

romising to clarify such a crucial effect and to support the de-

elopment of more satisfactory TFM particle wall boundary condi-

ions.

. Performances of the solver

The global performances of the solver are quantified in this sec-

ion, by investigating its speed-up (strong scaling) and its scale-up

weak scaling). A canonical case containing homogeneously dis-

atched particles is first studied, then the Birmingham fluidized

ed from Section 6 in a second step.

o

4

p

t

f

s

a

u

i

t

o

o

a

s
7.1. Measurements on a canonical case

Some measurements are first extracted from a canonical

isothermal case, disregarding its relevancy concerning physics.

This case consists of a cubic box meshed with tetrahedra. Par-

ticules are randomly seeded in the box, with a mean poros-

ity about 0.54, and each tetrahedron contains roughly 11 par-

ticles. A fluid phase is present, to account for the cost of the

interpolation and projection steps. The particle timestep is cho-

sen so that �t = 10�t p . Thus, ten particle timesteps are per-

formed for each fluid timestep, which corresponds to a usual sub-

stepping configuration. Measurements are obtained from a single

fluid timestep. All the tests were carried out on the regional su-

percomputer Myria of the CRIANN center (Centre Régional Infor-

matique et d’Applications Numériques de Normandie, France), fea-

turing a Intel Omni-Path interconnect. The processors used are

two-sockets Intel Broadwell with 14 cores running at 2.4GHz with

128GB RAM (about 4 GB memory per core) for total peak power of

400TFlop/s.
Fig. 28. Speed-up (up) and scale-up (bottom) c
The speed-up is first obtained by running the same simulation

n different numbers of cores, ranging from 532 (reference case) to

144. Each simulation roughly gathers 38M tetrahedra and 410M

articles. The reference CPU time t
re f
CPU

being associated with the

emporal loop of the solver on Nprocs re f = 532 cores, the speed-up

or a CPU time t CPU on Nprocs is calculated by:

peed-up (Nprocs) = Nprocs re f × t re f
CPU

t CPU

, (35)

nd is illustrated on Fig. 28 . The solver exhibits a good scalability

p to 4144 cores, with a speed-up reaching 80% of the ideal scal-

ng.

Secondly, the scale-up of the solver is quantified by measuring

he performances at constant load per core on different numbers

f cores, ranging from 252 (reference case) to 4144. The number

f particles per core is about 99k, and the number of tetrahedra is

bout 9.1k per core. The scale-up is given by:

cale-up (Nprocs) = Nprocs re f × t re f
CPU

N

re f
c

N c

t CPU

, (36)
urves extracted from the canonical case.

Fig. 29. Speed-up curve obtained on the Birmingham fluidized bed.

w

a

s

7

m

B

t

t

s

i

T

s

v

t

s

n

a

i

t

7

a

b

r

r

t

r

t

T

m

r

w

e

t

p

a

w

o

Fig. 30. Physical time reached over 24h simulation of the Birmingham fluidized bed

without (), and with dynamic load balancing (). For this test the maximum

particle time step was set to �t p = T C / 6 .

e

d

h

i

s

s

o

E

i

t

d

t

i

a

t

y

n

o

A

s

d
here N

re f
c and N c are the number of cells in the reference case

nd in the current case, respectively. The scale-up curve is repre-

ented in Fig. 28 and shows an excellent scaling.

.2. Measurements from the Birmingham case

Finally, the analysis is completed by measuring the perfor-

ances on the fluidized bed experimented at the university of

irmingham and described in Section 6 . This case gathers 10M par-

icles in a cylindrical domain meshed with 3.7M tetrahedra. Here,

he performances are extracted over 1s of physical time after the

tabilization of the bed fluidization has been assessed by monitor-

ng both the bed height and the pressure loss across the system.

hus, this case deals with realistic conditions where the execution

peed highly depends on the local physics (presence of dense or

oid zones), and the fluid and particle timesteps are recomputed

hroughout the simulation. The tests were carried out on the Curie

upercomputer.

The speed-up is obtained by running the simulation on various

umbers of cores, ranging from 64 (reference case) to 1024 cores,

nd is illustrated in Fig. 29 . The solver reaches 55% of its ideal scal-

ng value, which is acceptable considering the high dispersion of

he particles amongst the cores, causing their de-synchronizing.

.3. Dynamic load balancing algorithm

In simulations such as the Birmingham case, a convenient scal-

bility is hardly obtained because the particles mainly reside at the

ottom of the reactor (see Fig. 24), which alternates between void

egions (gas bubbles) and dense regions (clusters). Some tests car-

ied out on the Birmingham fluidized bed case show that more

han 50% of the processors don’t contain any particle when using

egular partitionning, and in this case the computational cost of

he fluid phase remains negligible compared to the solid phase’s.

his problem is all the more visible since particles are usually

ore numerous than the mesh elements. A load balancing algo-

ithm provided by the METIS library [40] is then used to help cope

ith this mismatch. Provided that some weights are attributed to

ach ELGRP, it is able to build a double-constraint partitioning on

he ELGRPs graph, yielding a better repartition of the weight per

rocessor while guaranteeing contiguous partitions. Finally, ELGRPS

re transferred between processors according to the graph. The

ay the ELGRP weights are calculated to be supplied to METIS is

f paramount importance to ensure both the convergence and the
fficiency of the load balancing algorithm. Indeed, imposing ad-

itional constraint on the regular mesh coloring may result in a

igh cost overhead regarding the Eulerian phase, because enhanc-

ng the particles’ balance is likely to deteriorate the fluid’s. In this

tudy, the ELGRP weights are computed so that ≈ 85% of proces-

ors are located under the fluidized bed height (see Fig. 24). More-

ver for the ELGRP under the bed height, higher weight is given to

LGRP containing more particles. The algorithm is designed so that

t loosens this latter constraint in case the graph building leads to

oo many empty processors. The load balancing is dynamically up-

ated if the bed height shift exceeds 10% of its previous value, or if

oo many processors inside the bed have a weight too far from the

deal theoretical weight, which should be obtained if all particles

re equally split between each inside bed processor. Depending on

he number of processors and the second constraint intensity, anal-

sis reveals that an average of ≈ 10 − 15 partitionning steps are

ecessary to maintain a sufficient load balance quality for 1 sec-

nd of simulation, according to the previously mentioned criteria.

 scaling of the code obtained on the Birmingham fluidized bed

imulation is displayed in Fig. 30 . The time saving provided by the

ynamic load balancing algorithm exceeds 2 up to 384 processors.

Fig. A.31. 2D representation of the six surrounding cells (SC 1) of a central node

i 1 . A particle p located in cell C () is moving towards a neighboring cell ().

: mesh nodes. : contour of node i 1 control volume (�V 1). ω

C
p,i

:interpola-

tion weight of particle p on node i .

p

h

m

p

t

t

�

’

l

n

d

t

t

a

F

w

a

ε

’

o

o

F

r

i

m

i

t

t

c

o

t

F

t

n

t

c

t

c

a

Starting from 512 processors the gain decreases, until it reaches 1.5

for 1024 processors. This is due to the fact that the second con-

straint has automatically been loosened by the code to help build

the graph: indeed for large numbers of processors, there are fewer

elements per processor and the number of degrees or freedom for

load balancing is reduced. It can be noticed that the simulation on

384 processors with load balancing nearly achieves the same per-

formances as the simulation on 1024 processors without load bal-

ancing. Among these simulations, the maximum cost observed for

the load balancing algorithm was 5% of the solver temporal loop.

8. Conclusion

In this paper, a methodology for the massively parallel 3D sim-

ulations of gas-fluidized bed in complex geometry on unstructured

meshes in the framework of CFD/DEM is proposed, along with its

implementation in the YALES2 code. This approach enables to run

simulations involving several million particles in realistic geome-

tries. It features an efficient fully non-blocking MPI algorithm for

extra-processor communications with a packing/unpacking of the

necessary halo data, and allows to solve particle/complex wall con-

tacts explicitly relying on the Voronoi regions decomposition of the

walls’ features. The code shows a good scalability. A dynamic load

balancing algorithm is implemented to limit the overcost due to

the location of the particles by processing a better coloring of the

processors computational domains.

This methodology has been successfully applied on the pilot-

scale gas-fluidized bed that was experimentally studied at the Uni-

versity of Birmingham gathering 9.6M particles. Here, a first anal-

ysis of the results shows a satisfactory agreement with the avail-

able experimental data. A more detailed study is currently under

progress to characterize, in particular, the influence of particle-

particle and particle-wall interaction parameters, involving a full

comparison with an Euler-Euler code. Many other types of simula-

tions involving DEM could benefit from the implemented approach.

Declaration of Competing Interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to

influence the work reported in this paper.

CRediT authorship contribution statement

Yann Dufresne: Conceptualization, Methodology, Software, Val-

idation, Formal analysis, Investigation, Writing - original draft,

Visualization, Supervision. Vincent Moureau: Conceptualization,

Methodology, Software, Resources, Writing - review & editing,

Project administration, Funding acquisition. Ghislain Lartigue:

Conceptualization, Methodology, Software, Resources, Writing - re-

view & editing, Project administration, Funding acquisition. Olivier

Simonin: Methodology, Software, Writing - review & editing.

Acknowledgements

This work was granted access to the HPC resources from

TGCC-CEA (Très Grand Centre de calcul) under the allocations

x20162b7345 made by GENCI (Grand Equipement National de Cal-

cul Intensif), and from IDRIS (Institut du Developpement et des

Ressources en Informatique Scientifique) through the MORE4LESS

project (Modelling of reactive particulate flows for low energy sus-

tainable processes) coordinated by the IFP-EN laboratory (France).

Appendix A. Phase coupling

The coupling between the particle and fluid phases is a key

point for the modeling of particle-laden flows, especially when the
article size approaches the Eulerian cell size. Many Eulerian fields

ave to be interpolated at the center of the particles for the nu-

erous closures, as shown in Section 2.2 . In the YALES2 solver,

articles are located in a unique mesh cell using the position of

heir center. For any Eulerian scalar or vector field �(x , t), its value

aken at the particle p center �@ p (t) obeys:

@ p (t) =

∑

i ∈ C
ω

C
p,i �(x , t) with

∑

i ∈ C
ω

C
p,i = 1 . (A.1)

Referring to Fig. A.31 , i is a node index so that ’ i ∈ C ’ means

all nodes i composing the mesh cell C in which the particle p is

ocated’. ω

C
p,i

is the interpolation weight of the particle p on cell

ode i and is calculated using a trilinear interpolation on hexahe-

ra and a linear interpolation on tetrahedra. The same interpola-

ion weights are used for data transfer from grid to particles (in-

erpolation step) and from particles onto the grid (projection step).

The conservative projection operator needed to compute F p → f

nd Q p → f (see Eqs. (2) and (3)) is thus written on each node i as:

 p→ f,i = − 1

�V i

∑

p∈ SC i

ω

C
p,i (F D + F P) and Q p→ f,i = − 1

�V i

∑

p∈ SC i

ω

C
p,i Q F ,

(A.2)

here �V i denotes the control volume of node i . The fluid fraction

t node i is written:

 i = 1 − 1

�V i

∑

p∈ SC i

ω

C
p,i V p . (A.3)

 p ∈ SC i ’ means ’all particles belonging to any surrounding cell SC i
f node i ’. Still referring to Fig. A.31 , any particle belonging to one

f the SC 1 cells will be accounted for when computing ε (as well as

 p → f and Q p → f) at node i 1 . It should be noticed that the particles’

otation doesn’t affect the fluid.

This method consisting in distributing particles’ quantities only

n the cell where its center resides, referred to as particle centroid

ethod, can lead to large calculation errors in particular regard-

ng the fluid fraction, as pointed out in [44] . This is partly due to

he fact that many CFD/DEM codes feature a staggered grid where

he fluid fraction is defined at cell centers, causing dramatic dis-

ontinuities in time and space derivatives when a particle enters

r leaves a cell. Here on the contrary, the fluid fraction and all

he Eulerian fields are computed at the grid nodes. As depicted in

ig. A.31 , any particle crossing the interface from the green cell to

he red one won’t cause any discontinuity on the computation of

either ω p ,1 nor ω p ,3 . Indeed, the linear interpolation ensures that

he interpolation weights are piecewise linear in each cell, but also

ontinuous at cells’ interface. Moreover ω p ,2 won’t be affected nei-

her during the crossing, because as the particle approaches the

ell’s interface, ω p ,2 tends towards 0. This is still true in 3D cases

nd on Cartesian meshes.

Fig. A.32. On the left: 2D representation of an unstructured mesh. :mesh nodes. The control volumes of nodes i 1 (), i 2 (), i 3 (), i 4 (), i 5 (), i 6 (), i 7 ()

are shown. The control volume �V i 1 of node i 1 is composed of volumes V 23 , V 34 , V 45 , V 56 , V 67 and V 72 . On the right: 3D representation of a regular Cartesian mesh part.

: node i 1 . : nodes at Faces’ Center (FCN). : nodes at Edges’ Center (ECN). : nodes at Corners (CN).

c

i

u

e

c

w

m

s

t

i

�

w

i

a

a

�

e

e

�

T

a

s

t

d

s

T

t

T

t

t

�

n

c

n

T

t

i

A

a

a

s

i

r

S

s

e

i

p

s

t

Nevertheless, it is well known that the particle centroid method

an induce inaccuracies and lead to numerical instabilities because

t cannot prevent the fluid fraction from reaching unrealizable val-

es, in particular when dealing with close to unity particle diam-

ter/mesh cell size ratios. In such cases, the fluid fraction value

an locally decrease below the theoretical packing limit. To cope

ith this limitation, a filtering operator well suited for distributed

emory machines is used. Here is explicited a 2D example case as

hown in Fig. A.32 rather than a lesser clear mathematical descrip-

ion: this filtering operator is built for any Eulerian field noted �i ,

ts filtered value being ˆ �i . At node i 1 , ˆ �i reads:

ˆ
i 1 =

1

3

�i 1 +
1

3�V i 1

[
(V 23 + V 34)�i 3 + (V 34 + V 45)�i 4

+ · · · +(V 72 + V 23)�i 2

]
, (A.4)

here �V i 1 is the control volume associated to node i 1 and S mn

s the part of �V i 1 contained in the face delimited by nodes i 1 , i m

nd i n , as shown on the left in Fig. A.32 . If all the control volumes

re equal, Eq. A.4 becomes:

ˆ
i 1 =

1

3

�i 1 +

1

9

∑

m ∈ � 2 ;7 �
�i m . (A.5)

The same type of filter can be derived in 3D. The following

quation gives the value of ˆ �i 1
in a 3D structured case with all

qual control volumes as shown on the right in Fig. A.32 :

ˆ
i 1 =

1

8

�i 1 +

1

64

(
4

∑

m ∈ F CN

�i m + 2

∑

m ∈ ECN

�i m +

∑

m ∈ CN

�i m

)
. (A.6)

his fully conservative operation being performed on all volumes

t the same instant provides a filtered field, and can be repeated

everal times to increase the filter width. It should be underlined

hat for the computation of ˆ ε , the filtering step is applied before

ividing by the local control volume in order to conserve the total

olid mass over the whole computational domain volume
:

otal solid mass = ρp

∫

(1 − ε) dV = ρp

∫

(1 − ˆ ε) dV. (A.7)

In order to filter intensive quantities such as F p → f,i and Q p → f,i ,

hese are multiplied by the local control volume value beforehand.

he resulting extensive field can therefore be filtered conserva-

ively, and after dividing by the local control volume value, allows

o recover the desired filtering. Finally, for an intensive field:

ˆ =

̂ � · �V

. (A.8)

�V
The properties of such a filtering operator, i.e. its moments, are

ot straightforward to determine on unstructured meshes but it

an be noticed that it is based on direct neighbors and thus doesn’t

eed distant nodes, hence its attractiveness regarding parallelism.

he main drawback is that the filter width can’t be directly ob-

ained because it depends on the local mesh size. Thus, when us-

ng this filtering operator, the filter width cannot be prescribed.

ppendix B. Fast-marching like method for building cell halo

round processors’ domain

As computing the exact distance between a mesh node and

 processor domain border would involve numerous calculation

teps that could necessitate inter-processor communications, the

mplemented approach uses an approximate distance. The algo-

ithm is inspired by fast-marching algorithms developed for Level-

et Methods [30,31] . In particular, it relies on the mapping of the

urface of the processor domain border using points called mark-

rs, of which coordinates are automatically generated. The general

dea is to propagate from node to node these coordinates, from the

rocessors’ interface towards neighboring processors.

The algorithm is conducted through the following points, as

ketched in Fig. B.33 , with d min being the instructed distance, e.g.

he desired halo thickness:

1. flagging the nodes belonging to the border (level 0 nodes) and

each mesh element with a level 0 node (level 0 elements).

Thus, level 0 elements share at least one node, one edge, or

one face with the interface. Unflagged nodes of these level 0 el-

ements are flagged (level 1 nodes). Thus, level 1 nodes belong

to cells contacting the interface.

2. creating a marker’s list on each mesh node. This list can contain

the coordinates of several markers, as well as their distance d

from the current node. At this moment, level 1 nodes’ lists are

filled, which consists in:

(a) Looping over level 0 cells,

(b) For each of them, looping over level 1 nodes,

(c) For each of these nodes, generating some markers on the

node(s), edge(s) or face(s) that the current level 0 cell is

sharing with the interface,

(d) Computing all the distances between these markers and the

current level 1 node,

(e) Filling the current level 1 node’s list with the coordinates

and the distance of the closest markers, and sorting them in

descending order accordingly.

Fig. B.33. Fast-marching-like algorithm. The distance instruction d min corresponds to the p particle radius and a colored element or node means it is flagged. Markers are

generated on the processor #1 domain border. : level 0 elements and nodes. : first layer of level 1 elements, nodes and their markers list. Here some markers are

closer to the node than the particle radius. : second layer of level 1 nodes and their markers list. Now all markers are at a sufficient distance. All colored elements belong

to the cell halo around processor #1.

Fig. B.34. Parallel update performed during fast-marching algorithm.

a

a

e

d

t

e

w

a

n

p

a

n

I

b

A

s

e

t

t

a

g

τ

T

l

a

m

p

w

b
3. Once treated all level 1 nodes, markers lists are propagated:

each level 1 node updates its list by merging successively its

actual list with the one of the other level 1 nodes sharing a

connection. During the merging, only the closest markers are

kept, and sorted.

4. The markers list of each level 1 node are checked to verify

if the closest marker (the first one) is at a distance d approx ,

which represents the best distance approximation, such that

d approx ≤ d min . If so, all unflagged elements containing the node

are flagged (level 1 elements), as well as their nodes (level 1

nodes).

5. repeating items 3 and 4 until there is no more flagged nodes

such that d approx ≤ d min .

Note that during the markers lists’ update step (step 3), unicity

tests are performed to prevent several copies of a same marker to

swarm in a list. Moreover, at step 2(c), markers are successively

generated during the treatment of each level 0 cell, thus allowing

buffering, hence the memory saving even in case a large quantity

of markers is desired.

The previous algorithm is designed to give the same results

if more than two processors are involved during the markers list

propagation, i.e. when the list propagates across another proces-

sor domain border. To this end, at step 3, a parallel update is

performed involving the data structures introduced in Section 3.2 ,

as depicted in Fig. B.34 : Each duplicated node (one copy on proc

#2, one copy on proc #3) updates its own markers list from local

neighboring nodes. Next, these local lists are copied to the INT-

COMM, then towards the EXTCOMM where an MPI operation al-

lows to share the two lists. Finally, in the INTCOMM of each pro-

cessor, the update step presented in step 3 can be performed be-

tween the local node’s markers list and its copy’s, so that each du-

plicated node ends up with the same updated markers list.

It can be easily proved that the difference between the exact

node-interface distance d exact and the approximated distance given

by the fast-marching-like method d approx is negative (or null at its

best), meaning that a node may appear farther than what it re-

ally is. This can cause problematic situations in case d exact ≤ d ≤
min
d approx , leading to a cell misidentification. The gap between d exact

nd d approx , which is all the more wider that the closer the nodes

re, can be statistically reduced by increasing the number of mark-

rs used to map the interface. However, to avoid errors occurring

uring the propagation of the markers lists (such as the forget-

ing of some markers), it is fundamental that the size of the lists,

.g. the number of markers they can store, is increased accordingly

ith the number of markers. Indeed, if some generated markers

re missing in the list of the first layer of level 1 nodes, these can

ever be retrieved at a later stage, e.g. for farther nodes. Some tests

erformed on a very realistic unstructured case have shown that

the choosing of 30 markers per face of the interface (along with

 few ones per edge and one per node), with lists containing up

to 60 markers, allows the maximum absolute error among all halo

odes to lie below �x /20, �x being the characteristic mesh size.

n these conditions, an additional safety margin of �x /20 should

e sufficient to ensure the identification of the desired halo cells.

ppendix C. Characterization of the performances of the Curie

upercomputer

Several material limitations can deteriorate the efficiency of MPI

xchanges, among which the bandwidth, that is the amount of data

hat can be transferred from one processor to another during a

ime unit, and the network latency τ network which is the time that

 null size data packet takes to travel between the processors. The

lobal latency τ latency can thus be expressed as follows:

latency (in s) = τnetwork (in s) + Bandwidth (in s/B)

×Message size (in B) . (C.1)

he term in the right-hand side of Eq. C.1 that is more likely to

imit the global latency has to be foreseen in order to design the

ppropriate coding. To this end, a preliminary test is performed to

easure the global latency as a function of the message size. Two

rocessors interconnected by an InfiniBand QDR Full Fat Tree net-

ork of the Curie supercomputer from CEA in France performing

locking MPI communications (“ping pong” test [45]) were used

Fig. C.35. Measurement of the global latency of the Curie supercomputer using a “ping pong” test for three network configurations: : intra node intra socket, : intra

node extra socket, : extra node.

Fig. C.36. Computational cost of the packing () and unpacking () operations with preliminary particle data selection, and packing () and unpacking ()

operations without any selection, as a function of the number of PGTSs to pack/unpack.

f

C

c

e

c

a

u

s

d

v

a

l

t

e

m

q

o

p

w

n

m

a

f

u

P

u

l

f

p

p

a

A

o

c

O

c

w

w

i

P

or this test, of which results are shown in Fig. C.35 . The mean

PU times shown were obtained from 10 ′ 0 0 0 sample tests for each

ase in order to hide the timer’s own trigger time and other side

ffects, for instance when processors “heat up” their caches, allo-

ate memory for internal buffers during the first communication,

nd to discard outliers due to kernel calls.

Two distinct behaviors can be identified in Fig. C.35 , depending

pon the message size. The fact that the exchange time remains

table for message sizes ranging from 0B to 1kB approximately in-

icates that the network latency imposes its limit in this zone. Its

alue can be estimated to 2 μs for an extra node communication

nd 0.5 μs for an intra node communication. For message sizes

arger than 10kB all curves exhibit a linear behavior attributable

o the bandwidth. Its value can be estimated to 0.4 μs/MB for an

xtra node communication and 0.15 μs/MB for an intra node com-

unication. As a consequence it appears that depending on the

uantity of exchanges, small messages may not always be the best

ption. Despite a similar tendency, each network configuration ex-

oses different quality in terms of time efficiency, as shown by net-

ork latency and bandwidth estimated values. As expected, extra

ode communications are more costly and limit the global perfor-

ances of the code as soon as several nodes are involved. As nodes

re part of bigger structures (racks), it should be noted that per-

ormances could also vary when a larger number of processors are
sed.
The computational cost of the packing and the unpacking of

GTSs is investigated in Fig. C.36 and shows a linear dependency

pon the number of PGTSs concerned. In the case where a pre-

iminary particle data selection allows to pack the data necessary

or the collision force computation only, instead of packing every

article data arrays, the total cost is reduced by a factor 14 ap-

roximately. Indeed, in a multiphysics context, miscellaneous data

re stored on particles, hence the significance of such a step.

ppendix D. Use of barycentric coordinates

In order to determine whether a point P ′ belongs to a face F

r not, the coordinates of P ′ are expressed in the face’s barycentric

oordinates. Let’s assume F is a triangle defined by three points

, U and V and two vectors u and v as sketched in Fig. D.37 . The

oordinates of P ′ in F basis are noted w and are given by:

 = h u + k v , (D.1)

here h and k ∈ R . If the following conditions are fulfilled, then P ′
s considered inside VR (F) :

′ ∈ VR (F) if:

{

h ≥ 0 ,

k ≥ 0 , and

h + k ≤ 1 .

(D.2)

Fig. D.37. The coordinates of point P ′ , w , are expressed in the barycentric coordi-

nates of the triangular face F composed of points O, U and V using w = h u + k v . u

and v are the vector of the basis, directed from O to U and from O to V , respectively.

Four cases are represented. On the far right, the case where P ′ belongs to VR (F) .

R

Taking the scalar product of Eq. D.1 by v then by u gives:

h (u · v) + k (v · v) = v · w (D.3)

and

h (u · u) + k (u · v) = u · w . (D.4)

Multiplying Eq. D.3 by (u · u) and Eq. D.4 by (v · u) and subtracting

the results yields:

k
[
(v · v)(u · u) − (u · v) 2

]
= w · [(u · u) v − (v · u) u] . (D.5)

Then, noticing that:

det = (v · v)(u · u) − (u · v) 2 ≥ 0 , (D.6)

it finally follows that h and k can be calculated and that:

sgn (k) = sgn { w · [(u · u) v − (v · u) u] } (D.7)

gives the sign of k , while the sign of h is given by:

sgn (h) = sgn { w · [(v · v) u − (v · u) v] } . (D.8)

As u, v , (u · u), (v · v) and (u · v) can be stored on the grid dur-

ing the solver initialization, only w , (w · u), (w · v) and det need

to be computed during the run. To quicken the necessary opera-

tions, P ′ is first assumed to belong to VR (F) , then each condition

introduced in Eq. D.2 is consecutively checked and the test ends as

soon as one is not met.

Appendix E. Exact method for building cell halo near

boundaries

The implemented approach focuses on local exact wall distance

calculation, allowing the flagging of more elements in refined area

and fewer in coarse ones. The objective is to compute the distance

between some interior mesh nodes and the wall features to deduce

whether a mesh element has to be flagged or not, relying on the

previous null object detector , the VR s introduced in Section 5.1 and

the contact resolution presented in Section 5.2 . Let d min = r p be the

exact distance instruction defined by user, the followed steps are:

1. Flagging the nodes belonging to the wall boundaries (level

0 nodes) and each mesh element with at least a level 0

node (level 0 elements). Unflagged nodes of level 0 elements,

the boundaries’ immediate neighboring nodes, are also flagged

(level 1 nodes).

2. Each level 1 node enters the null object detector to isolate its

closest boundary faces.

3. Each level 1 node performs belonging tests on according

VR s (F) , VR s (E) and VR s (V) .

4. Each level 1 node operates the contact resolution algorithm

to determine its exact distance d exact to the boundary, how-

ever without computing forces. If d exact ≤ d min , the element is

flagged (level 1 elements) as well as its remaining unflagged

nodes (level 2 nodes).

5. Repeating from step 2 with node and element level incremen-

tation until there is no more interior nodes closer than d min to
the wall.
eferences

[1] Kunii D , Levenspiel O . Fluidization engineering. Butterworth-Heinemann series

in chemical engineering. 2nd Edition. Boston: Butterworth-Heinemann; 1991 .

[2] van Swaaij W . Fluidization; 1985 .
[3] Rüdisüli M, Schildhauer TJ, Biollaz SM, van Ommen JR. Scale-up of bubbling

fluidized bed reactors-a review. Powder Technol 2012;217:pp.21–38. doi: 10.
1016/j.powtec.2011.10.004 .

[4] van der Hoef M, Ye M, van Sint Annaland M, Andrews A, Sundaresan S,
Kuipers J. Multiscale modeling of gas-fluidized beds. In: Adv. in Chem. Eng.,

31. Elsevier; 2006. p. 65–149. doi: 10.1016/S0065-2377(06)31002-2 .

[5] Hammouti A , Euzenat F , Rakotonirina D , Wachs A . Direct numerical simulation
of reactive flow through a fixed bed of catalyst particles. In: Proc. of Sixth

Int. Conf. on Porous Media and Its Appl. in Sci., Eng. and Ind.. ECI Symposium
Series; 2016 .

[6] Gobin A, Neau H, Simonin O, Llinas J, Reiling V, Sélo J. Fluid dynamic numerical
simulation of a gas phase polymerization reactor. Int J Numer MethodsFluids

2003;43:1199–220. doi: 10.1002/fld.542 .
[7] Alder BJ, Wainwright TE. Phase transition for a hard sphere system. J Chem

Phys 1957;27(5):pp.1208–1209. doi: 10.1063/1.1743957 .

[8] Desjardins O, Blanquart G, Balarac G, Pitsch H. High order conservative finite
difference scheme for variable density low Mach number turbulent flows. J

Comput Phys 2008;227(15):pp.7125–7159. doi: 10.1016/j.jcp.2008.03.027 .
[9] Gopalakrishnan P, Tafti D. Development of parallel DEM for the open source

code MFIX. Powder technol 2013;235:pp.33–41. doi: 10.1016/j.powtec.2012.09.
006 .

[10] Goniva C , Kloss C , Hager A , Pirker S . An Open Source CFD-DEM Perspective;

2010. p. 1–10 . Göteborg.
[11] Cole S , Bharadwaj R . The simulation of pneumatic transport within a pipe us-

ing a coupled DEM-CFD numerical method; 2007 .
[12] Lin M, Canny J. A fast algorithm for incremental distance calculation. IEEE

Comput. Soc. Press; 1991. p. 1008–14. doi: 10.1109/ROBOT.1991.131723 .
[13] Cohen JD, Lin MC, Manocha D, Ponamgi M. I-COLLIDE: an interactive and ex-

act collision detection system for large-scale environments. ACM Press; 1995.

p. 189–ff.. doi: 10.1145/199404.199437 .
[14] Mirtich B . Polyhedral collision detection. Submitted to ACM Trans Graph 1997 .

[15] Moureau V, Domingo P, Vervisch L. Design of a massively parallel CFD code for
complex geometries. Comptes Rendus Mécanique 2011;339(2–3):pp.141–148.

doi: 10.1016/j.crme.2010.12.001 .
[16] Chorin AJ. Numerical solution of the Navier-Stokes equations. Math Comput

1968;22(104):pp.745–745. doi: 10.1090/S0025- 5718- 1968- 0242392- 2 .

[17] Pierce CD, Moin P. Progress-variable approach for large-eddy simulation of
non-premixed turbulent combustion. J Fluid Mech 2004;504:pp.73–97. doi: 10.

1017/S0 0221120 040 08213 .
[18] Du W, Bao X, Xu J, Wei W. Comput. fluid dynamics (CFD) modeling of

spouted bed: assessment of drag coefficient correlations. Chem Eng Sci
2006;61(5):pp.1401–1420. doi: 10.1016/j.ces.2005.08.013 .

[19] Dziugys A, Peters B. An approach to simulate the motion of spherical

and non-spherical fuel particles in combustion chambers. Granul matter
2001;3(4):pp.231–266. doi: 10.1007/PL00010918 .

[20] Fede P, Simonin O, Ingram A. 3D numerical simulation of a lab-scale pres-
surized dense fluidized bed focussing on the effect of the particle-particle

restitution coefficient and particle-wall boundary conditions. Chem Eng Sci
2016;142:215–35. doi: 10.1016/j.ces.2015.11.016 .

[21] Capecelatro J, Desjardins O. An Euler–Lagrange strategy for simulating particle-

laden flows. J Comput Phys 2013;238:pp.1–31. doi: 10.1016/j.jcp.2012.12.015 .
[22] Cundall PA, Strack ODL. A discrete numerical model for granular assemblies.

Géotech 1979;29(1):pp.47–65. doi: 10.1680/geot.1979.29.1.47 .
[23] Ergun S. Fluid flow through packed columns. J Chem Eng Prog

1952;48(2):pp.89–94. doi: 10.1021/ie50474a011 .
[24] Wen CY, Yu YH. A generalized method for predicting the minimum fluidization

velocity. AIChE J 1966;12(3):pp.610–612. doi: 10.1002/aic.690120343 .
[25] Dennis SCR, Ingham DB, Singh SN. The steady flow of a viscous fluid due to

a rotating sphere. Q J Mech App Math 1981;34(3):pp.361–381. doi: 10.1093/

qjmam/34.3.361 .
[26] Wachs A, Girolami L, Vinay G, Ferrer G. Grains3d, a flexible DEM approach for

particles of arbitrary convex shape-part i: numerical model and validations.
Powder Technol 2012;224:374–89. doi: 10.1016/j.powtec.2012.03.023 .

[27] Komiwes V, Mege P, Meimon Y, Herrmann H. Simulation of granular flow in
a fluid applied to sedimentation. Granul Matter 2006;8(1):pp.41–54. doi: 10.

1007/s10035- 005- 0220- 3 .

[28] Malandain M, Maheu N, Moureau V. Optimization of the deflated conjugate
gradient algorithm for the solving of elliptic equations on massively parallel

machines. J Comput Phys 2013;238:32–47. doi: 10.1016/j.jcp.2012.11.046 .
[29] Jajcevic D, Siegmann E, Radeke C, Khinast JG. Large-scale CFDDEM simulations

of fluidized granular systems. Chem Eng Sci 2013;98:pp.298–310. doi: 10.1016/
j.ces.2013.05.014 .

[30] Sethian JA. A fast marching level set method for monotonically advanc-

ing fronts. Proc Natl Acad Sci 1996;93(4):pp.1591–1595. doi: 10.1073/pnas.93.
4.1591 .

[31] Tsitsiklis J. Efficient algorithms for globally optimal trajectories. IEEE Trans Au-
tom Control 1995;40(9):pp.1528–1538. doi: 10.1109/9.412624 .

[32] Kodam M, Bharadwaj R, Curtis J, Hancock B, Wassgren C. Force model consid-
erations for glued-sphere discrete element method simulations. Chem Eng Sci

2009;64(15):pp.3466–3475. doi: 10.1016/j.ces.2009.04.025 .

[33] Ren B, Zhong W, Chen Y, Chen X, Jin B, Yuan Z, et al. CFD-DEM simulation of

http://refhub.elsevier.com/S0045-7930(19)30360-3/sbref0001
http://refhub.elsevier.com/S0045-7930(19)30360-3/sbref0001
http://refhub.elsevier.com/S0045-7930(19)30360-3/sbref0001
http://refhub.elsevier.com/S0045-7930(19)30360-3/sbref0002
http://refhub.elsevier.com/S0045-7930(19)30360-3/sbref0002
https://doi.org/10.1016/j.powtec.2011.10.004
https://doi.org/10.1016/S0065-2377(06)31002-2
http://refhub.elsevier.com/S0045-7930(19)30360-3/sbref0005
http://refhub.elsevier.com/S0045-7930(19)30360-3/sbref0005
http://refhub.elsevier.com/S0045-7930(19)30360-3/sbref0005
http://refhub.elsevier.com/S0045-7930(19)30360-3/sbref0005
http://refhub.elsevier.com/S0045-7930(19)30360-3/sbref0005
https://doi.org/10.1002/fld.542
https://doi.org/10.1063/1.1743957
https://doi.org/10.1016/j.jcp.2008.03.027
https://doi.org/10.1016/j.powtec.2012.09.006
http://refhub.elsevier.com/S0045-7930(19)30360-3/sbref0010
http://refhub.elsevier.com/S0045-7930(19)30360-3/sbref0010
http://refhub.elsevier.com/S0045-7930(19)30360-3/sbref0010
http://refhub.elsevier.com/S0045-7930(19)30360-3/sbref0010
http://refhub.elsevier.com/S0045-7930(19)30360-3/sbref0010
http://refhub.elsevier.com/S0045-7930(19)30360-3/sbref0010
http://refhub.elsevier.com/S0045-7930(19)30360-3/sbref0011
http://refhub.elsevier.com/S0045-7930(19)30360-3/sbref0011
http://refhub.elsevier.com/S0045-7930(19)30360-3/sbref0011
https://doi.org/10.1109/ROBOT.1991.131723
https://doi.org/10.1145/199404.199437
http://refhub.elsevier.com/S0045-7930(19)30360-3/sbref0014
http://refhub.elsevier.com/S0045-7930(19)30360-3/sbref0014
https://doi.org/10.1016/j.crme.2010.12.001
https://doi.org/10.1090/S0025-5718-1968-0242392-2
https://doi.org/10.1017/S0022112004008213
https://doi.org/10.1016/j.ces.2005.08.013
https://doi.org/10.1007/PL00010918
https://doi.org/10.1016/j.ces.2015.11.016
https://doi.org/10.1016/j.jcp.2012.12.015
https://doi.org/10.1680/geot.1979.29.1.47
https://doi.org/10.1021/ie50474a011
https://doi.org/10.1002/aic.690120343
https://doi.org/10.1093/qjmam/34.3.361
https://doi.org/10.1016/j.powtec.2012.03.023
https://doi.org/10.1007/s10035-005-0220-3
https://doi.org/10.1016/j.jcp.2012.11.046
https://doi.org/10.1016/j.ces.2013.05.014
https://doi.org/10.1073/pnas.93.4.1591
https://doi.org/10.1109/9.412624
https://doi.org/10.1016/j.ces.2009.04.025

[

[

[

[

[

[

[

[

[

spouting of corn-shaped particles. Particuology 2012;10(5):pp.562–572. doi: 10.
1016/j.partic.2012.03.011 .

34] Norouzi HR , Zarghami R , Sotudeh-Gharebagh R , Mostoufi N . Coupled CFD-DEM
modeling: formulation, implementation and application to multiphase flows.

first edition. Chichester, West Sussex: Wiley; 2016 .
[35] Bell N, Yu Y, Mucha PJ. Particle-based simulation of granular materials. ACM

Press; 2005. p. 77. doi: 10.1145/1073368.1073379 .
36] Williams J, O’Connor R. A linear complexity intersection algorithm for discrete

element simulation of arbitrary geometries. Eng Comput 1995;12(2):pp.185–

201. doi: 10.1108/0264 4 409510799550 .
[37] Gilbert E, Johnson D, Keerthi S. A fast procedure for computing the distance

between complex objects in three-dimensional space. IEEE J Robot Autom
1988;4(2):pp.193–203. doi: 10.1109/56.2083 .

38] Kremmer M, Favier JF. A method for representing boundaries in discrete ele-
ment modelling-part i: geometry and contact detection. Int J Numer Methods

Eng 2001;51(12):pp.1407–1421. doi: 10.1002/nme.184 .

39] Chittawadigi RG, Saha SK. An analytical method to detect collision between
cylinders using dual number algebra. In: 2013 IEEE/RSJ Int. Conference

on Intelligent Robots and Systems (IROS). IEEE; 2013. p. 5353–8. doi: 10.1109/
IROS.2013.6697131 .
40] Karypis G, Kumar V. A fast and high quality multilevel scheme for partition-
ing irregular graphs. SIAM J Sci Comput 1998;20(1):pp.359–392. doi: 10.1137/

S1064827595287997 .
[41] Hubbard P. Collision detection for interactive graphics applications. IEEE Trans

Vis Comput Graph 1995;1(3):218–30. doi: 10.1109/2945.466717 .
42] Beverloo W, Leniger H, van de Velde J. The flow of granular solids through ori-

fices. Chem Eng Sci 1961;15(3–4):260–9. doi: 10.1016/0 0 09- 2509(61)85030- 6 .
43] Mills AA, Day S, Parkes S. Mech. of the sandglass. Eur J Phys 1996;17(3):97.

doi: 10.1088/0143-0807/17/3/001 .

44] Sun R, Xiao H. Diffusion-based coarse graining in hybrid continuum–discrete
solvers: applications in CFD-DEM. Int J of Multiph Flow 2015;72:pp.233–247.

doi: 10.1016/j.ijmultiphaseflow.2015.02.014 .
45] Snell QO , Mikler AR , Gustafson JL . Netpipe: a network protocol independent

performance evaluator. In: IASTED international conference on intelligent in-
formation management and systems, 6. Washington, DC, (USA); 1996. p. 49 .

https://doi.org/10.1016/j.partic.2012.03.011
http://refhub.elsevier.com/S0045-7930(19)30360-3/sbref0034
http://refhub.elsevier.com/S0045-7930(19)30360-3/sbref0034
http://refhub.elsevier.com/S0045-7930(19)30360-3/sbref0034
http://refhub.elsevier.com/S0045-7930(19)30360-3/sbref0034
http://refhub.elsevier.com/S0045-7930(19)30360-3/sbref0034
https://doi.org/10.1145/1073368.1073379
https://doi.org/10.1108/02644409510799550
https://doi.org/10.1109/56.2083
https://doi.org/10.1002/nme.184
https://doi.org/10.1109/IROS.2013.6697131
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1109/2945.466717
https://doi.org/10.1016/0009-2509(61)85030-6
https://doi.org/10.1088/0143-0807/17/3/001
https://doi.org/10.1016/j.ijmultiphaseflow.2015.02.014
http://refhub.elsevier.com/S0045-7930(19)30360-3/sbref0045
http://refhub.elsevier.com/S0045-7930(19)30360-3/sbref0045
http://refhub.elsevier.com/S0045-7930(19)30360-3/sbref0045
http://refhub.elsevier.com/S0045-7930(19)30360-3/sbref0045

	A massively parallel CFD/DEM approach for reactive gas-solid flows in complex geometries using unstructured meshes
	1 Introduction
	2 The Euler-Lagrange formalism
	2.1 Gas phase modeling
	2.2 Particle phase modeling
	2.2.1 Modeling of collisions

	3 Specific features of the YALES2 solver
	3.1 Two-level domain decomposition for unstructured grid
	3.2 Data structures

	4 Parallelism management
	4.1 Initialization: Cell halo identification
	4.2 Ghost particle treatment

	5 Complex boundaries management
	5.1 Use of Voronoi regions
	5.2 Contact resolution
	5.3 Spatial sorting and null object detector

	6 The Birmingham gas-fluidized bed
	6.1 Configuration
	6.2 Statistics

	7 Performances of the solver
	7.1 Measurements on a canonical case
	7.2 Measurements from the Birmingham case
	7.3 Dynamic load balancing algorithm

	8 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgements
	Appendix A Phase coupling
	Appendix B Fast-marching like method for building cell halo around processors’ domain
	Appendix C Characterization of the performances of the Curie supercomputer
	Appendix D Use of barycentric coordinates
	Appendix E Exact method for building cell halo near boundaries
	References

