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Introduction

The stratified Taylor-Couette flow, i.e. the flow between two concentric cylinders rotating independently with a stable density stratification in the axial direction, is the subject of a strong interest since 2001. [START_REF] Yavneh | Non-axisymmetric instability of centrifugally stable stratified Taylor-Couette flow[END_REF] and [START_REF] Molemaker | Instability and Equilibration of Centrifugally Stable Stratified Taylor-Couette Flow[END_REF] have revealed that the flow remains unstable even if the inviscid Rayleigh criterion for the centrifugal instability is not satisfied, i.e. µ > η 2 , where µ = Ω o /Ω i is the angular velocity ratio and η = r i /r o the radius ratio. The instability, which is now called the strato-rotational instability (Dubrulle et al. 2005a,b), is different from the centrifugal instability which typically produces the well-known axisymmetric Taylor vortices [START_REF] Taylor | Stability of a Viscous Liquid contained between Two Rotating Cylinders[END_REF][START_REF] Andereck | Flow regimes in a circular Couette system with independently rotating cylinders[END_REF]). The strato-rotational instability occurs through a resonant interaction between non-axisymmetric inertia-gravity waves trapped near each cylinder [START_REF] Yavneh | Non-axisymmetric instability of centrifugally stable stratified Taylor-Couette flow[END_REF][START_REF] Molemaker | Instability and Equilibration of Centrifugally Stable Stratified Taylor-Couette Flow[END_REF][START_REF] Shalybkov | Stability of density-stratified viscous Taylor-Couette flows[END_REF]. Such waves can exist only in the presence of a stable density stratification explaining why the stratorotational instability does not exist in homogeneous fluid and why the stratification may have a destabilizing effect via wave resonances. [START_REF] Yavneh | Non-axisymmetric instability of centrifugally stable stratified Taylor-Couette flow[END_REF] and [START_REF] Molemaker | Instability and Equilibration of Centrifugally Stable Stratified Taylor-Couette Flow[END_REF] have demonstrated that an instability condition in the inviscid limit is µ < 1. However, [START_REF] Park | The stably stratified Taylor-Couette flow is always unstable except for solid-body rotation[END_REF] have shown recently that the strato-rotational instability operates also in the super-rotation regime µ > 1, i.e. when the outer cylinder rotates in the same direction faster than the inner cylinder. All together, these instability conditions mean that the stratified Taylor-Couette flow is inviscidly stable only in the limit of solid-body rotation µ = 1.

The strato-rotational instability has been first evidenced experimentally in the centrifugally stable regime µ > η 2 by Le [START_REF] Bars | Experimental Analysis of the Stratorotational Instability in a Cylindrical Couette Flow[END_REF] although [START_REF] Withjack | An experimental study of Couette instability of stratified fluids[END_REF] had previously reported an instability there. Le [START_REF] Bars | Experimental Analysis of the Stratorotational Instability in a Cylindrical Couette Flow[END_REF] have shown that the strato-rotational instability exists when µ η in agreement with the viscous instability condition µ < η proposed by [START_REF] Shalybkov | Stability of density-stratified viscous Taylor-Couette flows[END_REF] on the basis of a linear stability analysis. However, the recent experiments by [START_REF] Ibanez | Observations of the stratorotational instability in rotating concentric cylinders[END_REF] for stronger stratifications have shown that the strato-rotational instability exists beyond the critical ratio µ = η.

Recently, [START_REF] Leclercq | Connections between centrifugal, stratorotational, and radiative instabilities in viscous Taylor-Couette flow[END_REF] and [START_REF] Park | Instabilities and transient growth of the stratified Taylor-Couette flow in a Rayleigh-unstable regime[END_REF] have investigated the centrifugally unstable regime µ < η 2 by means of linear stability analyses. They both have shown that the strato-rotational instability continues to exist in this regime and is therefore in competition with the centrifugal instability. More precisely, [START_REF] Park | Instabilities and transient growth of the stratified Taylor-Couette flow in a Rayleigh-unstable regime[END_REF] have considered two angular velocity ratios µ = -1 and µ = 0.5 for η = 0.9 over wide ranges of Froude and Reynolds numbers. At both ratios, they report a transition from the centrifugal instability to the strato-rotational instability at instability onset when the stratification becomes sufficiently strong. On the other hand, [START_REF] Leclercq | Connections between centrifugal, stratorotational, and radiative instabilities in viscous Taylor-Couette flow[END_REF] have studied wide ranges of angular velocity ratio µ and Reynolds number for two gap ratios η = 0.417 and η = 0.9 and for three constant Froude numbers. In contrast to [START_REF] Park | Instabilities and transient growth of the stratified Taylor-Couette flow in a Rayleigh-unstable regime[END_REF], they argue that the two instabilities should be indistinguishable at onset because there is no discontinuity of the dominant axial wavenumber near the marginal stability curve. The corresponding dominant azimuthal wavenumber is also always low for the gap ratio η = 0.417. However, it varies widely for η = 0.9 and this could actually indicate the presence of two different instabilities but this possibility has not been investigated by [START_REF] Leclercq | Connections between centrifugal, stratorotational, and radiative instabilities in viscous Taylor-Couette flow[END_REF].

In order to shed further light on this issue, this paper investigates experimentally the stratified Taylor-Couette flow for η = 0.9 over a wide range of angular velocity ratio -1.5 < µ < 0.8, i.e. not only in the co-rotating regime µ > 0 but also in the counter-rotating regime µ < 0. The inner Reynolds number will be varied in the range: 0 < Re i < 3000 while the inner and outer Froude numbers will be kept small: [START_REF] Bars | Experimental Analysis of the Stratorotational Instability in a Cylindrical Couette Flow[END_REF] have investigated the ranges: 100 < Re i < 1210, 0 < µ < 1 for F i = 0.5, η = 0.8 while [START_REF] Ibanez | Observations of the stratorotational instability in rotating concentric cylinders[END_REF] have explored the ranges: 100 < Re i < 14000, 0 < µ < 1, and 0.4 < F i < 4 for η = 0.877. We will show that, depending on the flow parameters, two distinctly different modes arise at instability onset, a weakly non-axisymmetric mode and a highly non-axisymmetric mode.

|F i | < 0.262, |F o | < 0.157. In comparison, Le
By means of a linear stability analysis, we will demonstrate that these two different modes correspond to the centrifugal instability and strato-rotational instability, respectively.

The paper is organized as follows. In section §2, we present the experimental Taylor-Couette set-up and the numerical methods used for the linear stability analysis. The different flow regimes observed in the experiments are described in section §3. We focus not only on the primary instability modes but also on the first secondary instabilities and the transition to turbulence. The domains of each regime are delineated in the parameter space. The experimental and numerical neutral stability curves are also compared. In section §4, the characteristics of the observed primary modes are compared with the predictions of the linear stability analysis. Section §5 summarizes the results and discusses them in relation to the study of [START_REF] Leclercq | Connections between centrifugal, stratorotational, and radiative instabilities in viscous Taylor-Couette flow[END_REF].

Methods

Experimental setup and methods

The experimental set-up consists of two coaxial cylinders with height H = 30cm. The outer radius of the inner cylinder is r i = 18cm while the inner radius of the outer cylinder is r o = 20cm, giving a gap ratio η = r i /r o = 0.9 and a gap width d = r or i = 2cm. The inner cylinder is made of polished black stainless steel to avoid light reflection while the outer cylinder is made of transparent acrylic. The two cylinders can be rotated independently thanks to two dc servo-controlled motors. Their rotation speeds are measured by optic encoders.

A stable linear density stratification ρ(z) is established along the axial direction by using salt with the classical double-bucket filling method [START_REF] Oster | Density Gradients[END_REF]. In order to set a very strong stratification, the set-up has been filled only to a depth about 19cm implying that there is a free surface at the top. With fresh water at the top and saturated salt water at the bottom, the Brunt-Väisälä frequency is N = -(g/ρ 0 )∂ ρ/∂z = 3.18rad/s, where g is the gravity and ρ 0 is the reference density taken as the density of pure water at 20 • C. In practice, the actual Brunt-Väisälä frequency, measured by a density meter, has been found to lie in the range N = 3.1 ∼ 3.2rad/s for all the experiments. The flow is visualized by white mica powder with a grain size 1 -10µm on average. Although the height-to-gap ratio H/d = 9.5 is not as large as in previous Taylor-Couette set-ups, confinement effects are expected to be weak because the typical wavelength of instabilities in the strongly stratified regime is small λ 0.6d.

The angular velocity of the inner and outer cylinders have been varied in the ranges: 0 < Ω i < 8.0rpm and -4.8 < Ω o < 4.8rpm, respectively. The corresponding inner and outer Froude numbers, 

F i = Ω i /N and F o = Ω o /N ,
i = Ω i r i d/ν 0 and Re o = Ω o r o d/ν 0 ,
where ν 0 = 10 -6 m 2 /s is the viscosity of pure water at 20 • C. These Reynolds numbers should be considered as "reference Reynolds numbers" since the actual Reynolds numbers vary along the vertical owing to the viscosity increase with salt concentration. Since the Brunt-Väisälä frequency is fixed to N = 3.18rad/s, the reference Reynolds numbers are proportional to the Froude numbers according to Re

i = (N r i d/ν 0 )F i = 11448F i and Re o = (N r o d/ν 0 )F o = 12720F o .
We emphasize that their ranges of variation are quite wide: 0 < Re i < 3000 and -2000 < Re o < 2000, even if the Froude numbers are small because the radius of the set-up is larger than that in previous experimental studies on the stratified Taylor-Couette flow [START_REF] Withjack | An experimental study of Couette instability of stratified fluids[END_REF][START_REF] Boubnov | Stratified circular Couette flow: instability and flow regimes[END_REF][START_REF] Bars | Experimental Analysis of the Stratorotational Instability in a Cylindrical Couette Flow[END_REF][START_REF] Ibanez | Observations of the stratorotational instability in rotating concentric cylinders[END_REF]. [START_REF] Ibanez | Observations of the stratorotational instability in rotating concentric cylinders[END_REF] have investigated larger Reynolds numbers up to Re i = 14000 with a strong stratification N = 4.74rad/s but the corresponding Froude number F i = Re i /1186 can be actually much larger than unity because their set-up is smaller (r i = 4.218cm, d = 0.593cm).

Among the five non-dimensional parameters (µ, Re i , Re o , F o , F i ), only three are independent. For this reason, we have chosen to give (Re i , Re o , F o ) in the following while the inner Froude number and the angular velocity ratio can be deduced from the relations

F i = F o Re i /(ηRe o ) and µ = ηRe o /Re i .
Each experiment has been performed as follows. For a fixed angular velocity of the outer cylinder Ω o , the angular velocity of the inner cylinder Ω i has been slowly increased from zero by small steps ∆Ω i of typically 0.1 ∼ 0.2rpm (i.e. ∆Re i = 38 ∼ 75). In the unstable regime and its vicinity, at least 2 minutes (i.e. more than 6 revolutions of the inner cylinder) are waited between each step. Onset of instability or any modification of the flow patterns are checked by eye or recorded by means of a digital camera with resolution 1280 × 720, which is fixed in the laboratory frame, before increasing further the angular velocity Ω i . This protocol has allowed us to measure precisely the critical Reynolds number Re c of the primary instability, of the onset of secondary instabilities and of the transition to chaotic behaviour or turbulence. These critical Reynolds numbers correspond to the minimum Reynolds number for which each new pattern is observed. It should be stressed also that the turbulent character of the flow has been only judged by eye and not from quantitative measurements.

Density measurements performed at the end of some experiments show that the density profile is no longer linear but exhibits a series of mixed layers with typical size 2 -3cm separated by regions of rapid variation. Hence, the stratification has been renewed before studying the flow transition for another value of Ω o .

Numerical methods

The experimental observations will be compared to the results of a linear stability analysis. To this end, we consider the Navier-Stokes equations under the Boussinesq approximation in cylindrical coordinates (r, θ, z). The steady and axisymmetric base flow with angular velocity Ω(r):

Ω(r) = A + B r 2 , A = Ω o -η 2 Ω i 1 -η 2 , B = r 2 i (Ω i -Ω o ) 1 -η 2 , (2.1)
is subjected to infinitesimal perturbations of velocity (u r , u θ , u z ), pressure p and density ρ written in the normal-mode form (u r , u θ , u z , p , ρ ) = (u r (r), u θ (r), u z (r), p(r), ρ(r)) e i(mθ+kz-ωt) + c.c.,

where c.c. denotes the complex conjugate, m is the azimuthal wavenumber, k is the axial wavenumber, and ω is the complex eigenfrequency ω = ω r +iω i where ω r is the frequency and ω i is the growth rate. The linearized equations of continuity, momentum and density governing the infinitesimal perturbations are

1 r d(ru r ) dr + imu θ r + iku z = 0, (2.3) i (-ω + mΩ) u r -2Ωu θ = - 1 ρ 0 dp dr + ν ∇ 2 u r - u r r 2 - 2im r 2 u θ , (2.4) i (-ω + mΩ) u θ + 1 r d(r 2 Ω) dr u r = - imp ρ 0 r + ν ∇ 2 u θ - u θ r 2 + 2im r 2 u r , (2.5) i (-ω + mΩ) u z = - ikp ρ 0 - g ρ 0 ρ + ν∇ 2 u z , (2.6) i (-ω + mΩ) ρ - N 2 ρ 0 g u z = κ∇ 2 ρ, (2.7) 
where

∇ 2 = d 2 dr 2 + 1 r d dr -m 2 r 2 -k 2
is the Laplacian operator, ν the viscosity and κ the diffusivity. In order to solve (2.3)-(2.7), they are first written into the reduced form

-iωBv = Av, (2.8) 
where v = (u r , u θ , ρ) T , and A and B are 3 × 3 differential operator matrices [START_REF] Park | Waves and instabilities on vortices in stratified and rotating fluids[END_REF][START_REF] Park | The stably stratified Taylor-Couette flow is always unstable except for solid-body rotation[END_REF]. The eigenvalue problem (2.8) is then solved numerically by the Chebyshev collocation spectral method [START_REF] Antkowiak | Dynamique aux temps courts d'un tourbillon isolé[END_REF]) with a number of collocation points in the radial direction between 80 and 120. Without loss of generality, we can consider only non-negative k and m because of the symmetry

ω(k, m) = ω(-k, m) = -ω * (-k, -m)
, where * denotes the complex conjugate.

The numerical analysis will focus on the neutral stability curve and the characteristics (k, m, ω r ) of the dominant mode as a function of the non-dimensional parameters for the gap ratio η = 0.9 of the experimental apparatus. The Schmidt number Sc = ν/κ will be set to the value Sc = 700 characteristic of salt-stratified water. The comparison between experiments and numerics will be made on the basis of the Froude numbers, i.e. a given experiment will be compared to a linear stability analysis for the same values of the Froude numbers F i and F o . For most analyses, the corresponding Reynolds numbers will be taken equal to the reference Reynolds numbers, i.e. Re i = (N r i d/ν)F i and Re o = (N r o d/ν)F o with N = 3.18rad/s and ν = ν 0 . These reference Reynolds numbers correspond to the local Reynolds numbers at the top of the fluid. In order to investigate the effect of the viscosity increase due to the salinity gradient, the viscosity will be also taken as ν = 1.2ν 0 in some stability analyses. This is the viscosity of saline water with a concentration equal to half the saturation level. Hence, the corresponding Reynolds numbers can be regarded as the local Reynolds numbers at mid depth. The viscosity varies nonlinearly with salt concentration and increases up to ν = 2ν 0 at the bottom where the water is saturated.

Experimental observations

We first describe the different flow regimes observed for counter-rotating cylinders. Figure 1(a-c) shows examples of flow visualizations for the outer Reynolds number Re o = -415 (corresponding to F o = -0.033) and for three different inner Reynolds numbers Re i = 1056, 1219 and 2203. As mentioned previously, the associated inner Froude number can be computed from the relation

F i = F o Re i /(ηRe o ).
Corresponding z-t spatio-temporal diagrams are also displayed in figure 1(d-f ) over two periods of rotation of the inner cylinder 2T i , where T i = 2π/Ω i . They have been extracted from a vertical line in the middle of the flow visualizations. In all the flow visualizations displayed in the following, the outer cylinder rotates from left to right in anti-clockwise direction as indicated by the arrow in figure 1(a). For Re i = 1056 (figure 1a), we can see regular bands as observed for the Taylor vortices of the centrifugal instability [START_REF] Taylor | Stability of a Viscous Liquid contained between Two Rotating Cylinders[END_REF][START_REF] Boubnov | Stratified circular Couette flow: instability and flow regimes[END_REF]. Although the bands seem horizontal, they are slightly inclined downward from left to right, meaning that the pattern is actually a left-handed helical mode but with a low azimuthal wavenumber. A slight upward inclination of the bands can be seen also in the spatio-temporal diagram (figure 1d). Such instability occurs when Re the pattern appears first in the top part as also observed by [START_REF] Withjack | An experimental study of Couette instability of stratified fluids[END_REF]. This is because the viscosity increases as the salt concentration increases implying that the local Reynolds numbers are slightly higher in the upper part of the flow than in the lower part. The pattern then invades the whole fluid as the inner Reynolds number is further increased. For Re i = 1219 (figure 1b), the bands are no longer regular but move up and down and sometimes merge as clearly seen in the space-time diagram (figure 1e). When Re i > 1508, the flow becomes chaotic and small-scale turbulent structures are superimposed on the bands, first in the upper part of the flow as shown in figure 1(c,f ). These small-scale turbulent structures spread over the entire domain as Re i is increased further.

A second series of flow visualizations and spatio-temporal diagrams are displayed in figure 2 for the regime of co-rotation for the outer Reynolds number Re o = 1885 (corresponding to F o = 0.148) and for three different inner Reynolds numbers Re i = 2308, 2595 and 2924. As seen in figure 2(a), the primary instability is now highly non-axisymmetric. Such mode is similar to the one observed by Le [START_REF] Bars | Experimental Analysis of the Stratorotational Instability in a Cylindrical Couette Flow[END_REF] for the stratorotational instability except that the azimuthal wavenumber in their experiments was lower m = 1 ∼ 4. However, the gap ratio of their set-up is smaller η = 0.8 and the Froude number is also higher F i = 0.5 than in the present experiment where F i = 0.2. Interestingly, [START_REF] Leclercq | Connections between centrifugal, stratorotational, and radiative instabilities in viscous Taylor-Couette flow[END_REF] also report a high dominant azimuthal wavenumber m = 11 at instability onset when µ 0.5 for η = 0.9 and F i = 0.2.

When the inner Reynolds number is increased further above Re i = 2420, the mode 3(a,d), a highly non-axisymmetric mode and a weakly non-axisymmetric mode similar to those in figures 2(a) and 1(a) are observed simultaneously in the upper and lower parts of the flow, respectively. However, the weakly non-axisymmetric mode is now a right-handed helix instead of a left-handed helix as in figure 1(a). In addition, we observe in the spatiotemporal diagram (figure 3d) that the vertical extent of the region where the highly non-axisymmetric mode is present, widens near t = T i and then shrinks at t = 2T i . This oscillation has been observed to occur regularly (not shown) over a long time with an approximate time period of 2T i . In fact, this flow pattern mixed with weakly nonaxisymmetric and highly non-axisymmetric modes does not appear initially as onset of instability. Just above the onset of instability, the weakly non-axisymmetric mode appears at the top and moves downwards progressively as Re i increases. Then the highly non-axisymmetric mode appears at the top while the lower-half flow is occupied the weakly non-axisymmetric mode. For Re i = 1466 (figures 3b,e), the region of the highly non-axisymmetric mode widens in the axial direction but weakly non-axisymmetric bands are still observed near the bottom. An oscillation with a period around 2T i of the vertical extent of each region continues to be observed like in figure 3(d). When the inner Reynolds number is increased further as Re i > 1843, transition to small-scale turbulence occurs and two different modes are no longer distinguishable (figure 3c,f ).
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Figure 4 blue otherwise (m > 4). The blue portion of the neutral curve agrees well with the regime where the highly non-axisymmetric mode is observed in the experiments. For negative Re o , the red color of the curve is also consistent with the experimental observations of weakly non-axisymmetric modes. In contrast, in the intermediate range 0 Re o 840, the curve is red while both highly non-axisymmetric modes and weakly non-axisymmetric modes have been observed simultaneously in the experiments. In the next section, we will see that this apparent discrepancy comes from the fact that the dominant mode is weakly non-axisymmetric on the marginal stability curve whereas, just above it, a second mode, which is highly non-axisymmetric, becomes also unstable. We can further remark that the critical inner Reynolds number is at least Re i 900 and thus significantly larger than in previous experimental studies. For example, [START_REF] Shalybkov | Stability of density-stratified viscous Taylor-Couette flows[END_REF] and Le [START_REF] Bars | Experimental Analysis of the Stratorotational Instability in a Cylindrical Couette Flow[END_REF] reports i 200 for η ∼ 0.8 and F i = 0.5 while [START_REF] Leclercq | Connections between centrifugal, stratorotational, and radiative instabilities in viscous Taylor-Couette flow[END_REF] found Re i 300 for η = 0.9 and F i = 0.2. However, the stratification is stronger in the present experiments since the inner Froude number is below F i = 0.1 for Re i = 900.

Away from the marginal stability curve (figure 4), the empty circles and crosses indicate the parameters for which secondary modes and turbulence have been observed. While there is a large variety of distinct flow states when the fluid is not stratified [START_REF] Andereck | Flow regimes in a circular Couette system with independently rotating cylinders[END_REF], only the main flow regimes illustrated in figures 1-3 have been distinguished here for a strong stratification. Some series of experiments have been repeated several times and the observations have been found to be reproducible from one experiment to the other. However, experiments performed with a different protocol, such as for decreasing Ω i , could lead to different observations because of subcritical transitions and hysteresis. Although further studies of the nonlinear dynamics of the primary and secondary modes and the transition to turbulence would be of interest, this is left for future work and we shall concentrate in the next section on a quantitative comparison between the characteristics (temporal frequency, axial and azimuthal wavenumbers) of the primary modes observed experimentally and predicted by the linear stability analysis. This will allow us to prove that the weakly and highly non-axisymmetric modes originate from the centrifugal and strato-rotational instabilities, respectively. overall maximum growth rate is still reached by the first peak at m = 2. For (Re o = -346, Re i = 880), the growth rate curve is lower but similar. The corresponding frequency and axial wavenumber of the unstable modes for these three sets of Reynolds numbers are displayed in figure 5(b) for each azimuthal wavenumber. Two distinct branches can be seen: one for m 3 with negative frequency and the other for m 6 with positive frequency ω r /Ω i > 2.

Comparison between linear stability results and experimental observations of the primary instability

The dominant eigenmodes for m = 2 and m = 11 are also different as illustrated by their axial velocity perturbation u z in figure 6. For m = 2, there are weak sheared waves localized near the inner cylinder while, for m = 11, two out-of-phase waves are trapped near each cylinder. These shapes are very similar to those found by [START_REF] Park | Instabilities and transient growth of the stratified Taylor-Couette flow in a Rayleigh-unstable regime[END_REF] for the centrifugal and strato-rotational instabilities, respectively, demonstrating the different origin of the two growth rate peaks. These results contradict [START_REF] Leclercq | Connections between centrifugal, stratorotational, and radiative instabilities in viscous Taylor-Couette flow[END_REF] who argued that the centrifugal and strato-rotational instabilities are indistinguishable at onset. This point will be discussed in §5.

In order to compare these results to the characteristics of the experimentally observed mode in figure 1(a,d), a two-dimensional Fourier transform has been applied to the 1(a) is due to the centrifugal instability. Alternatively, we have also directly measured the axial wavelength and the period of the mode by simply measuring the length in axial direction z and in time t of a given number of repeated patterns in figure 7. This method yields (ω e /Ω i , k e d) = (0.89, 14.4) which are close to the values obtained from the Fourier transform. In appendix, we show that there is always a good agreement between such direct measurements and the results of the Fourier transform. Hence, only the results of the Fourier transform will be presented in the following.

We can further remark that the linear stability analysis predicts that, if a perturbation with positive wavenumbers (m, k) is unstable, then the perturbations with wavenumbers (m, -k), (-m, k) and (-m, -k) are also unstable with the same growth rate due to the symmetry of the linear equations. This indicates that there should be two types of unstable modes: right-handed and left-handed helical modes corresponding to mk < 0 and mk > 0, respectively. However, figure 1(a) shows that only a left-handed helical mode is observed since the lines of constant phase φ = mθ + kz -ω r t are inclined downward in the positive θ direction. This selection is most probably due to nonlinear effects as observed in homogeneous fluids [START_REF] Tagg | Nonlinear standing waves in Couette-Taylor flow[END_REF]. It can be also checked that the sign of the rescaled frequency ω r /Ω i is negative in the experiments in agreement with the results of the stability analysis for the centrifugal modes (figure 5 

1(d))

implies that ω r is positive. The rescaled frequency ω r /Ω i is therefore negative since Ω i is directed in the negative direction in figure 1 There is a single branch except for (Re o = 1885, Re i = 2308) where the axisymmetric mode m = 0 is also slightly unstable. This is the only azimuthal wavenumber for which the centrifugal instability is dominant because the angular velocity ratio µ = 0.735 is just below the Rayleigh line µ = η 2 as seen in figure 4(a).

Figure 9(a) shows a gray-scale spatio-temporal diagram extracted from figure 2(d). The resulting Fourier transform (figure 9b) exhibits a peak at (ω e /Ω i , k e d) = (9.5, 12.6). The peak is less compact and more distorted than in figure 7(b), probably because of the defects seen around t/T i = 0.6 and t/T i = 1.8 in figure 9(a). Nevertheless, this peak is close to the frequency and wavenumber (ω r /Ω i , kd) = (10.33, 10.56) (dashed lines) of the azimuthal wavenumber m = 12 predicted numerically for Re o = 1885, Re i = 2308, F o = 0.148.

Finally, figure 10(a) shows the maximum growth rate as a function of the azimuthal wavenumber for the intermediate outer Froude number F o = 0.016 corresponding to figure 3. At the critical inner Reynolds number Re i = 968 found experimentally for Re o = 209, the maximum growth rate (empty circles) is reached at m = 2 but is very low. For the Reynolds numbers (Re o = 209, Re i = 1175) (black dots) and (Re o = 174, Re i = 979) (gray squares) characterizing the flow of figure 3(a) at the top and at middepth, respectively, the growth rate becomes large and exhibits two comparable maxima like in figure 5(a). Interestingly, the peak at m = 11 is slightly higher than the one at Two separate frequency branches can be also seen in figure 10(b): one with frequency ω r /Ω i < 0.7 for m 4 and the other with frequency ω r /Ω i > 2.7 for m 5. The most unstable eigenmodes (figure 11) corresponding to each of these two branches are similar to those displayed in figure 6. This demonstrates that the low m branch corresponds to the centrifugal instability while the high m branch is due to the stratorotational instability like in figure 5.

To obtain the characteristics of the two different modes observed in the experiments, the Fourier transform has been applied separately to the upper and lower parts of the spatio-temporal diagram in figure 3(d). The dominant frequency and axial wavenumber of the upper part (figure 12) and lower part (figure 13) are (ω e /Ω i , k e d) = (6.5, 12.5) and (ω e /Ω i , k e d) = (1.0, 12.7), respectively. We can see that they are very close to the computed frequency and axial wavenumber (|ω r /Ω i |, kd) = (6.3, 11.8) (dashed lines) of the m = 11 mode for Re o = 209, Re i = 1175, F o = 0.016 (figure 12b) and (|ω r /Ω i |, kd) = (1.1, 11.9) (dashed lines) of the m = 1 mode for Re o = 174, Re i = 979, F o = 0.016 (figure 13b). This confirms that the weakly and highly non-axisymmetric modes come from the centrifugal and strato-rotational instabilities, respectively. The selection of these the strato-rotational instability decreases faster than the one of the centrifugal instability when the Reynolds number decreases. The higher dominant azimuthal wavenumber of the strato-rotational instability is probably responsible for this stronger viscous damping. Hence, because the local Reynolds numbers decrease downward due to the salinity gradient, there is a vertical level where a switchover between the two instabilities occurs.

In contrast, only the centrifugal instability is observed in figure 1(a, d) although the strato-rotational instability has a comparable maximum growth rate (figure 5). The difference from the previous case is that the centrifugal instability is already slightly more unstable than the strato-rotational instability for the reference Reynolds numbers (Re o = -415, Re i = 1056) which pertain to the top fluid. Thus, the centrifugal instability remains dominant further downward as the local Reynolds number decreases.

The comparison between the axial wavenumber and frequency of the computed and observed modes has been performed for the values of the outer Reynolds number Re o investigated in the experiments. For each case, the inner Reynolds number Re i of the analyzed mode has been chosen to lie around the middle of the primary instability region (indicated by black + symbols in figure 4b) so that the pattern is clearly defined. The results are summarized in figure 14(a) and (b) as a function of the angular velocity ratio µ. We can see that there is always a good agreement between the experimental (empty circles) and numerical (dots) results. The symbols are colored in red, green and blue when the dominant instability is centrifugal, mixed and strato-rotational, respectively. Length of the error bars corresponds to the axial wavenumber interval ∆(k e d) in (a) and the frequency interval ∆(ω e /Ω i ) in (b), where ∆k e and ∆ω e are the wavenumber and frequency spectral resolutions, respectively. The axial wavenumber (figure 14a) varies smoothly and only weakly between these three regimes whereas there is a large frequency jump (figure 14b) between the centrifugal and strato-rotational instability modes.

In order to make a more comprehensive comparison, the azimuthal wavenumber of the observed modes have been further estimated from spatio-temporal diagrams in the θ and t directions (see the example in figure 15a). The diagrams have been taken over the angle ∆θ = π/16, i.e. the angle between two bolts seen in the flow visualizations (figures 1-3 a-c). A small angle has been chosen in order to minimize curvature effects but this precludes the use of a Fourier transform as before since the azimuthal variations over ∆θ are weak. Instead, the azimuthal wavenumber has been retrieved from the slope of the pattern ∆t/∆θ by using the formula m = ω e ∆t/∆θ, where ω e is the frequency measured previously (figure 14b). As shown in figure 15(b), these measurements are in good agreement with the dominant azimuthal wavenumbers predicted by the linear stability analysis. The dominant azimuthal wavenumbers are always around m = 1 -2 for the centrifugal instability and around m = 11 -14 for the strato-rotational instability. The azimuthal wavenumber together with the frequency are therefore the main distinguishing attributes of the centrifugal and strato-rotational instabilities.

Conclusions and discussions

In this paper, we have investigated experimentally and numerically the stability of the stably stratified Taylor-Couette flow for the Brunt-Väisälä frequency N ≈ 3.2rad/s and the gap ratio η = 0.9. The Reynolds numbers have been varied over large ranges: 0 < Re i < 3000, -2000 < Re o < 2000, corresponding to angular velocity ratios in the range: -1.5 < µ < 0.8. The associated Froude numbers are small: |F i | < 0.262 and |F o | < 0.157, meaning that the flow is always strongly stratified.

For each series of experiments, the inner angular velocity Ω i has been increased from zero by small steps while keeping the outer angular velocity Ω o constant. Above instability onset, three types of flow patterns have been observed: a weakly non-axisymmetric mode in the counter-rotating regime Re o < 0 (i.e. µ < 0), a highly non-axisymmetric mode in the co-rotating regime for Re o > 840 (equivalent to µ > 0.57) and both modes simultaneously in different regions of the flow in the intermediate regime 0 Re o 840 (0 µ 0.57). We have also described the destabilization of these patterns by the first secondary instability and the transition to small-scale turbulence as the inner Reynolds number is further increased.

These experimental observations have been compared to the results of a linear stability analysis. The experimental and numerical neutral stability curves are in good agreement. The frequency, axial wavenumber and azimuthal wavenumber of the primary modes observed slightly above the instability threshold have been also retrieved from z-t and θ-t spatio-temporal diagrams. These measurements show that the weakly and highly nonaxisymmetric modes have similar axial wavenumber but their azimuthal wavenumber and frequency are clearly different: (m ∼ 1 -2, ω e /Ω i ∼ 1 -2) and (m ∼ 11 -14, ω e /Ω i ∼ 5 -10), respectively. These characteristics are in good quantitative agreement with those of the dominant modes computed numerically. In addition, the linear stability analysis clearly shows that these two types of mode belong to two distinct branches with different eigenfunctions and instability mechanisms: the weakly non-axisymmetric modes correspond to the centrifugal instability while the highly non-axisymmetric modes are due to the strato-rotational instability. These two instabilities exist with a comparable growth rate over a large range of Re o and are thereby competing. The co-existence of the two instabilities in different regions of the flow for 0

Re o 840 comes from the vertical variations of the local Reynolds numbers due to the salinity gradient. Indeed, the downward increase of the viscosity influences differently the growth rate of the two instabilities: the strato-rotational instability which has a higher azimuthal wavenumber is more damped than the centrifugal instability when the Reynolds numbers decrease. Thus, the strato-rotational instability, although dominant in the upper flow, is overcame by the centrifugal instability below a vertical level. For similar reasons, the centrifugal and strato-rotational instabilities are observed to first occur at instability onset in the upper region of the flow since the Reynolds number is highest there [START_REF] Withjack | An experimental study of Couette instability of stratified fluids[END_REF] Our results contradict the conclusion of [START_REF] Leclercq | Connections between centrifugal, stratorotational, and radiative instabilities in viscous Taylor-Couette flow[END_REF] that the centrifugal and strato-rotational instabilities are indistinguishable at onset. However, we note that their conclusion is mostly based on the absence of discontinuity of the axial wavenumber of the dominant mode determined from a linear stability analysis for a large gap η = 0.417. First, it might be not sufficient to look only at discontinuities of the axial wavenumber to detect competing instabilities since they can have similiar dominant axial wavenumber as found herein. Second, their results show that the dominant azimuthal wavenumber near the marginal curve is always low m ∼ 0 -2, even above the Rayleigh line µ > η 2 . This indicates that the centrifugal and strato-rotational instabilities are operating on similar azimuthal wavenumbers for the gap ratio η = 0.417. In contrast, the instability map of [START_REF] Leclercq | Connections between centrifugal, stratorotational, and radiative instabilities in viscous Taylor-Couette flow[END_REF] for the small gap η = 0.9 and Froude number F i = 0.2 is actually consistent with our results and shows a wide variation of the dominant azimuthal wavenumber at onset depending on µ: it goes from m = 0 -1 for µ 0.5 to m = 11 -12 in the vicinity of the Rayleigh line µ = η 2 with an abrupt change in between. They seem to have not investigated in more details this small-gap case but the present results clearly show that these different azimuthal wavenumbers originate from distinct instabilities. Based on these results, it is likely that the dominant azimuthal wavenumber of the centrifugal instability is only weakly sensitive to the gap ratio while the dominant azimuthal wavenumber of the strato-rotational instability increases with η. This interpretation is consistent with the observation by Le [START_REF] Bars | Experimental Analysis of the Stratorotational Instability in a Cylindrical Couette Flow[END_REF] of a lower azimuthal wavenumber m = 1 -4 for the strato-rotational instability for the smaller gap ratio η = 0.8. An increase of the dominant azimuthal wavenumber of the strato-rotational instability with η has been also reported by [START_REF] Park | The stably stratified Taylor-Couette flow is always unstable except for solid-body rotation[END_REF] when µ = ∞. All together, this suggests that the small gap η = 0.9 investigated here is a more favorable configuration to easily distinguish between the centrifugal and strato-rotational instabilities than the large gap η = 0.417 mostly studied by [START_REF] Leclercq | Connections between centrifugal, stratorotational, and radiative instabilities in viscous Taylor-Couette flow[END_REF]. For a given gap ratio, a stronger stratification might also favor higher azimuthal wavenumbers for the strato-rotational instability [START_REF] Park | Instabilities and transient growth of the stratified Taylor-Couette flow in a Rayleigh-unstable regime[END_REF] and therefore eases the distinction with the centrifugal instability.

In the future, it would be interesting to study the effects of the gap ratio η and the stratification N to check these hypotheses. Besides, it would be of primary interest to further investigate the nonlinear dynamics of the primary and secondary instabilities and the subsequent transition to turbulence. 

  Figure 1. (Colour online) (a-c) Flow visualizations and (d-f ) spatio-temporal diagrams for fixed outer Reynolds and Froude numbers Reo = -415, Fo = -0.033, and for (a, d) Rei = 1056, (b, e) Rei = 1219 and (c, f ) Rei = 2203. The arrows in (a) indicate the direction of rotation of the outer and inner cylinders.
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 2 Figure 2. (Colour online) (a-c) Flow visualizations and (d-f ) spatio-temporal diagrams for fixed outer Reynolds and Froude numbers Reo = 1885, Fo = 0.148, and for (a, d) Rei = 2308, (b, e) Rei = 2595 and (c, f ) Rei = 2924. The arrows in (a) indicate the direction of rotation of the outer and inner cylinders.
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 3 Figure 3. (Colour online) (a-c) Flow visualizations and (d-f ) spatio-temporal diagrams for fixed outer Reynolds and Froude numbers Reo = 209, Fo = 0.016, and for (a, d) Rei = 1175, (b, e) Rei = 1466 and (c, f ) Rei = 2719. The arrows in (a) indicate the direction of rotation of the outer and inner cylinders.
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 4 Figure 4. Map of the flow regimes in the parameter spaces (a) (Reo, Rei) and (b) (µ, Rei). The labels on the upper and right axes in (a) indicate the corresponding Froude numbers Fo and Fi. The different gray scales indicate the flow regimes observed in the experiments: primary instability (black), secondary modes (dark gray) and turbulence (gray), whereas the different symbols indicate the nature of the primary mode: weakly non-axisymmetric mode (filled circles), highly non-axisymmetric mode (triangles) and mixed modes (empty circles). The gray dashed lines represent the Rayleigh line µ = η 2 . The thick solid line represents the neutral stability curve determined numerically over all axial and azimuthal wavenumbers for N = 3.18rad/s. The line is black when the primary instability occurs at low azimuthal wavenumbers (m 4) and gray otherwise (m > 4). The black crosses in (a) indicate the parameters of the flow visualizations displayed in figures 1, 2, and 3, while the crosses in (b) indicate the values of Rei for which we have performed the comparison between experimental and numerical results displayed in figure 14 and 15(b).

Figure 5 Figure 5 .

 55 Figure 5(a) shows the maximum growth rate as a function of the azimuthal wavenumber determined numerically over all axial wavenumber k for the fixed outer Froude number F o = -0.033 pertaining to figure 1 and for three sets of Reynolds numbers (Re o , Re i ). The values (Re o = -415, Re i = 915) (empty circles) correspond to the critical parameters found in the experiments for F o = -0.033 while the values (Re o = -415, Re i = 1056) (black dots) correspond to the reference Reynolds numbers of the primary instability shown in figure 1(a). In addition, we display the growth rate for the same Froude number but for the lower Reynolds numbers (Re o = -346, Re i = 880) (gray squares) computed with the viscosity ν = 1.2ν 0 . These values are the local Reynolds numbers at mid depth in the experiment of figure 1(a) while the reference Reynolds numbers (Re o = -415, Re i = 1056) correspond to the local Reynolds numbers at the top since they are based on the viscosity of pure water.The maximum growth rate is only slightly positive for m = 2 and m = 3 for (Re o = -415, Re i = 915) confirming that we are very close to the neutral stability curve. When Re i is increased to 1056 for Re o = -415, the growth rate becomes much larger and a second growth rate peak arises at large azimuthal wavenumber m = 11. However, the
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 6 Figure 6. (Colour online) Contours of the vertical velocity Re[uz(r) exp(imθ)] of the dominant eigenmode for Reo = -415, Rei = 1056, Fo = -0.033 and for (a) m = 2 and (b) m = 11. Only one wavelength is represented along the azimuthal direction. The contours are normalized by the maximum value of uz and the contour interval is 0.2.
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 7 Figure 7. (a) Gray-scale spatio-temporal diagram g(t, z) extracted from figure 1(d) (Reo = -415, Rei = 1056, Fo = -0.033). (b) Contours of the corresponding Fourier coefficient |ĝ(ωe, ke)|. The horizontal and vertical dashed lines represent the axial wavenumber kd and the frequency |ωr/Ωi| of the most unstable mode m = 2 obtained from the linear stability analysis for Reo = -415, Rei = 1056, Fo = -0.033 (figure 5).
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 8 Figure 8. Same as figure 5 except for the fixed outer Froude number Fo = 0.148 and for (Reo, Rei) = (1885, 1958) (empty circles), (1885, 2308) (black dots) and (1571, 1923) (gray squares). The numbers near the dots in (b) indicate the corresponding azimuthal wavenumber for (Reo, Rei) = (1885, 2308).

  (a). Similarly, figure 8(a) shows the maximum growth rate as a function of the azimuthal wavenumber computed for the outer Froude number F o = 0.148 corresponding to figure 2. The inner Reynolds numbers Re i = 1958 (empty circles) is the experimental critical Reynolds number for Re o = 1885 while (Re o = 1885, Re i = 2308) (black dots) are the reference Reynolds numbers of the highly non-axisymmetric mode displayed in figure 2(a). As before, we also show the growth rate for (Re o = 1571, Re i = 1923) (gray squares) which pertain to the flow at mid-depth in figure 2(a). For the three sets of Reynolds numbers, there is now a single growth rate peak at m = 12. The dominant eigenmode for m = 12 (not shown) is similar to the one displayed in figure 6(b) meaning that the instability is strato-rotational. The corresponding axial wavenumber and frequency of the dominant mode for each azimuthal wavenumber are shown in figure 8(b).
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 910 Figure 9. (a) Gray-scale spatio-temporal diagram g(t, z) extracted from figure 2(d) (Reo = 1885, Rei = 2308, Fo = 0.148). (b) Contours of the corresponding Fourier coefficient |ĝ(ωe, ke)|. The horizontal and vertical dashed lines represent the axial wavenumber kd and the frequency ωr/Ωi of the most unstable mode m = 12 obtained from the linear stability analysis for Reo = 1885, Rei = 2308, Fo = 0.148 (figure 8).
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 11 Figure 11. (Colour online) Contours of the vertical velocity Re[uz(r) exp(imθ)] of the dominant eigenmode for Reo = 209, Rei = 1175, Fo = 0.016 and for (a) m = 1 and (b) m = 11. Only one wavelength is represented along the azimuthal direction. The contours are normalized by the maximum value of uz and the contour interval is 0.2.

Figure 12 .

 12 Figure 12. (a) Gray-scale spatio-temporal diagram g(t, z) extracted from the upper part of figure 3(d). (b) Contours of the corresponding Fourier coefficient |ĝ(ωe, ke)|. The horizontal and vertical dashed lines represent the axial wavenumber kd and the frequency ωr/Ωi of the most unstable mode m = 11 obtained from the linear stability analysis for Reo = 209, Rei = 1175, Fo = 0.016 (figure 10).
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 1314 Figure 13. (a) Gray-scale spatio-temporal diagram g(t, z) extracted from the lower part of figure 3(d). (b) Contours of the corresponding Fourier coefficient |ĝ(ωe, ke)|. The horizontal and vertical dashed lines represent the axial wavenumber kd and the frequency |ωr/Ωi| of the mode m = 1 obtained from the linear stability analysis for Reo = 174, Rei = 979, Fo = 0.016 (figure 10).
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 15 Figure 15. (Colour online) (a) Spatio-temporal diagram in the directions θ-t extracted from a horizontal line at z/d = 6 in figure 2(a) over the angle ∆θ = π/16. (b) Comparison between the linear stability results (dots) and the experimental observations (empty circles with error bars) for the azimuthal wavenumber m.

Figure 16 .

 16 Figure 16. (Colour online) Comparison between the (a) axial wavenumber and (b) frequency obtained from the Fourier transform (empty circles with error bars) and obtained from direct measurements (lines) of the wavelength and period of some patterns in the spatio-temporal diagrams.

  

  are always much smaller than unity: |F i | < 0.262 and |F o | < 0.157 ensuring that the flow is always strongly stratified. The Reynolds numbers are defined as Re
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Appendix A. Measurements of the axial wavenumber and the frequency

Two methods have been used to retrieve the axial wavenumber and frequency of the primary modes from z-t spatio-temporal diagrams: a Fourier transform as explained in §4 but also direct measurements of the mean wavelength and period of some patterns in the spatio-temporal diagrams. Figure 16 shows that the two methods give very similar results.