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ABSTRACT

We investigate the linear stability of intense baroclinic anticyclones, with a particular focus on the cen-

trifugal (inertial) instability. Various vertical and radial velocity profiles are studied. The vertical profiles are

such that the velocity is maximum at the surface. These profiles correspond to oceanic eddies such as sub-

mesoscalemixed-layer eddies or intense mesoscale eddies in the upper thermocline. The results show that the

main characteristics of the centrifugal instability (growth rate, vertical wavelength) depend weakly on the

baroclinic structure of the anticyclone. The dominant azimuthal wavenumber is m5 2 for small Burger

number (Bu) and m5 1 for higher Bu, where Bu is the square root of the ratio of the deformation radius Rd

over the characteristic eddy radius Rmax where the velocity is maximum. The marginal stability limits of the

centrifugal instability for the different velocity profiles collapse approximately on a single curve in the parameter

space (Ro, Bu), where Ro5Vmax/(fRmax) is the Rossby number, with Vmax being the maximum velocity. By

means of an asymptotic analysis for short vertical wavelength, an explicit prediction for the marginal stability

limit is derived for a wide range of velocity profiles. We then suggest to use, for most of oceanic anticyclones,

the instability criterion valid for a Gaussian eddy:
ffiffiffiffiffiffiffi
Bu

p
5Rd/Rmax # (0:23/

ffiffiffiffiffiffiffi
Ek

p
)(Ro1 0:3)2/

ffiffiffiffiffiffiffiffiffijRojp
, where

Ek5 n/fH2 is the Ekman number, H is the eddy depth, and n is the turbulent viscosity at the ocean surface.

Some baroclinic anticyclones can remain stable even if they have a core region of negative absolute vorticity

provided that they are small enough. This formula explains the few observations of intense anticyclonic eddies

having a negative core vorticity around 21:5f .

1. Introduction

A wide variety of intense surface eddies are now ubiq-

uitously observed in the oceans and coastal areas from

synthetic-aperture radar (SAR) images (Johannessen et al.

1994; Munk et al. 2000) and coastal high-frequency radar

(HFR) current measurements (Chavanne et al. 2010;

Paduan and Washburn 2013; Schaeffer et al. 2017).

These small-scale surface eddies (5–20km) were not

accessible before with traditional ocean sampling. They

may be generated by a number ofmechanisms, including

vertical mixing, short-wavelength secondary instabil-

ities, frontal shear instabilities, specific wind forcing

events, or coastal boundary layer detachment. Because

of their small scales, the relative vorticity of these eddies

may reach finite values (Hasegawa et al. 2004; Schaeffer

et al. 2017). Such vortex structures are also observed in

numerical models when increasing the spatial resolution

of regional or coastal models. For instance, the high-

resolution Regional Ocean Modeling System (ROMS)

simulations of an idealized California Current system

(Capet et al. 2008) exhibit a wide variety of submesoscale

filaments or eddies with intense vertical vorticity and a

large spectra of vertical velocity, in contrast to mesoscale

eddies. Other primitive equation simulations of unstable

oceanic currents or fronts at high resolution (in both hor-

izontal and vertical directions) exhibit also large Rossby

number structures in the surface layer (Klein et al. 2008;

Gula et al. 2015). Even mesoscale eddies with a radius of

the same order or larger than the local deformation radius

could sometime reach intense vorticity values with a neg-

ative potential vorticity in the core (Chavanne et al. 2010;

Ioannou et al. 2017).

Unlike turbulent microscale flows, these intense eddies

are strongly influenced by Earth’s rotation. According to
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Kloosterziel and van Heijst (1991) or Mutabazi et al.

(1992), an anticyclonic circular and barotropic eddy is

unstable to three-dimensional perturbations if the gen-

eralized Rayleigh discriminant is negative somewhere in

the flow f(r)5 [zz(r)1 f ](2V/r1 f ), 0, where V(r) is

the azimuthal velocity, f is the Coriolis parameter, and

zz(r)5 ›rV1V/r is the vertical vorticity. This widely

used criterion is a sufficient condition for inviscid three-

dimensional instabilities as demonstrated by short ver-

tical wavelength WKB analyses (Leblanc and Cambon

1997; Sipp and Jacquin 2000; Billant and Gallaire 2005).

To be satisfied, a region of negative absolute vorticity

z1 f , 0 (i.e., negative potential vorticity) should exist.

However, the direct application of the generalized

Rayleigh criterion to oceanic eddies might be prob-

lematic since it does not take into account the stratifi-

cation and the dissipation. Indeed, the stratification

induces a low wavenumber cutoff (confining the insta-

bility to wavelengths below a threshold) for the inertial

instability of jets (Plougonven and Zeitlin 2009) or cir-

cular eddies (Billant and Gallaire 2005; Kloosterziel

et al. 2007; Lazar et al. 2013a). Short vertical wavelength

perturbations are also damped by the vertical dissipa-

tion, reducing their growth rate. Therefore, intense

oceanic vortices may be closer to the marginal stability

limit than expected and the generalized Rayleigh crite-

rion can greatly overestimate the unstable region in the

parameter space. One of the main results of Lazar et al.

(2013a) was to provide a stronger instability criterion for

the inertial instability by taking into account both the

stratification and the dissipation. They have shown that

the unstable area in the parameter space is reduced in

the case of barotropic anticyclonic eddies confined in a

thin and strongly stratified fluid layer (N/f � 1, whereN

is the Brunt–Väisälä frequency associated with a linear

background stratification). Close to the marginal stability

limit, the growth rates are controlled by the vertical dissi-

pation and are insensitive to the velocity or the vorticity

profile if the intensity of the barotropic eddy is charac-

terized by the vortex Rossby number Ro5Vmax/(fRmax)

instead of the relative core vorticity z(0)/f . Besides,

Lazar et al. (2013b) have derived an analytical marginal

stability limit for the idealized Rankine vortex. This

simple stability equation, which depends only on the

three dimensionless parameters (the Rossby, Burger,

and Ekman numbers), appears to be relevant for a wide

variety of velocity profiles and can be used to build a

‘‘first guess’’ stability diagram for the inertial destabili-

zation of intense barotropic anticyclones within a vis-

cous and stratified oceanic layer. Large-scale laboratory

experiments on intense vortices in thin stratified layers

agree well with this analytical stability threshold (Lazar

et al. 2013b). Nevertheless, it is limited because of two

hypotheses assumed by Lazar et al. (2013b): the baro-

tropic (i.e., columnar) structure of the basic eddy and the

axisymmetry of the unstable modes.

However, both meso- or submesoscale oceanic anti-

cyclones are generally baroclinic; in other words, the

azimuthal velocity is not uniform along the vertical,

especially in the case of surface intensified eddies.

Hence, we should determine how the vertical structure

of the eddy affects the growth rate and the wavelength

selection of the inertial instability compared to co-

lumnar vortices. Besides, the centrifugal instability is

most unstable for m 5 0 in the inviscid limit but it can

destabilize also nonzero azimuthal wavenumbers as first

shown by Smyth and McWilliams (1998) for columnar

vortices. Using short vertical wavelength asymptotics,

Billant and Gallaire (2005) have derived a generalized

Rayleigh criterion valid not only for axisymmetric per-

turbations but also for asymmetric ones. In the presence

of stratification and viscous dissipations, which damp

low and high vertical wavenumbers, respectively, the

asymmetric centrifugal instabilities can become domi-

nant over the axisymmetric one. In particular, linear

stability analyses performed on columnar vortices in

stratified-rotating fluid (Billant et al. 2004), on isolated

anticyclones in two-layer rotating shallow water model

(Lahaye and Zeitlin 2015), or on isolated pancake vor-

tices in a continuously stratified fluid (Yim and Billant

2016; Yim et al. 2016) have shown that themost unstable

modes of the inertial instability can be asymmetric

close to the marginal stability limit. Hence, the main

goal of the present study is to obtain, as for the axi-

symmetric inertial modes on barotropic eddies (Lazar

et al. 2013a), a simple marginal stability criterion for

the asymmetric inertial instability of baroclinic surface

anticyclones.

To this end, we address in this paper the linear sta-

bility of a surface axisymmetric anticyclone in a rotating

and linearly stratified fluid using the Navier–Stokes

equation with a standard Laplacian dissipation. We

introduce a solid free-slip wall condition at the surface

where the vortex intensity is maximum in order tomimic

the flat ocean surface. This specific boundary condition

is relevant only for surface eddies, and we exclude from

the scope of our investigation intrathermocline eddies or

meddies as considered by Nguyen et al. (2012), Hua

et al. (2013), Yim et al. (2016), Facchini and Le Bars

(2016), Sutyrin and Radko (2017), Reinaud (2017), and

Mahdinia et al. (2017). Unlike these previous studies

dedicated only to Gaussian lenses, we will study various

radial and vertical profiles in order to extract some

general stability properties which are not profile de-

pendent. Only linear stability results on the centrifugal

instability will be presented although other types of
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instability can occur. Because of the baroclinic structure

of the eddy, the barotropicm5 2 shear instability will exist

only for submesoscale structures. Yim et al. (2016) showed

that Gaussian pancake vortices having small Rossby num-

ber are barotropically unstable when the characteristic ra-

dius is below 1/7 of the deformation radiusRd. On the other

hand, baroclinic instability will affect only large-scale

eddies. For instance, Yim et al. (2016) and Mahdinia et al.

(2017) showed that geostrophic Gaussian lenses are un-

stable to mixed barotropic/baroclinic instability when

the radius exceeds 1.3Rd. Form5 1, there also exists an

instability called Gent–McWilliams instability that

bends the vortex. However, for finite Rossby number

sufficiently above the centrifugal instability threshold,

these other instabilities are subdominant.

The paper is organized as follows. We first describe in

section 2 the general class of 3D circular surface eddies

considered as base state. The methods used to solve the

generalized eigenvalue problem for the full Navier–

Stokes equations are given in section 3. After intro-

ducing the asymptotic results for centrifugal instability

in section 4, the results of the stability analysis are pre-

sented in section 5. We first investigate in section 5a

the impact of the vertical eddy structure (baroclinic/

barotropic) on the inertial instability of intense anticy-

clones. Besides, a quantitative comparisons between the

full 3D stability analysis and the asymptotic solutions

obtained for columnar eddies are provided. Then, we

investigate in section 5b the impact of the radial velocity

profiles on the inertial instability and build the stability

diagrams in the parameter space of the Burger number

and the vortex Rossby number for distinct Ekman

numbers. By means of an asymptotic analysis, an

analytical stability criterion is derived that is in good

agreement with the numerical stability analysis. Finally

we summarize our results and discuss their applications

to oceanic eddies in section 6.

2. Structure of the surface intensified anticyclones

a. Velocity and vorticity profiles

The angular velocity V(r, z) of the isolated circular

vortices considered herein is prescribed by two dimen-

sionless functions Fa(r̂) and G(ẑ):

V
u

r
5V(r, z)5V

0
F
a
(r̂)G(ẑ) , (1)

with r̂5 r/Rmax being the dimensionless radius and

ẑ5 z/H the dimensionless depth of the vortex. The typical

vortex depth isH and the characteristic vortex radiusRmax

corresponds to the radius where the azimuthal velocity Vu

is maximum Vu(Rmax)5Vmax. We use for the radial

distribution of the angular velocity a general class of

profiles parameterized by the steepness parameter a as

F
a
(r̂)5 exp

�
2
1

a
r̂a
�
. (2)

This equation describes a wide range of profiles having

smooth (1,a# 2) or steep velocity gradients (large a)

with always a vanishing circulation for large radii. The

case a5 2 corresponds to a Gaussian velocity profile.

The radial zr and vertical zz vorticity components of

such circular vortices are given by

z
r
52›

z
V

u
52

r

H
V(r, z)

G0(ẑ)
G(ẑ)

, (3)

z
z
5

1

r

›r2V

›r
5V(22 r̂a) . (4)

The relative vorticity z/f on the axis r5 0 is directed

along the vertical axis and given by

z
z
(0)

f
5

2V
0

f
5 2e1/aRo, (5)

where

Ro5
V

max

fR
max

5
V

0

f
e21/a (6)

is the vortex Rossby number. Anticyclonic (cyclonic)

eddies correspond to negative (positive) values of Ro.

The inviscid stability of such class of vortices when

G(ẑ)5 1 has been studied by Carton and McWilliams

(1989), Carnevale and Kloosterziel (1994), and Orlandi

and Carnevale (1999) for purely two dimensional flows,

by Stegner and Dritschel (2000) for one-layer quasi-

geostrophic (QG) and shallow-water flows, and by

Smyth and McWilliams (1998) for 3D stratified-rotating

flows. In the 2D limit, the vortex is unstable to the

shear (i.e., barotropic) instability when the steepness

parameter is larger than ac 5 1:85. For a5 2, only the

azimuthal wavenumberm5 2 is unstable. In the shallow-

water one-layerQG framework, the barotropic instability

tends to weaken when the ratio of the deformation radius

to the vortex radius decreases (Stegner and Dritschel

2000). In contrast, for two-layer quasigeostrophic vorti-

ces, the baroclinic instability is enhanced when the vortex

size increases (Ikeda 1981; Flierl 1988; Helfrich and Send

1988; Benilov 2003). In 3D stratified rotating flows,

the centrifugal instability can also occur (Smyth and

McWilliams 1998). In nonrotating flows, Billant and

Gallaire (2005) have shown that the azimuthal wave-

numbers in the range jmj, 2
ffiffiffi
a

p
are centrifugally unstable

but the mode m5 0 is the most unstable in the inviscid
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limit. In addition, the azimuthal wavenumberm5 1 can be

unstable to the Gent and McWilliams instability when the

fluid is stratified-rotating (Gent and McWilliams 1986;

Yim and Billant 2015).

Along the vertical, we use different profiles G(ẑ) cor-

responding to a barotropic columnar vortex GC(ẑ)5 1

(reference case), a Gaussian profile GG(ẑ)5 e2ẑ2/2, and

an exponential profile GE(ẑ)5 eẑ/
ffiffi
2

p
for surface lenses.

Vertical cross sections of the angular velocity of the

Gaussian–columnar vortex [V(r, z)5V0F2(r̂)GC(ẑ)], the

Gaussian–Gaussian (GG)vortex [V(r, z)5V0F2(r̂)GG(ẑ)],

and the Gaussian–exponential (GE) vortex [V(r, z)5
V0F2(r̂)GE(ẑ)] are plotted in Fig. 1. The dotted lines

represents the contour V5 0:1V0, indicating the eddy

extent. The axial and radial vorticity components for the

GG and GE vortices are shown in Fig. 2. Note that the

exponential profile GE has a nonzero shear at the sur-

face. The resulting Ekman pumping can be estimated as

wE ;VmaxdE/H, where dE 5
ffiffiffiffiffiffiffiffiffi
2n/f

p
is the Ekman layer

depth with n being the viscosity. For the typical pa-

rameters investigated in the following, the associated

decay rate scaled by jf j is wE/(Hjf j);O(1022). It is

expected that the instabilities will not be influenced by

this effect as long as their scaled growth rates vi/jf j are
larger compared to this typical decay rate.

b. Associated density anomaly

In addition, the angular velocity (1) should satisfy the

thermal-wind balance:

›

›z
(rV2 1 frV)52

g

r
0

›

›r
r
a
, (7)

where ra is the density anomaly due to the eddy velocity.

Therefore, the total density is given by rt 5 r0 1 rz1 ra,

where r0 is the reference density and r52N2
0r0/g is the

stable background density gradient, with N0 being the

constant Brunt–Väisälä frequency of the unperturbed

flow (i.e., with no eddy).

For a barotropic columnar vortex, the isopycnals are

always flat since there is no vertical variation of the ve-

locity field, while for the baroclinic GG eddy the base

density anomaly is given by

r
a
(r, z)52

r
0

g
z

�
R

max

H

�2

V(V1 f ) . (8)

To make this density anomaly dimensionless, we

compare it to the vertical variation of the background

density flow along the eddy depth H (Dr5 rH):

r
a
(r, z)

Dr
52

z

H

1

N2
0

�
R

max

H

�2

V(V1 f )

52
Ro

Bu

ffiffiffi
e

p
ẑ[Ro

ffiffiffi
e

p
F
2
(r̂)G

G
(ẑ)1 1]F

2
(r̂)G

G
(ẑ) ,

(9)

where

Bu5
N2

0H
2

f 2R2
max

5

�
R

d

R
max

�2

(10)

is the Burger number and Rd 5N0H/f is the baroclinic

deformation radius. Two examples of dimensionless

density anomalies are shown in Fig. 3 for intense

FIG. 1. Vertical cross sections of the relative angular velocity of (a) Gaussian columnar, (b) GG, and (c) GE

anticyclones when Ro 5 21. Dotted lines indicate the limit of the base vortex where V5 0:1V0.
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submesoscale (Ro 5 21.5, Bu 5 4; Fig. 3a) and strong

mesoscale (Ro5 20.5, Bu 5 1; Fig. 3b) GG anticyclones.

For a baroclinic GE vortex, the base density anomaly

is given by

r
a
(r, z)5

r
0

g

R2
max

H
ffiffiffi
2

p V(V1 f ) . (11)

After nondimensionalization, this can be rewritten as

r
a
(r, z)

Dr
5

Ro

Bu

ffiffiffiffiffiffi
e/2

p
[Ro

ffiffiffi
e

p
F
2
(r̂)G

E
(ẑ)1 1]F

2
(r̂)G

E
(ẑ) .

(12)

Unlike the GG eddy, the density anomaly for the GE

vortex is maximum at the surface (z5 0):

FIG. 3. Vertical cross sections of the total density fields rt/Dr of the (top) GG and (bottom) GE anticyclones when (a),(c) Ro521.5 and

Bu 5 4 and (b),(d) Ro 5 20.5 and Bu 5 1. Dotted lines indicate the limit of the base vortex where V5 0:1V0.

FIG. 2. Vertical cross sections of the relative (left) axial and (right) radial vorticity components for the (a),(b) GG and (c),(d) GE anti-

cyclones for Ro 5 21. Dotted lines indicate the limit of the base vortex where V5 0:1V0.
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r
a
(r, 0)

Dr
5

Ro

Bu

ffiffiffiffiffiffi
e/2

p
(
ffiffiffi
e

p
Ro e2r̂2/2 1 1)e2r̂2/2 . (13)

Because of the cyclogeostrophic balance, the sign of

the surface density anomaly depends on the vortex in-

tensity. For low Rossby numbers (2e21/2 ,Ro, 0), the

density anomaly is negative while for intense anticy-

clones (Ro& 2 0:6) the density anomaly is positive at

r5 0. In all the cases, the isopycnals outcrop at the free

surface as seen in Figs. 3c and 3d.

For the values of a different from 2, the density

anomaly cannot be derived analytically and has to be

computed numerically.

Depending on Ro and Bu, the density anomaly can

be strong and eventually make the GG and GE eddies

statically unstable (gravitational instability) (Negretti

and Billant 2013). This occurs when the vertical gra-

dient of the total density becomes positive somewhere

in the vortex: ›rt/›z. 0. Figure 4 shows the domains of

this instability in the parameter space (Ro, Bu) for

the two profiles GG and GE for different values of the

steepness parameter a. The unstable domain for the

GE vortex tends to be wider than for the GaG vortex.

However, the domain of instability depends on a for

the GaG (Fig. 4a). In the following, we will only

consider eddies that are stable to the gravitational

instability.

Because of the vertical structure of these eddies

and their background stratification, the baroclinic in-

stability could also induce destabilization of the GaG

or the GE eddies. The linear stability of 3D lenses

was studied by Nguyen et al. (2012) with the QG

stratified model, and by Yim et al. (2016) and Mahdinia

et al. (2017) within the Boussinesq framework. We

could transpose these stability analyses performed for

these 3D Gaussian lenses to surface intensified eddies

by considering only the vertically symmetric modes.

For large eddies, when the eddy radius Rmax slightly

exceeds the baroclinic deformation radius Rd, and

small Rossby number, the m5 2 baroclinic mode is

the dominant unstable mode both in QG and the full

3D Boussinesq model. This m5 2 mode is in fact a

mixed mode between the baroclinic instability and

the shear instability as shown by Yim et al. (2016) (see

their Fig. 39f). Purely baroclinic modes with higher

azimuthal wavenumbers (m. 2) may be dominant

(Nguyen et al. 2012; Yim et al. 2016) but only for very

large eddies (when Bu , 0.1), which are out of the

scope of this study. However, for ageostrophic eddies

with finite Rossby numbers, a cyclone–anticyclone

asymmetry occurs, and the baroclinic growth rates

are slower for anticyclonic Gaussian lenses than

their cyclonic counterparts. Yim et al. (2016) give

an empirical marginal stability limit for the mixed

barotropic–baroclinic mode (m5 2) of Gaussian eddies

(a5 2) having a weak dissipation (Re 5 10 000): it

is unstable only if the Burger number is below a

critical value: Bu,Buc 5 1:3/(2:262 z0/f )5 1:3/(2:262
2Roe1/2). Hence, mesoscale or submesoscale Gaussian

anticyclones (i.e., Bu$ 1) remain baroclinically stable

and the centrifugal or symmetric instability can then

be the only cause of destabilization for finite Rossby

numbers. The full stability analysis performed by Yim

et al. (2016) confirms that when it appears, the cen-

trifugal instability dominates the baroclinic (m5 2)

and the Gent–McWilliams (m5 1) instabilities. We

have also checked that, for the intense surface in-

tensified (but not too large) anticyclones we studied,

the centrifugal instability is indeed the dominant one

(see appendix B).

FIG. 4. Domain of the gravitational instability in the parameter space (Ro, Bu) for (a) GaG and (b) GE anti-

cyclones. The unstable region is shaded. In (a), the limits for various steepness parameters are plotted: a5 1:5

(dash-dotted line), a5 2 (solid line), and a5 3 (dashed line). In (b), a is fixed to a5 2.
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3. Formulation of the linear stability
analysis problem

a. Linear eigenvalue problem

To perform the linear stability analysis of circular

surface intensified eddies, we introduce infinitesimal

perturbations of velocity u0 5 (u0
r, u

0
u, u

0
z), pressure p0,

and density r0 written as

(u0
r,u

0
u,u

0
z, p

0, r0)5 [u
r
(r, z), u

u
(r, z), u

z
(r, z), p(r, z),

r(r, z)]e2ivt1imu 1 c.c., (14)

wherem is the azimuthal wavenumber and v5vr 1 ivi,

with vr being the frequency and vi the growth rate. We

then linearize the Navier–Stokes equations under the

Boussinesq approximation around the steady circular

solution (1) and the basic density ra:

2isu
r
2 (2V1 f )u

u

52
1

r
0

›p

›r
1 n

�
=2u

r
2

1

r2
u
r
2

2

r2
imu

u

�
, (15)

2isu
u
1 (z

z
1 f )u

r
1

›rV

›z
u
z

52
1

r
0

im

r
p1 n

�
=2u

u
2

1

r2
u
u
1

2

r2
imu

r

�
, (16)

2isu
z
52

1

r
0

›p

›z
2

g

r
0

r1 n=2u
z
, (17)

2isr1
›r

a

›r
u
r
1

›r
a

›z
u
z
5

r
0

g
N2

0uz
1 k=2r, and (18)

1

r

›ru
r

›r
1

1

r
imu

u
1

›u
z

›z
5 0, (19)

where s5v2mV, n is the viscosity, and k is the dif-

fusivity. This linear eigenvalue problem is governed

by five nondimensional numbers: the Burger number

(Bu) and the Rossby number (Ro) defined previously

in (10) and (6) and the aspect ratio d, the Ekman

number Ek, and the Schmidt number (Sc), defined as

follows:

d5
H

R
max

, Ek5
n

fH2
, Sc5

n

k
. (20)

In the oceans, the flow is expected to be highly tur-

bulent. Therefore, the Schmidt number Sc is fixed to

unity since the turbulent advection at small scales

dominates the molecular viscosity and diffusivity.

The variables in (15)–(19) are nondimensionalized as

follows:

u
r
5V

max
û
r
, u

u
5V

max
û
u
, u

z
5V

max
dû

z
, r5 r̂R

max
, z5 ẑH, v5 f v̂ ,

V5V
max

R21
maxV̂, p5V

max
R

max
fr

0
p̂, r5V

max
fd21r

0
g21r̂, r

a
5V

max
fd21r

0
g21r̂

a
, (21)

where a hat indicates nondimensional values. This leads

to the following:

2iŝû
r
2 (2RoV̂1 1)û

u

52
›p̂

›r̂
1Ek

�
=̂2û

r
2

d2

r̂2
û
r
2

2d2

r̂2
imû

u

�
, (22)

2iŝû
u
1 (Roẑ1 1)û

r
1Ro

›r̂V̂

›ẑ
û
z

52
im

r̂
p̂1Ek

�
=̂2û

u
2

d2

r̂2
û
u
1
d2

r̂2
imû

r

�
, (23)

2id2ŝû
z
52

›p̂

›ẑ
2 r̂1Ekd2=̂2û

z
, (24)

2iŝr̂1Ro
›r̂

b

›r̂
û
r
1

Ro

d

›r̂
b

›ẑ
û
z
5

Bu

d
û
z
1
Ek

Sc
=̂2r̂ , and

(25)

›û
r

›r̂
1

û
r

r̂
1

1

r̂
imû

u
1

›û
z

›ẑ
5 0, (26)

where ŝ5 v̂2mRoV̂ and =̂2 5 d2/r̂›/›r̂(r̂›/›r̂)2 d2/r̂2m2

1 ›2/›ẑ2.

b. Numerical methods

The numerical method to solve (22)–(26) is similar to

the one used by Yim and Billant (2016) and Yim (2015)

so that only a brief summary is given here. Equations

(22)–(26) are discretized with finite element method us-

ing FreeFem11 (Hecht 2012; Garnaud 2012; Garnaud

et al. 2013). Velocity, density, and pressure v̂5 (ûr,

ûu, ûz, r̂, p̂) are approximated with triangular Taylor–

Hood elements (P2, P2, P2, P2, P1), respectively (Elman

et al. 2005; Hecht 2012). Unlike Yim and Billant (2016)

and Yim et al. (2016), we use P2 elements for the

density since the base density cannot be expressed ana-

lytically when a is arbitrary. The thermal-wind
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equation (7) is therefore integrated numerically us-

ing the same element as for the velocity. The domain

is restricted to positive radius r5 [0, Lmax] and neg-

ative vertical coordinate z5 [2Zmax, 0]. A solid wall

free-slip boundary condition is applied at z5 0:

uz 5 r5 0. At r5 0 the boundary condition depends

on the azimuthal wavenumberm (Batchelor and Gill

1962; Ash and Khorrami 1995; Yim and Billant 2016;

Yim et al. 2016). At the boundaries r5Lmax and

z52Zmax, all the perturbations are set to zero.

The resulting discretized equations are written in

the form

2ivBv5Lv . (27)

The typical size of the matrices B and L is about

(33 105)3 (33 105). The generalized eigenvalue prob-

lem (27) is solvedwith an iterativeKrylov–Schurmethod

using the libraries SLEPc and PETSc (Hernandez et al.

2005; Garnaud 2012;Garnaud et al. 2013; Balay et al. 2014).

The shift-invert spectral transformation is used to find

the most unstable eigenvalues/vectors around shift values.

Spurious modes are eliminated by excluding eigenvalues

varying by more than 1026 between two successive

shift values.

4. Asymptotic results for the centrifugal instability

a. Inviscid stability criterion

The standard stability criterion for the centrifugal

instability, first established by Rayleigh (1917), for in-

viscid, homogeneous, and circular flows, has been ex-

tended by Solberg (1936) to baroclinic and stratified

flows by means of Lagrangian displacement arguments.

A fluid parcel is virtually displaced and the resulting

momentum balance is computed by invoking angu-

lar momentum and density conservations, while the

ambient pressure field is assumed to be unchanged. If

the fluid parcel further accelerates away from its

original position, the flow is expected to be unstable.

This generalized Rayleigh criterion for baroclinic

circular flows states that the flow is unstable if the

total circulation decreases as the radius increases

along isopycnals:

F5 (z
z
1 f )(2V1 f )1 z

r
(2V1 f )

›r
t

›r
›r

t

›z

, 0, (28)

somewhere in the flow. Note that (28) has been written

in dimensional form and the nondimensionalization

[(21)] will be only used later. The same condition has

been derived by Eliassen and Kleinschmidt (1957) by

using energy arguments. We can remark that (28)

when 2V1 f . 0 gives instability when the potential

vorticity is negative, a well-known criterion for sym-

metric instability. If we consider a statically stable

flow (N2 52g/r0›rt/›z. 0), the above instability crite-

rion is equivalent to

x(r, z)N2 , r2(2V1 f )2
�
›V

›z

�2

, (29)

where x5 (zz 1 f )(2V1 f ) is the standard Rayleigh

discriminant for a barotropic circular vortex. In addition

to r and z, x depends on the Rossby number while the

generalized Rayleigh discriminant F or the dimension-

less form of (29) depends, a priori, on two dimensionless

parameters Ro and Bu. However, if the vertical profile

G(z) is Gaussian, the eddy intensity is maximum at

the surface so that ›V/›z5 0. Hence, the inviscid in-

stability criterion in (29) becomes identical to the

classical criterion min
r,z

(x), 0 for barotropic eddies

(Kloosterziel and van Heijst 1991; Mutabazi et al. 1992).

If the vertical profile G(z) is exponential, the marginal

stability curve min
r,z

[F(Ro, Bu)]5 0 deviates from the

limit min
r,z

[x(Ro)]5 0 for positive Rossby number and

small Burger number. However, for negative Rossby

number, the marginal stability limit continues to be

reached when the absolute vorticity f 1 zz vanishes at

r5 0, that is, when the Rossby number reaches the

critical value Roc‘ 521/2e21/a, because the baroclinic

term in (28) or (29) also vanishes at r5 0. Therefore, for

both GG and GE vortices, the criterion in (28) is

equivalent to x, 0 for anticyclones. This means that the

centrifugal stability of baroclinic anticyclonic eddies

can depend on the stratification only in presence of

dissipation.

b. Asymptotic analysis

The combined effect of dissipation and stratifica-

tion can be evidenced by using the asymptotic results

derived by Billant and Gallaire (2005) and Yim and

Billant (2016) for a columnar vortex for large ver-

tical wavenumber k � 1 and small viscosity n � 1

such that nk2 is finite. At leading order in k,

the complex eigenfrequency can be written in di-

mensional form:

v5v(0) 2
v(1)N

k
2 ink2, (30)

where

v(0) 5mV(r
0
)1 i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x(r

0
)

q
, (31)
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v(1) 5
(2n1 1)i

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x00(r

0
)2 2m2V0(r

0
)2 1 2im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x(r

0
)

q
V00(r

0
)

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N2
2

1

x(r
0
)

s
, (32)

where n is a nonnegative integer and r0 is given by

x0(r
0
)522imV0(r

0
)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x(r

0
)

q
. (33)

Equation (30) can be rewritten in terms of the Burger

and Ekman numbers (Bu and Ek):

v5v(0) 2
v(1)

ffiffiffiffiffiffiffi
Bu

p jf j
kd

2 iEkjf jH2k2, (34)

where the aspect ratio d is defined in (20). The most am-

plified wavenumber kmax is found by solving ›vi/›k5 0:

k
max

H5

 
v
(1)
i

ffiffiffiffiffiffiffi
Bu

p
R

max

2Ek

!1/3

, (35)

where v
(j)
i is the imaginary part of the complex pulsation

v(j). Substituting (35) in (34) gives the maximum growth

rate:

v
imax

jf j 5
v
(0)
i

jf j 2 3(BuEk)1/3
 
v
(1)
i R

max

2

!2/3

. (36)

The aspect ratio d has disappeared in (36) as expected,

for columnar vortices. We have observed a similar be-

havior for baroclinic eddies for small aspect ratio. Ac-

cording to appendix A, the aspect ratio has indeed

almost no effect on the maximum growth rate and most

amplified wavenumber for given Bu, Ro, and Ek as long

as d does not exceed unity, which is obviously the case

for oceanic eddies. Moreover, we can obtain from (36)

an equation for the marginal stability limit (vimax 5 0):

ffiffiffiffiffiffiffi
Bu

p
5

1ffiffiffiffiffiffiffi
Ek

p
 
v
(0)
i

3jf j

!3/2 
2

v
(1)
i R

max

!
. (37)

In the case of strong stratification N2 � V2
0, we can ne-

glect the inverse of the Brunt–Väisälä frequency in (32).

Then, the ratio F 5 2(v
(0)
i /3jf j)3/2/(v(1)

i Rmax) depends

only on the Rossby number in addition to the azimuthal

wavenumber m. The marginal stability limit can be

therefore written in the general form

ffiffiffiffiffiffiffi
Bu

p
5

1ffiffiffiffiffiffiffi
Ek

p F (Ro,m) . (38)

This scaling is consistent with the marginal stability

equation obtained by Lazar et al. (2013a) for the

axisymmetric mode (m5 0) of the Rankine vortex

equation:

ffiffiffiffiffiffiffi
Bu

p
5

1ffiffiffiffiffiffiffi
Ek

p
�

3

8ja
0
j
�3/2

(j2Ro1 1j)7/4
jRoj , (39)

with a0 522:338 11. In the next section (section 5), we

will compare the numerical results for different baro-

clinic eddies to these asymptotic relations. Although

they have been derived for a barotropic vortex, we will

see that they work very well for baroclinic vortices.

5. Results

In this section, we investigate the impact of the ver-

tical and the radial profiles of surface intensified anti-

cyclones on the centrifugal instability depending on the

Rossby and Burger numbers. We focus on the range of

parameters close to the marginal stability limits. The

main purpose is to build a simple stability diagram valid

for various velocity profiles.

a. Effects of the vertical profile

First, we investigate the effect of the vertical profile on

the centrifugal instability for submesoscale and meso-

scale surface anticyclones corresponding to Bu5 4 (i.e.,

Rmax 5Rd/2) and Bu 5 1 (i.e., Rmax 5Rd) respectively.

The Ekman number is kept constant with a relatively

small, but not negligible value Ek5 1/5000. To ease the

computations, the aspect ratio has been set to a mod-

erate value: d5 0:5. Nevertheless, the results would be

similar for very thin oceanic eddies with d;O(1022)

since appendix A shows that the maximum growth rate

and the most amplified vertical wavenumber of the

centrifugal instability are independent of d when d, 1.

Figure 5 shows the maximum growth rate of the cen-

trifugally unstable azimuthal modes m5 0, 1, 2 as a

function of the Rossby number, for submesoscale

Gaussian eddies (Bu 5 4) with distinct vertical profiles.

Even though their three-dimensional structures differ,

the growth rates of theGG (Fig. 5b) and theGE (Fig. 5c)

anticyclones exhibit similar behavior. Furthermore, a

Gaussian columnar anticyclone (i.e., d5‘) displays the
same evolution (Fig. 5a). For this case, since Bu5‘ and

Ek5 0, the same value of the products BuEk and Ekd2

as for the baroclinic anticyclones has been imposed. For

all these eddies, the centrifugal instability starts slightly

below Ro520.6, that is, almost twice the critical value
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Ro52e1/2/2 ’ 20:3 predicted by the inviscid criteria in

(28). As will be shown later, the difference is well ac-

counted by the viscous criterion in (37). Close to this

marginal stability limit, the most unstable mode is the

azimuthal wavenumberm5 2 for all the eddies. As jRoj
increases, m5 1 becomes the most unstable mode and

then the axisymmetric mode m5 0 at higher Ro. A

similar trend in the azimuthal wavenumber selection

was found for columnar vortices (Billant et al. 2004),

two-layer vortices (Lahaye and Zeitlin 2015), and pan-

cake vortices (Yim and Billant 2016; Yim et al. 2016). As

will be explained later, the stratification combined with

viscous effects induces the dominance of the asymmetric

wavenumbers m5 2 and m5 1 near the centrifugal in-

stability threshold, both for barotropic and baroclinic

anticyclones, even if the axisymmetric mode is the most

unstable in the inviscid limit (Billant and Gallaire 2005).

To compare quantitatively the stability properties

of the three eddies, their maximum growth rates are

depicted, regardless of the azimuthal wavenumber,

on the same graph in Fig. 5d. The growth rates of

the columnar and the GG eddies are almost identical

while the one associated with the GE eddy is slightly

smaller but remains nevertheless very similar. This is

the first evidence that for the same surface velocity

profile, the vertical structure has a relatively weak

impact on the growth rates of the centrifugal in-

stability. However, if we consider other types of in-

stability, the vertical structure is expected to have an

impact. For instance, the gravitational instability thresh-

old is located at Ro 5 21.95 for the GG eddy and

Ro 5 21.37 for the GE eddy (Fig. 4). Moreover, the

Gent–McWilliams instability (Gent and McWilliams

1986; Yim and Billant 2015; Yim et al. 2016) can

also occur for the GG vortex, but the correspon-

ding growth rates (not shown) are very small com-

pared to the growth rate of the centrifugal instability

(appendix B).

FIG. 5. Maximum growth rate (vi/jf j) as a function of Ro for different vertical profiles: (a) columnar Gaussian,

(b) GG, and (c) GE eddies. In (b) and (c), the parameters are d 5 0.5, Bu 5 4, and Ek5 1/5000. In (a), the

parameters imposed are BuEk5 4/5000 and Ekd2 5 1/20 000 as for the baroclinic vortices. The lines with different

symbols in (b)–(d) show the growth rate for the azimuthal wavenumbers m5 0 (gray symbols), m5 1 (black

symbols), andm5 2 (empty symbols). The different lines in (a) and (d) are form5 0 (dotted line),m5 1 (dashed

line), andm5 2 (solid line). Vertical lines indicate the limit where min(x)5 0, i.e., the inviscid Rayleigh criterion.

The gray region in (c) indicates the gravitationally unstable domain. The plot in (d) shows the maximum growth

rates among all the azimuthal wavenumbers for the three profiles displayed in (a)–(c).
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Similarly, the same growth rates are displayed in Fig. 6

for Bu5 1 [i.e., mesoscale anticyclones (Rmax 5Rd)] while

the other parameters (d, Ek) are identical. Thismeans that

only the base density rt changes (see Fig. 3) between Fig. 6

(Bu 5 1) and Fig. 5 (Bu 5 4). As for the submesoscale

eddies, the first unstable modes exhibit an azimuthal

wavenumber m5 2 for these profiles. However, the

centrifugal instability starts now below the threshold Ro5
20.5 (more precisely, Ro 5 20.5, Ro 5 20.52, Ro 5
20.56 for the columnar, GG, and GE profiles, re-

spectively), which is slightly higher than the marginal limit

Ro 5 20.6 found for Bu 5 4. This dependence with the

Burger number is qualitatively consistent with the asymp-

totic analysis performed for columnar eddies (see section

4b). As for Bu5 4, the growth rates for columnar, GG, and

GE anticyclones are quite close (Fig. 6d). Again, the

growth rate associated to the GE eddy is slightly below the

GG and columnar eddies. This confirms that the vertical

profile has a weak effect on the centrifugal instability.

In addition to the growth rates, it is interesting to

examine the three-dimensional structure of the unstable

modes. Figure 7 shows horizontal and vertical cross

sections of the radial velocity perturbations ur of the

most unstable eigenmode for the three different sub-

mesoscale anticyclones (Bu 5 4) for Ro 5 20.7 (i.e.,

close to the instability threshold). On the top view

panels (Figs. 7a–c), the modes exhibit the azimuthal

wavenumberm5 2. The modes extend well outside of the

regions whereF, 0. In contrast, the vertical extent of the

modes (Figs. 7d–f) appears to be confined within the re-

gion where F, 0. Hence, only three half wavelengths are

visible in the vertical cross section for the GG and GE

anticyclones (Figs. 7e,f). However, the typical vertical

wavelength is very close to the one of the columnar vortex

(Fig. 7d). For the smaller Rossby number Ro 5 21 dis-

played in Fig. 8, the most unstable modes exhibit a m5 1

azimuthal mode and are confined inside the F, 0 region

(Fig. 8), both in the horizontal and vertical planes. The

typical vertical wavelength is again similar for the three

profiles. The m5 0 mode has a similar confined structure

when Ro 5 21.4 (not shown).

Finally, Figs. 9b and 9d summarize the typical vertical

wavenumber for the GG vortex measured directly from

the vertical cross sections of the eigenmodes for differ-

ent Rossby numbers. The lines show also the asymptotic

prediction in (35) for columnar vortices. They are in very

good agreement except for the axisymmetric mode. We

can remark that the vertical wavelength depends weakly

on the Rossby number. As shown by (35), it is mainly

controlled by the Burger and Ekman numbers. The

growth rates for the GG vortex are also in good agree-

ment with the asymptotic prediction in (36) (Figs. 9a,c).

b. Effects of the radial profile

In the previous section, the radial profile has been

fixed to the Gaussian angular velocity profile. However,

FIG. 6. As in Fig. 5d, but for Bu 5 1.
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such velocity profile is not universal and oceanic eddies

exhibit a wide variety of profiles with a steepness pa-

rameter ranging from a5 1:5 to a5 3 (Ioannou et al.

2017). Therefore, we investigate in this section the effect

of the radial angular velocity profile on the centrifugal

instability. The steepness parameter is varied from

a5 1:5 (G1.5G) to a5 3 (G3G) while keeping a

Gaussian vertical angular velocity profile: G(ẑ)5 e2ẑ2/2.

We recall that the inviscid threshold for the centrifugal

stability depends on the steepness parameter a: Ro.
Roc‘ 521/2e21/a. However, the recent stability analysis

of Lazar et al. (2013a) has shown that when the viscous

dissipation is taken into account, the critical Rossby

number for various profiles of columnar vortices are

very close. Here, we will determine if this is also the case

for baroclinic surface intensified anticyclones.

Figure 10 shows the evolution of the growth rate of the

most unstable centrifugal mode as a function of the

vortex intensity for the three distinct velocity profiles:

GG (a5 2), G1.5G, and G3G for Bu 5 4 (Figs. 10a,b)

and Bu 5 1 (Figs. 10c,d). We use both the vortex

Rossby number Ro (left panels) and the normalized core

vorticity zz(0)/f (right panels) to quantify the vortex

intensity. The growth rate for the three velocity profiles

are well separated when represented as a function of the

normalized core vorticity while they almost collapse

when plotted as a function of the vortex Rossby number.

Indeed, for submesoscale eddies, that is, Bu 5 4

(Fig. 10a), the marginal stability limit is crossed for the

same value of the Rossby number Ro ’ 20.62 6 0.02

for the three eddies, while the critical values of the nor-

malized core vorticity differ (Fig. 10b). For larger eddies,

that is, mesoscale anticyclones with Bu 5 1 (lower

panels), the critical Rossby numbers are slightly more

dispersed (Ro ’ 20.5 6 0.05) but nevertheless the

growth rate curves for the three eddies in Fig. 10c are

closer than in Fig. 10d. Hence, the centrifugal instability

of baroclinic anticyclones is also controlled by the vortex

Rossby number as found by Lazar et al. (2013a) for

barotropic anticyclones.

The present study focuses on the centrifugal in-

stability but it should be recalled that other types of

instability can exist asmentioned in the introduction and

section 2. These different instabilities are studied in

appendix B and shown to be dominant only for param-

eters where the centrifugal instability is stable or weakly

FIG. 7. (a)–(c) Horizontal cross sections at z5 0 and (d)–(f) vertical cross sections (only for r. 0) of the real part of the normalized

radial velocity perturbation [Re(ur)/max(jurj)] for (left) columnar, (center) GG, and (right) GE vortices for m5 2 and Ro 5 20.7. The

other parameters are the same as in Fig. 5: Bu 5 4, Ek5 1/5000, d5 0:5 for surface intensified vortices, and BuEk5 4/5000 and

Ekd2 5 4/20 000 for the columnar vortex. The dotted lines indicate the limit of the base vortex where V5 0:1V0. The dashed lines rep-

resent the contours where the generalized Rayleigh discriminant F vanishes.
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unstable. For example, for the profile G3G for Bu 5 4,

the centrifugal instability is dominant whenRo,20.73,

that is, slightly below the marginal Rossby number

found previously, Ro ’ 20.6. When Ro . 20.73, the

m5 2 baroclinic-shear instability is dominant.

c. Stability diagrams

Following Lazar et al. (2013a), who provided the first

stability diagrams for circular barotropic anticyclones in

the (
ffiffiffiffiffiffiffi
Bu

p
, Ro) parameter space, similar diagrams have

been established for the various baroclinic surface an-

ticyclones studied in the previous sections. Unlike Lazar

et al. (2013a), the azimuthal wavenumber has not been

restricted to m5 0, but m5 1, m5 2, and m5 3 have

been also considered.

Figure 11 shows the marginal stability limits for dif-

ferent anticyclonic vortices as function of their relative

size
ffiffiffiffiffiffiffi
Bu

p
5Rd/Rmax and intensity Ro. These stability

diagrams are plotted for two distinct Ekman numbers:

Ek5 1/2500 (Figs. 11a,c) and Ek5 1/5000 (Figs. 11b,d)

for different vertical profiles (Figs. 11a,b) and radial

profiles (Figs. 11c,d). The vertical lines correspond to

the inviscid stability limit Roc‘ 521/(2e1/a) for a5 1:5

(dotted line), a5 2 (solid line), and a5 3 (dashed line).

The limits of the gravitational instability for the differ-

ent profiles are also indicated by gray curves in the

bottom part of the plots. For all the vortices, the vis-

cous dissipation combined to the vertical stratification

increases significantly the stable area of the centrifugal

instability (located below the marginal stability curves)

when the Burger number increases. The gravitational

instability (GI) affects mainly large eddies having a

characteristic radius Rmax roughly equal or larger than

the local deformation radius Rd.

The upper panels (Figs. 11a,b) compare the marginal

stability limits of the columnar Gaussian eddy with the

baroclinic GG and GE eddies regardless of the azi-

muthal wavenumber. In agreement with Figs. 5d and 6,

themarginal stability limits of the baroclinicGG (crosses)

and barotropic columnar (solid line) anticyclones al-

most coincide while the one associated with the GE

anticyclone (triangles) is slightly below. Hence, the

vertical structure of the surface intensified anticy-

clones has a very weak impact on the threshold of the

centrifugal instability and has roughly the same mar-

ginal stability limit as barotropic anticyclones. This

strongly suggests that the asymptotic analysis, which is

strictly valid only for columnar eddies, can also provide

meaningful results for baroclinic vortices. Indeed, the

asymptotic stability limit in (37) (dashed lines) matches

almost perfectly the stability limit obtained numeri-

cally when the most unstable mode corresponds to the

azimuthal wavenumber m5 2 (black curves) but starts

to deviate for m5 1 (gray curves) when the Burger

number increases. Similar conclusions can be drawn

from Figs. 11c and 11d where the marginal limits of the

FIG. 8. As in Fig. 7, but for m5 1 and Ro 5 21.
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centrifugal instability obtained numerically and as-

ymptotically are plotted for distinct radial profiles

(G1.5G and G3G).

As in Lazar et al. (2013a), our results reveal that

the stability diagrams for various type of anticyclones

having different horizontal and/or vertical structure are

almost identical in the Rossby and Burger parame-

ter space. When the eddy is baroclinic, these non-

dimensional numbers should be evaluated at the level

where the vortex is the most intense. For the present

surface intensified anticyclones, the maximum azimuthal

velocity Vmax and the corresponding radius Rmax, which

are needed to estimate the vortex Rossby and the Bur-

ger numbers, should then be evaluated at the surface

(z5 0). Unlike Lazar et al. (2013a), who considered only

the axisymmetric mode (m5 0), we have found that all

the marginal centrifugal modes are asymmetric and

correspond to the modes m5 2 when
ffiffiffiffiffiffiffi
Bu

p
& 4 and

m5 1 for higher Bu. Hence, we could expect some dis-

crepancies between the asymptotic stability criterion

(39) of Lazar et al. (2013b) and the marginal stability

curves obtained numerically. Figure 12 shows indeed

that the asymptotic stability criterion (39) (black dash-

dotted line) underestimates the CI area. The asymmet-

ric modes appear to be unstable for weaker Rossby

numbers than the axisymmetric modes regardless of the

Burger number.

d. Asymptotic marginal stability criterion

The good agreement between the asymptotic criterion

(37) and the numerical results in Fig. 11 has pushed us to

conduct further the asymptotic analysis of section 4b.

Using additional assumptions, we can indeed further

simplify the formula (37) in order to obtain an explicit

criterion that will be easier to use.

When Ro5Roc‘, the radius r0 satisfying (33) van-

ishes. Therefore, when the Rossby number is close

to Roc‘, we can find r0 by expanding it in terms of

12Roc‘/Ro. More precisely, it is convenient to expand

ra0 /a as

ra0
a
5 a

1

�
12

Ro
c‘

Ro

�
1O

�
12

Ro
c‘

Ro

�2

, (40)

FIG. 9. Comparison between (left) the maximum growth rates and (right) the most amplified vertical wave-

number kmaxH predicted by (36) and (35) (lines) and obtained numerically for the GG eddy (symbols) for (a),

(b) Bu 5 4 and (c),(d) Bu 5 1 for Ek5 1/5000 and d5 0:5. The different symbols and lines correspond to the

azimuthal wavenumber:m5 0 (gray circles and dashed line),m5 1 (black circles and solid line), andm5 2 (empty

circles and gray solid line).
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since r0 appears always under this form in (32). The

coefficient a1 is given in appendix C.Using (40), (30) and

(31) become

v
(0)
i 5V

0

"
c
1

�
12

Ro
c‘

Ro

�
1O

�
12

Ro
c‘

Ro

�2
#
, (41)

v
(1)
i 5

1

R
max

"
c
3

�
12

Ro
c‘

Ro

�21/a

1O

�
12

Ro
c‘

Ro

�12(1/a)
#
,

(42)

where c1 and c3 depend only on m and a. Their ex-

pressions are detailed in appendix C. Note that the

stratification has been assumed to be strong in (31) so

that N2 � x(r0). Using (41) and (42), the criterion (37)

reads

ffiffiffiffiffiffiffi
Bu

p
5

c
4ffiffiffiffiffiffiffi
Ek

p jRo2Ro
c‘
j3/211/a

jRoj1/a
, (43)

where c4 5 [c1/(3e
21/a)]3/2(2/c3). For m5 2, the co-

efficient c4 simplifies to

c
4
5

2
a

5
1

ffiffiffi
a

p
2

2

3

9
1

2
e21/a

� �3/2
, (44)

giving c4 5 0:23 for a5 2. The simplified criterion (43)

with m5 2 and a5 2 is represented by a thick dashed

line in Fig. 12. It is in very good agreement with the

marginal limits obtained numerically for all the profiles

investigated (i.e., not only fora5 2). The coefficient c4 is

indeed weakly dependent on a and varies from c4 5 0:22

to c4 5 0:24 when a goes from a5 1:5 to a5 3. In ad-

dition, c4 has also a similar value for m5 1 and a5 2:

c4 5 0:2. Hence, we suggest to use the asymptotic

equation (43) for the marginal stability limit with c4 5
0:23 when the oceanic eddy profile is not precisely

known. This criterion is more accurate than the criterion

FIG. 10. Maximum growth rate for different radial velocity profiles at Ek5 1/5000 as a function of (left) Ro and

(right) zz(0)/f for (a),(b) Bu5 4 and (c),(d) Bu5 1. The different symbols correspond to the profiles: GG (circle),

G3G (diamond), and G1.5G (square) and the different azimuthal wavenumbers: m5 0 (gray symbols), m5 1

(black symbols), andm5 2 (empty symbols). Vertical lines indicate the limit min(x)5 0, i.e., the inviscid Rayleigh

criterion. In (a) and (c), the threshold min(x)5 0 varies with the steepness parameter a: a5 1:5 (dotted line), a5 2

(solid line), and a5 3 (dashed line).
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(39) obtained by Lazar et al. (2013a) for axisymmetric

modes (dash-dotted line in Fig. 12). Equations (43) and

(39) look indeed similar but the power exponents differ.

The effect of the dissipation is illustrated in Fig. 13

where the asymptotic stability limits (43) with c4 5 0:23

for a5 2, m5 2 are plotted for a wide range of Ekman

numbers, from Ek5 1/2500 to Ek5 1025. The viscous

marginal stability limits (43) and (39) become closer to

the inviscid limit Roc ’20.3 for a5 2 when the Burger

number tends to zero. However, a significant shift re-

mains between these two curves for finite Burger num-

ber even for a very weak dissipation (Ek5 1025). The

simplified criterion (43) is very close to the full asymp-

totic criterion (37) except when jRoj$20:6 since the

assumption jRo2Roc‘j � 1 becomes less valid.

The simplified expressions (41) and (42) offer also the

possibility to explain simply the dominance of the asym-

metric centrifugal modes close to themarginal limit. Using

(41) and (42), the maximum growth rate (36) becomes

v
imax

jf j 5 jRoje1/a
�
c
1

�
12

Ro
c‘

Ro

��

2 3(BuEk)1/3
"
c
3

2

�
12

Ro
c‘

Ro

�21/a
#2/3

. (45)

The first term on the rhs of (45) is the maximum growth

rate in the inviscid limit while the second term repre-

sents the damping effect of the stratification and vis-

cous dissipation. These terms depend on the azimuthal

wavenumber m only through the constants c1 and c3. If

we consider the case a5 2, we have c1 5 0:707 form5 0,

c1 5 0:66 for m5 1, and c1 5 0:5 for m5 2. Thus, c1 de-

creases withm, meaning that the growth rate (45) in the

inviscid limit is maximum for m5 0. However, the

constant c3 is c3 5 2:45 form5 0, c3 5 2:14 form5 1, and

c3 5 1:14 for m5 2. Therefore, the damping effect de-

creases with m for a given Rossby number. In addition,

this damping term increases when Ro/Roc‘ while the

FIG. 11. Marginal stability lines in the parameter space (Ro,
ffiffiffiffiffiffiffi
Bu

p
) for different vertical profiles: columnar (lines

without symbols), GG (stars), GE (triangles) eddies and predicted by the asymptotic formula (37) (dashed lines),

for (a) Ek5 1/2500 and (b) Ek5 1/5000. (c),(d) As in (a) and (b), but for different radial profiles: G3G (diamonds)

and G1.5G (squares) eddies and asymptotic results (fine dotted lines for G1.5G; coarse dotted lines for G3G). The

color indicates the dominant azimuthal wavenumber: m5 1 (gray) and m5 2 (black). Gray lines at the bottom of

the figures indicate the limits of the gravitational instability for the GG (solid), GE (dotted), G3G (dashed), and

G1.5G (fine dotted) profiles. The corresponding vertical lines show the inviscid Rayleigh criterion min(x)5 0.
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first term of (45) decreases. Hence, the asymmetric

centrifugal modes can become the most unstable near

the marginal limit since they are less damped than the

axisymmetric mode. Physically, it is likely that the axi-

symmetric mode is more damped than asymmetric ones

because it involves only radial and vertical motions. The

latter motions are indeed inhibited by the stratification.

In contrast, the nonaxisymmetric modes can still exist

even if the vertical motions are weak since they involve

also azimuthal motions.

6. Summary and discussion

We have investigated the linear stability of baroclinic

surface intensified anticyclones to three-dimensional

perturbations for arbitrary azimuthal wavenumbers. The

main purpose is to build a stability diagram for the cen-

trifugal (inertial) instability and derive a simple stability

criterion taking into account the stratification and the

dissipation more suitable for oceanic eddies than the

standard inviscid Rayleigh criterion.

We have first performed a numerical stability analysis

by means of a finite element method (FreeFem11) that

solves the full three-dimensional eigenvalue problem for

various steady and circular baroclinic anticyclones lo-

cated at the ocean surface. As shown by Nguyen et al.

(2012), Yim et al. (2016), andMahdinia et al. (2017), this

work goes beyond the barotropic idealization that was

often previously used for stability analyses of stratified-

rotating vortices (Kloosterziel et al. 2007; Lazar et al.

2013a). The results reveal that the growth rates and the

marginal stability limit of the centrifugal modes are

close to those calculated for an equivalent barotropic

columnar eddy. In other words, the vertical velocity

profiles of the oceanic eddies do not play an important

role in the centrifugal instability. The vertical structure

affects only the vertical extent of the eigenmode. Hence,

most of the results obtained for idealized columnar

vortices, especially asymptotic results, can be applied to

realistic baroclinic anticyclones. In addition, we have

found that the centrifugal modes exhibit an asymmetric

azimuthal wavenumber (m5 2 or m5 1) close to the

marginal stability limit for all the eddies regardless of

their vertical structure. Even if they are less unstable

than the axisymmetric mode in the inviscid limit, the

asymmetric centrifugal modes can become dominant

because of their weaker sensitivity to the damping effect

of the stratification and viscous dissipation. This has

been also found by Lahaye and Zeitlin (2015) for ide-

alized two-layer vortices and Billant et al. (2004) for

stratified rotating vortices, and by Yim and Billant

(2016); Yim et al. (2016) for pancake vortices. Hence,

FIG. 12. All the marginal stability lines of Figs. 11b and 11d for different profiles plotted

together and compared to the simplified asymptotic condition (43) with a5 2, m5 2 (thick

dashed line) and to the condition (39) of Lazar et al. (2013a) (dash-dotted line).

MARCH 2019 Y IM ET AL . 843



the stability diagram proposed by Lazar et al. (2013a)

for axisymmetric (m5 0) perturbations on intense cir-

cular anticyclones has to be extended to asymmetric

perturbations.

Therefore, in a second step, we have used the as-

ymptotic analysis proposed by Yim and Billant (2016)

for pancake eddies to obtain the simplified marginal

stability criterion (43) for the azimuthal wavenumber

m5 2, which depends on four dimensionless param-

eters: the Rossby number Ro5Vmax/(fRmax), the

Burger number Bu5N2
0H

2/(fRmax)
2 5 (Rd/Rmax)

2, the

Ekman number Ek5 n/(fH2), and the steepness pa-

rameter a of the radial profiles of azimuthal velocity

Vu(r)5Vmaxe
1/a(r/Rmax)exp[2(r/Rmax)

a/a]. The recent

analysis of Ioannou et al. (2017) of mesoscale eddies

has shown that a is distributed between 1.5 and 3

with a mean value around a5 2 (i.e., the Gaussian

profile). For such range, the asymptotic stability cri-

terion (43) depends weakly on a. Lazar et al. (2013a)

have also found that the impact of the radial velocity

profile on the centrifugal instability limit is weak when

the dissipation and the background stratification are

not too small. Therefore, we suggest using the as-

ymptotic criterion (43) with a5 2 as a generalized

stability criterion for most of the oceanic anticyclones.

This instability criterion depends only on three di-

mensionless parameters (Ro, Bu, and Ek) and can be

written as follows:

ffiffiffiffiffiffiffi
Bu

p
5

R
d

R
max

#
0:23ffiffiffiffiffiffiffi
Ek

p (Ro1 0:3)ffiffiffiffiffiffiffiffiffiffijRojp 2

. (46)

It takes into account the stratification and the dissipation

through Bu and Ek, respectively. According to this cri-

terion, baroclinic anticyclones can remain stable even if

they have a core region of negative absolute vorticity

[i.e., z(0),2f or equivalently Ro , 20.3], provided

that they are small enough. In other words, the stability

domain of submesoscale eddies in the parameter space

(Ro, Bu) is extended in comparison with the standard

Rayleigh criterion: Ro , 20.3.

The main advantage of the above asymptotic cri-

terion is that both the Rossby and the Burger num-

bers can be easily estimated in the ocean. Indeed,

for a quasi-circular eddy, the maximal velocity Vmax

and the corresponding speed radius Rmax can be ob-

tained directly from in situ vessel-mounted acoustic

Doppler current profiler (VMADCP) high-frequency

radar (HFR) current measurements or from altimetric

measurements that estimate the surface velocity. The

local deformation radius Rd can be also easily esti-

mated from a single density profile. On the other hand,

estimating the Ekman number Ek is not straightfor-

ward since we should consider the vertical turbulent

eddy viscosity instead of the molecular viscosity. We

can assume as a first approximation that such turbulent

FIG. 13. Asymptotic marginal stability limits (37) (black lines) and (43) for a5 2, m5 2

(thick gray lines) for different Ekman numbers: Ek5 1/2500 (solid line), Ek5 1/10 000 (dash-

dotted line), Ek5 1/50 000 (dashed line), and Ek5 1/100 000 (dotted line).
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eddy viscosity is of the same order of magnitude than

the turbulent diapycnal mixing. However, the latter

quantity may vary by several orders of magnitude:

from kz 5 1025 m2 s21 in the deep and stratified ocean

(Ledwell et al. 1998) to kz 5 1023 m2 s21 in surface

oceanic fronts (Thompson et al. 2007) or above to-

pography (Kunze and Toole 1997; Garabato et al.

2004). If we use an intermediate diapycnal diffusivity

of kz ; n; 1024 m2 s21 for a surface eddy with a char-

acteristic depth of H ; 100m, we get 1/Ek; 10 000

at the midlatitudes and 1/Ek; 3000 in the equato-

rial regions. Hence, one can expect that a Gaussian

submesoscale anticyclone (Bu 5 4) remains stable to

centrifugal–inertial instability if its intensity does not

exceed jRoj; 0:52 at midlatitudes or jRoj; 0:65 in the

equatorial regions. The corresponding core vorticity

of such stable anticyclones could reach values up to

z(0);21:7f , or z(0);22f close to the equator. For

weaker diapycnal diffusivity, when kz ; n; 1025 m2 s21 a

Gaussian anticyclone will still remain stable even if the

core vorticity reaches intense values up to z(0);21:4f

[or z(0);21:6f ].

Are such high vorticity values observed for oceanic

anticyclones?Unfortunately, observations of submesoscale

eddies are sparse since they require high-resolution

measurements to be detected. As already mentioned,

only HFR measurements or glider transects are able to

quantify accurately the velocity profile of small-scale

eddies having characteristic radii below 10–15 km. The

first quantitative observation of an anticyclonic eddy

having negative absolute vorticity for several days was

performed in 2002 in the lee of Oahu island in the

Hawaiian archipelago (Chavanne et al. 2010). The

surface vorticity reaches an extremum of 21:7f in

the eddy core, but the temporal evolution of radial

profiles of vorticity was inconsistent with the angular

momentum redistribution induced by centrifugal–

inertial instability (Kloosterziel et al. 2007; Lazar

et al. 2013a). More recently, an intense effort of in situ

observations has been carried out in the northwestern

Mediterranean Sea during four consecutive winters

(2010–13). Thanks to autonomous gliders several sub-

mesoscale coherent vortices (SCVs) characterized by a

small radius (5–8 km) were detected (Bosse et al. 2016).

A few of them correspond to intense surface anticy-

clones with a vortex Rossby number ranging between

jRoj; 0:27 and jRoj; 0:45. If we assume a Gaussian

velocity profile, the corresponding core vorticity would

be between z(0);20:9f and z(0);21:5f . Moreover,

several density profiles were available inside and out-

side these anticyclones allowing for an accurate esti-

mation of the local deformation radius Rd and

therefore the Burger number. The characteristic values

of these few intense surface anticyclones are summa-

rized in Table 1, and a comparison with the present

estimated marginal stability curves is plotted in Fig. 14.

To perform a quantitative comparison with the mar-

ginal stability limit, we have to estimate the character-

istic depthH of these eddies.We have computedH from

the standard e-folding depth, according to the relation

V(z52H)5Vmax/e. This yields typical values from

H ; 100m for the surface intensified Oahu anticyclone

to H ; 300–400m for the deeper northwestern Medi-

terranean eddies where strong mistral winds and surface

heat losses deepen the surface mixed layer. Then, we

have assumed that the diapycnal diffusivity, induced by

the surface winds is on the order of kz ; 1024 m2 s21.

This gives typical Ekman numbers of the order of Ek; 3–

53 1024 for the thin Hawaiian anticyclone and Ek; 1025

for the thicker Mediterranean SCV. The correspond-

ing marginal stability curves are then plotted in the

(Ro,
ffiffiffiffiffiffiffi
Bu

p
) parameter space (see Fig. 14) and com-

pared to the dynamical values of the few intense

anticyclones obtained from in situ measurements.

Most of these intense surface anticyclones are in the

stable region of the parameter space. Of course this

stability analysis should be taken with care, because

in situ observations have strong errors bars and

the marginal stability curve is quite sensitive to the

estimated value of the turbulent viscosity kz ; n.

Besides, the fact that these intense eddies were ob-

served for several days is a necessary but not suffi-

cient condition for their stability. However, this

comparison shows that our stability analysis, unlike

the inviscid Rayleigh criterion, provides here a re-

alistic estimation of the marginal stability limit for the

TABLE 1. Typical dynamical values of few intense anticyclones obtained from in situ measurements. These values were calculated from

Fig. 6 of Chavanne et al. (2010) and Table 1 of Bosse et al. (2016).

Name Date Rmax (km) Vmax (cm s21) jRoj5Vmax/(fRmax)
ffiffiffiffiffiffiffi
Bu

p
5Rmax/Rd

Oahu Oct 2002 15 35 0.4 1.7

SCV North Med 1 Feb 2011 6.5 19.6 0.31 1.34

SCV North Med 2 Jun 2012 6.5 17.4 0.27 1.7

SCV North Med 3 Feb 2013 4.1 18.4 0.45 2.0

SCV North Med 4 May 2013 3.8 12.4 0.34 0.98
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centrifugal–inertial instability that does not contradict

the in situ observations.

APPENDIX A

Effect of the Aspect Ratio

Figures A1a and A1b show the effect of the aspect

ratio d in the case of the GG profile for the fixed

parameters Ro 5 21, Bu 5 4, and Ek5 1/2500. The

growth rate of the azimuthal wavenumbers m5 0, 1, 2

and the corresponding vertical wavenumbers kmax is

independent of the aspect ratio when d# 1. In contrast,

the growth rate decreases when d. 1. Such damping is

due to the horizontal viscous dissipation, which scales

like d2 for a fixed Ekman number as seen in (22)–(25).

Thus, when d. 1, the horizontal dissipation is enhanced

and dominates the vertical dissipation. This effect of the

aspect ratio is absent in the asymptotic expression (36)

of the growth rate because (30) takes into account only

the vertical dissipation and neglects the horizontal dis-

sipation. It could be however possible to take the latter

effect into account by adding in (30) a damping term

scaling like Ekd2. A similar behavior is obtained for

Bu5 1 and Ro520.7 as seen in Figs. A1c and A1d. In

conclusion, the aspect ratio has no effect as long as d# 1.

The present results for d5 0:5 can be therefore applied

to oceanic vortices with d � 1.

APPENDIX B

Other Types of Instabilities

In addition to the centrifugal instability investigated

in the paper, there exist other types of instability that are

subdominant except when the centrifugal instability is

stable or marginally unstable. Since these instabilities

have been described by Yim et al. (2016) and Mahdinia

et al. (2017), we show here only some examples. As

shown by Yim et al. (2016), the eigenmodes and fre-

quency ranges corresponding to these other instabilities

are very different from those of the centrifugal in-

stability. Figure B1a shows that growth rates of the other

instabilities for the G3G profile for Bu 5 4 near

the critical Rossby number of the centrifugal instabil-

ity. There exist an m5 2 baroclinic-shear instability

(gray dashed line with 1 symbols) and an m5 1 Gent–

McWilliams instability (dashed line with 3 symbols).

The former instability is called ‘‘baroclinic-shear’’ be-

cause its eigenmode resembles the one of the shear in-

stability but its energy source is the potential energy

instead of the kinetic energy (Yim et al. 2016). In addi-

tion, the two instabilities transform continuously one

into the other when the control parameters are varied.

The Gent–McWilliams instability occurs for the

m5 1 azimuthal wavenumber only (Gent and McWilliams

1986;YimandBillant 2015) andbends the vortex.Although

FIG. 14. Location of the intense anticyclone observed in 2002 in the lee of Oahu (square) or

the few surface anticyclonic SCV detected in the Mediterranean Sea (circles) plotted in the

(Ro,
ffiffiffiffiffiffiffi
Bu

p
) parameter space. The marginal stability curves (46) for the centrifugal-inertial

instability of Gaussian eddies are plotted with a dotted (dashed) line for Ek5 1/30 000

(Ek5 1/100 000).
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it can be continuously connected to the m5 1 centrifugal

instability for some Rossby numbers, for the range of

negative Rossby numbers of Fig. B1 it is distinct from

the centrifugal instability and thus easily distinguishable

(Yim et al. 2016). For Ro#20.7, the growth rate of the

centrifugal instability (black solid lines) rises quickly

and becomes dominant. A similar evolution is shown in

Fig. B1b for Bu 5 25. The baroclinic-shear instability is

dominant only when Ro is near or above the critical

Rossby number of the centrifugal instability. Note that

in Fig. B1a the growth rate is scaled by V0 instead of jf j.
Otherwise, the scaled growth rates would vanish for

FIG. A1. (left) Maximum growth rate and (right) most amplified vertical wavenumber kmaxH as a function of the

aspect ratio d for Ek5 1/2500. The different symbols indicate the azimuthal wavenumber: m5 0 (gray symbols),

m5 1 (black symbols), and m5 2 (empty symbols) for (a),(b) Ro 5 21, Bu 5 4 and (c),(d) Ro 5 20.7, Bu 5 1.

FIG. B1. Growth rate of different instabilities for the G3G eddy for d5 0:5, Ek5 1/2500 for (a) Bu 5 4 and (b)

Bu 5 25. The black solid lines indicate the growth rate of the centrifugal instability and the different symbols represent

azimuthal wavenumbers: m5 1 (black symbols) and m5 2 (empty symbols). The dashed lines with symbols show the

growth rate of thedifferent instabilities:m5 1Gent–McWilliams instability (3) andm5 2 baroclinic-shear instability (1).
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small jRoj since jf j increases. This allows us to show that

the growth rate of the baroclinic-shear and Gent–

McWilliams instabilities are almost independent of Ro

in the range investigated.

APPENDIX C

Expressions of the Coefficients of the Asymptotic
Analysis of Section 4d

Here, we give the detailed expressions of the co-

efficients in (40)–(42):

a
1
5

ma
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 2 2a2 4

p
2m2(a1 4)1 2a2 1 12a1 16

2(a1 2)(2m2 1 2a1 4)
,

(C1)

c
1
5 Im(2a

1
m1 2ic

2
) , (C2)

where Im(�) indicates the imaginary part and

c
2
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(12 a

1
)
ha

1

2
(a1 2)2 1

ir
. (C3)

The coefficient c3 is given by

c
3
5 Im

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
1

2
af2a

1
[(m2 2 6)a2 4a2 1 4]2 (a2 1)(2imc

2
1a1 4)g

r
23/2c

2
(a

1
a)1/a

0
BB@

1
CCA . (C4)

Finally, c4 reads

c
4
5
� c

1

3e21/a

�3/2 2
c
3

. (C5)
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