
HAL Id: hal-02389912
https://hal.science/hal-02389912v1

Submitted on 2 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Merge-and-simplify operation for compact combinatorial
pyramid definition

Guillaume Damiand, Florence Zara

To cite this version:
Guillaume Damiand, Florence Zara. Merge-and-simplify operation for compact combinatorial pyramid
definition. Pattern Recognition Letters, 2020, 129, pp.48-55. �10.1016/j.patrec.2019.11.009�. �hal-
02389912�

https://hal.science/hal-02389912v1
https://hal.archives-ouvertes.fr

Merge-and-simplify Operation for Compact Combinatorial Pyramid Definition

Guillaume Damianda,∗, Florence Zarab

aCNRS, LIRIS, UMR5205, Universit de Lyon, F-69622, Villeurbanne, France
bUniversité de Lyon, CNRS, Université Lyon 1, LIRIS, UMR5205, F-69622, Villeurbanne, France

Abstract

Image pyramids are employed for years in digital image processing. They permit to store and use different scales/levels of details
of an image. To represent all the topological information of the different levels, combinatorial pyramids have proved having many
interests. But, when using an explicit representation, one drawback of this structure is the memory space required to store such
a pyramid. In this paper, this drawback is solved by defining a compact version of combinatorial pyramids. This definition is
based on the definition of a new operation, called ”merge-and-simplify”, which simultaneously merges regions and simplifies their
boundaries. Our experiments show that the memory space of our solution is much smaller than the one of the original version.
Moreover, the computation time of our solution is faster, because there are less levels in our pyramid than in the original one.

Keywords: Hierarchical image representation; combinatorial pyramids; 2D combinatorial map.

1. Introduction

Image analysis consists to extract meaningful information
from images. An efficient approach is inspired by the psycho-
visual properties of focus of attention. It analyzes the content
of images at different scales/levels of details. This approach re-
quires a relevant data structure to store the different levels of
information. In this context, image pyramids are used for years
in digital image processing (Meer (1989); Bister et al. (1990);
Montanvert et al. (1991); Jolion and Montanvert (1992)).

The first pyramids were defined as sequences of images with
decreasing resolutions. Each new level of a pyramid was com-
puted using a same regular grouping pattern. These pyramids
are called regular. But the segmentation process turned out
more efficient using different adaptive grouping (Bister et al.
(1990)). The irregular pyramid was thus defined, where each
level is a partition of the image pixels in regions. Such a pyra-
mid requires a topological representation to describe the parti-
tions, and basic operations to build the data structure.

Montanvert et al. (1991) proposed to code the sequence of
partitions as a sequence of successive reduced graphs. Each
vertex of a graph corresponds to a region, and an edge in the
graph exists between two vertices when the two correspond-
ing regions are adjacent in the image. In Kropatsch (1995);
Kropatsch and Macho (1995), dual graphs were defined: two
graphs are stored, a graph and its dual.

Later on, specific data structures have been proposed to ob-
tain a topological representation of the space. A 2D combi-
natorial map is a mathematical model of the representation of
space subdivision. It is based on planar map (Edmonds (1960);
Tutte (1963); Jacques (1970)). Combinatorial maps have many

∗Corresponding author: Tel.: +33-472-431-434; fax: +33-472-431-536;
Email addresses: guillaume.damiand@liris.cnrs.fr (Guillaume

Damiand), florence.zara@liris.cnrs.fr (Florence Zara)

advantages justifying their use: they are fully ordered; they en-
able the representation of multi-incidence relations; they allow
us many topological operations; they allow us local modifica-
tions; they are independent of the geometry, i.e. they can repre-
sent curved objects as well as linear objects.

For these reasons, 2D combinatorial maps, or some vari-
ants, were used as basic data-structure in several image pro-
cessing methods Braquelaire and Brun (1998); Fiorio (1996);
Kthe (2002); Dufourd (2007). They were also used to define
irregular pyramids for image processing, called combinatorial
pyramids (Brun and Kropatsch (2000, 2003b,a,c); Simon et al.
(2005, 2006); Simon and Damiand (2006); Fourey and Brun
(2009)). A combinatorial pyramid is a sequence of progres-
sively reduced 2D combinatorial maps, plus some links be-
tween consecutive levels. To represent such a pyramid, an ex-
plicit representation stores each level as a distinct combinatorial
map. The main advantage is to provide a direct access to each
level of the pyramid. Its main drawback is to have an high com-
plexity in memory space.

In this paper, our main contribution is the definition of a com-
pact combinatorial pyramid that requires less memory space
than previous explicit representations. Our solution is based
on the definition of a new operation called merge-and-simplify,
which is our second main contribution. This operation allows
us to simultaneously merge some regions in a given combina-
torial map, and simplify the region boundaries, which was not
possible with original removal operations.

The outline of this paper is the following. Section 2 intro-
duces all the basic notions used in this paper. In Section 3, we
define our new operation and we show the links with the orig-
inal operations. Then, this new operation is used in Section 4
to define our new compact combinatorial pyramid. The experi-
ments presented in Section 5 show the interest of our solution:
we both decrease the memory space and the computation time
of the pyramid used for the image segmentation. In Section 6,

we conclude and give some future work.

2. Preliminary notions

Some preliminary notions are introduced about combinato-
rial maps, operations on these maps, and combinatorial pyra-
mids. In our mathematical notation, capital letters are used for
sets, and lower case letters otherwise. For a mapping f from X
to Y , the notation f (E) = { f (e)|e ∈ E} is used, with E ⊆ X. f is
a permutation if X = Y; f is an involution if X = Y and ∀e ∈ X,
f (f (e)) = e.

2.1. 2-maps and their topological operations
The subdivision of a 2D topological space is a partition of the

space into 3 subsets whose elements are cells of 0, 1 and 2 di-
mension (respectively called vertices, edges and faces). Border
relations are defined between these cells, where the border of
an i-cell is a set of (j<i)-cells. Two cells are incident when one
belongs to the border of the second, and two i-cells are adjacent
if they are both incident to the same (i-1)-cell.

2D combinatorial maps. A combinatorial map encodes a space
subdivision and all the incidence relations between the different
cells of the space. Consequently, it represents the topology of
this space. It is based on a unique basic type of element, called
dart, together with relations between these darts. A 2D com-
binatorial map (called 2-map) is a set of darts, which can be
seen as half-edges, plus two mappings defined on these darts
(cf. Def. 1) (Lienhardt (1991); Damiand and Lienhardt (2014)).
In this paper, 2-map is used without boundary. So, each edge is
always described by 2 darts, and there is a specific unbounded
face describing the external part of the object.

Definition 1 (2-map). A 2-dimensional combinatorial map is
a triplet M = (D, β1, β2) where: (1) D is a finite set of darts;
(2) β1 is a permutation on D; (2) β2 is an involution on D.

For a dart d, β1 is the next dart after d in the same face than
d. β0 = β−1

1 is the inverse relation: this is the dart before d in
the same face. For a dart d, β2 is the other dart of the same
edge. Note that this definition of 2-map was extended to be
able to represent objects with boundaries, and objects in higher
dimension (Damiand and Lienhardt (2014)).

A 2-map is equivalent to the half-edge data structure (Weiler
(1985); Mäntylä (1988)) or the DCEL data structure (de Berg
et al. (2000)) - DCEL for Doubly Connected Edge List), where
half-edges are equivalent to darts. Moreover, others equiva-
lent solutions exist, for example the corner table data structure
(Rossignac (2001)), where corners are equivalent to half-edges.
The difference between these solutions are the naming of the
elements (darts, half-edges, corners); the mappings represented
(permutation around vertices or around faces); the way these
mappings are stored (pointers or indices). We use the notation
with darts and β (rather than α, σ and ϕ notations also used by
many authors when dealing with planar maps) as it is the nota-
tion both used in the reference book about combinatorial maps
(Damiand and Lienhardt (2014)) and in the Combinatorial maps
package (Damiand (2011)) in CGAL which is the main C++ li-
brary of computational geometry.

i-cells. Thanks to the darts and the β links, a 2-map describes
the subdivision of a 2D object in cells. All the cells of the object
are represented by some specific subset of darts. An edge is
the set of two darts linked by β2; a face is the set of all darts
obtained by using β1, until going back to the original dart; a
vertex is the set of all darts obtained by using β1 ◦ β2, until
going back to the original dart. Two cells C1 and C2 are incident
if C1 ∩ C2 , ∅, or in other words, if the two cells share at least
a common dart. Two i-cells C3 and C4 are adjacent if ∃C5, an
(i − 1)-cell, incident both to C3 and C4.

Example. Fig. 1a gives an example of 2-map. It has 22 darts
(drawn by oriented segments), 15 darts (numbered). Two darts
linked by β1 are drawn consecutively (for example β1(1) = 2),
and two darts linked by β2 are drawn in parallel, with reverse
orientations, with a small gray segment over the two darts (for
example β2(1) = 5). This 2-map has 9 vertices (for example
vertex C0(2) = {2, 5, 15}, the set of all darts having this vertex
as origin), 11 edges (for example edge C1(1) = {1, 5}) and 4
faces (for example face C2(1) = {1, 2, 3, 4}). C0(2) and C1(1)
are incident because C0(2)∩C1(1) = {5} , ∅. C2(1) and C2(5) =

{5, 6, 7, 8} are adjacent because C1(1) is incident to both 2-cells.

3

4

2

5

6

7

8

1

10
14

9

11

12 13

15

(a)

3

4

2

6

7

8

14

11

9

12

15

(b)

Figure 1: (a) A 2-map. (b) The 2-map obtained from (a) by the removal of edge
{1, 5} and the removal of vertex {10, 13}.

Dual of a 2-map. Given a 2-map M = (D, β1, β2), its dual is
the 2-map M = (D, β1 ◦ β2, β2). Vertices of M are faces in M
(and reciprocally); while edges stay unchanged in M and M.

Removal operations. We remind that cells are sets of darts
in 2-maps. This is one interesting specificity of 2-maps. Thus,
to define an operation that modifies a 2-map, only darts and β
links have to be modified and the cells are automatically up-
dated thanks to their definition.

It is possible to simplify a 2-map by removing some of its
edges or some of its vertices. When an i-cell C is removed, this
merges the two (i+1)-cells incident to C in one (i+1)-cell. The
edge removal operation is given in Def. 2.

Definition 2 (1-cell removal). Let M = (D, β1, β2) be a 2-map
and E be one of its edge1. Let DN = β0(E) \ E. The 2-map re-
sulting from the 1-removal of E in M is R1(M, E) = (D′, β′1, β

′
2),

defined by:

1By definition of edges in 2-maps, E is a set of darts.
2

• D′ = D \ E;

• ∀d ∈ D′, β′2(d) = β2(d);

• ∀d ∈ D′ \ DN , β′1(d) = β1(d);

• ∀d ∈ DN , β′1(d) = (β1 ◦ β2)k ◦ β1(d),
k is the smaller positive integer s.t. (β1 ◦ β2)k ◦ β1(d) < E.

The main principle of this definition is to remove the 2 darts
of the removed edge E, and to redefine the β1 links of darts
neighbors of E by β0. It is performed by jumping over E and
turning around its extremity, until obtaining a non removed dart.

Vertex removal operation is based on a same principle. But
contrary to edges, it is not possible to remove any vertex. In-
deed, it must have at most two edges incident to the vertex, oth-
erwise it is not possible to decide which edges to merge after
the removal. Such a vertex is called removable.

For a removable vertex, the removal operation is given in
Def. 3. In this definition, both β1 and β2 links of darts neighbors
of the removed vertex have to be redefined.

Definition 3 (0-cell removal). Let M = (D, β1, β2) be a 2-map
and V be one of its removable vertex2. The 2-map resulting from
the 0-removal of V in M is R0(M,V) = (D′, β′1, β

′
2), defined by:

• D′ = D \ V;

• ∀ j ∈ {1, 2}, ∀d ∈ D′:

– if d < β−1
j (V) \ V, β′j(d) = β j(d);

– otherwise, β′j(d) = β j ◦ (β1)k(d),
k is the smaller positive integer s.t. β j ◦ (β1)k(d) < V.

Fig. 1 illustrates these operations. Starting from the 2-map
given in Fig. 1a, edge {1, 5} (red darts) and vertex {10, 13}
(green darts) have been removed. The 2-map depicted in Fig. 1b
was obtained, where β1 of darts 4, 8, 9 and 12 were modified
(blue darts), as well as β2 of darts 9 and 12. These β2 links must
be updated because darts 10 and 13 were removed by the ver-
tex removal operation, and these darts were linked respectively
with darts 9 and 12 by β2 links in the original map.

Removal operations are extended directly to set of cells: it
is possible to remove simultaneously any set of removable ver-
tices and edges, when the set of darts of these cells are dis-
jointed. It is also possible to simplify a 2-map by using the con-
traction operation, which is the dual of the removal operation.
We do not use this operation in this work (Brun and Kropatsch
(1999, 2003b); Damiand and Lienhardt (2003, 2014)).

Reducible vertices. If a vertex incident to only one edge (a
loop, separating two faces) is removed, this also removes totally
the edge and the 2 faces. To avoid such a removal, a property on
the vertex to remove can be added: it must be 0-removable and
incident to exactly two different edges. Such a vertex is called
0-reducible.

2By definition of vertices in 2-maps, V is a set of darts.

2.2. Combinatorial pyramids
A combinatorial pyramid is a sequence of 2D combinatorial

maps (M0, . . . ,Ml) where the 2-map Mi is called level i of the
pyramid; level 0 is called the basis; level l the top; l is the height
of the pyramid. Each map (except the basis) is a simplification
of the 2-map in the previous level (Brun and Kropatsch (2000,
2003a,c); Simon et al. (2006)). According to the application
and the semantic associated with the 2-maps, it is possible to
define each level Mi in different ways, but the computation of
a new level is usually done by using only one type of opera-
tion (removal or contraction of only one type of cells). Usually,
the basis describes all pixels, then one level corresponds to the
merging of some regions, and a second level corresponds to the
simplification of the region boundaries.

For example in Brun and Kropatsch (2003a), the vertices of
the basis of the pyramid correspond to the pixels of the image.
Then, merging two adjacent regions is achieved by contracting
the corresponding edge; and simplify the region boundaries is
done by removing edges with some specific properties (double
edges and empty-self loops).

Dual representation is used in Simon and Damiand (2006).
Pixels of the image are represented by faces in the basis of the
pyramid. Then, regions are merged by removing edges; and
simplify the region boundaries is done by removing vertices.

When a new level is added in a pyramid, the 2-map has to
be ever connected in order to have a correct definition of cells.
Indeed, imagine a 2-map made of two squares, one inside the
other. This 2-map has two connected components. The geo-
metrical object represented is a square with an hole: that is, an
object with three faces (the square, the hole and the unbounded
face). But the 2-map has 4 faces, two for each square, which is
not correct. Adding an edge between the two squares keep the
2-map connected and give us the correct number of faces.

When a set of edges E in a 2-map M is removed, the map
stays connected if E is a forest3 in the dual 2-map M (Brun and
Kropatsch (2003b)). For a combinatorial pyramid where each
level is connected, it is possible to retrieve all the i-cells in a
level i that are merged in a given i-cell in a level j > i (cf. Brun
and Kropatsch (2003c); Simon et al. (2005)).

Encoding combinatorial pyramids. Several possibilities exist
to encode more or less explicitly a combinatorial pyramid ac-
cording to the expected space/time complexity (Simon et al.
(2006)). In an explicit representation, each level of the pyramid
is represented in a distinct 2-map; each dart stores 2 additional
pointers to the corresponding darts in the previous and the next
levels. In an implicit representation, only the basis of the pyra-
mid is represented as a 2-map and additional information allows
us to retrieve removed and contracted cells for each level.

Each representation has its own advantages and drawbacks.
The implicit representation is the best one in term of space
complexity. But it is the worst representation for time com-
plexity since the traversal of any level needs to iterate through

3A forest is a set of trees, thus a set of edges without cycle, but not neces-
sarily connected.

3

(a) (b) (c) (d)

Figure 2: (a) An image. (b) Result obtained after the removal of some edges in the 2-map describing all the pixels of this image, these edges being a forest in the
dual 2-map. (c) Result obtained after the removal of all dangling edges of (b). (d) Result obtained after the removal of all 0-reducible vertices.

darts of the basis of the pyramid, jumping over all the darts re-
moved/contracted. The explicit representation is the one which
requires the most memory space since each level is represented
plus the links between the level. But this is the best representa-
tion for operations since it provides a direct access to each level,
and operations can be applied directly to each level without any
dependencies with other levels.

In our work, an explicit representation is used, since our ap-
plication needs fast access to each level of the pyramid. In this
framework, our main contribution is the definition of a new op-
eration, called merge-and-simplify, which allows us to decrease
the height of a combinatorial pyramid by avoiding the need to
use different levels for merging the regions and for simplifying
the region boundaries.

2.3. 2-maps versus graphs

Many image processing papers that consider hierarchical par-
titions use trees or graphs to describe the hierarchy (cf. for ex-
ample Montanvert et al. (1991); Jolion and Montanvert (1992);
Kropatsch (1995); Arbelaez et al. (2011); Cousty et al. (2018)).
But a graph is not able to describe multiple adjacencies; it does
not keep the order of the edges around a vertex; it does not rep-
resent the faces but only vertices and edges; and it is not unique
as two different images could be represented by the same graph.
Some solutions were proposed to solve some of these draw-
backs, like dual-graphs (Kropatsch and Macho (1995)). But
they are not topological representative of the images as it is
possible to have two topological different images with the same
dual graphs. Moreover, to maintain the correspondence be-
tween the 2 graphs, each operation performed has to be applied
twice: once to the primal graph and another to the dual one.

Contrary to solutions based on graphs, a 2D combinatorial
map is a mathematical model of the representation of space sub-
division (Damiand and Lienhardt (2014)): it allows us to fully
define the topology of a planar partition by describing all the
cells and all the incidence and adjacency relations between the
cells, allowing multiple adjacencies relations. Moreover, sev-
eral operations exist on 2-maps allowing to iterate through the
elements of a 2-map, or to modify the subdivision. All of these
reasons make 2-maps an efficient model to build, to represent
and to update an image partition in regions, as shown by nu-
merous work based on this model (for example Braquelaire and
Brun (1998); Fiorio (1996); Kthe (2002); Dufourd (2007); Brun
and Kropatsch (2000, 2003b,a,c); Simon et al. (2005, 2006); Si-
mon and Damiand (2006); Fourey and Brun (2009)).

The choice of one (hierarchical) data structure to describe
partitions depends on the applications. If you only need to deal
with regions and some criteria (like size, shape, color, etc.), a
list of regions with attributes is enough. If one algorithm re-
quires to access to regions adjacent to a given one, and needs to
update these adjacency relations, a region adjacency graph will
probably be a good choice. Whereas, if you need to describe the
full topology of the partition, with several operations to update
your model providing topological control on the modifications,
2-maps is probably the best suitable data-structure.

3. Our merge-and-simplify operation

In this section, a new operation on 2-maps called merge-and-
simplify is defined.

3.1. Original operation
When faces are merged in a 2-map, for example during an

image segmentation process based on region growing, edges
separating faces to merge must be 1-removed. As seen in the
previous section, the disconnection of the 2-map in several con-
nected components can be avoided by imposing that the set of
removed edges is a forest in the dual 2-map.

This is a sufficient condition but not a required one. Indeed,
when two regions to merge are adjacent along at least two con-
secutive edges, only one out of the two edges will be removed.
Effectively, adding the two edges in the set of removed edges
will create a cycle in the dual 2-map. Due to this condition,
there are many edges inside faces resulting of the merging that
must be removed since they do not describe any region bound-
ary, as illustrated in Fig. 2b. This can be achieved by iteratively
removing all the dangling edges (Simon and Damiand (2006)).
At the end, the 2-map obtained in Fig. 2c contains no more dan-
gling edges: each edge either belongs to the boundary of a face,
or is a bridge necessary to keep the 2-map connected. But now
this map contains too many vertices that must be removed. This
is the last step of the simplification which consists to remove it-
eratively each 0-reducible vertex. The 2-map shown in Fig. 2d
is obtained which can no more be simplified.

3.2. New operation: merge-and-simplify
Our idea is to define a new operation, called merged-and-

simplify, which applies directly both the region merging and the
two simplification steps (of dangling edges and of 0-reducible
vertices). This new operation (given in Def. 4) takes as input
a 2-map plus a set of edges. The dangling edges and the 0-
reducible vertices to remove are automatically computed by it.

4

1

2 3

58

9
4

7 6

10 11

1312

(a)

1

2 3

58

9
4

7 6

10 11

(b)

4

10

9

58

2 3

1

11

(c)

5

2

1

10

9

(d)

Figure 3: Illustration of the different steps to simplify a 2-map when using the original removal operation. (a) Initial configuration, one edge {12, 13} is marked to
remove. (b) Result of the removal of edge {12, 13}. Now edge {6, 7} is dangling and thus marked to remove. (c) After the removal of edge {6, 7}, the two vertices
{3, 8} and {4, 11} are 0-reducible. (d) Result of the removal of the two vertices {3, 8} and {4, 11}.

Definition 4 (Merge-and-simplify). Let M = (D, β1, β2) be a
2-map and K1 be a set of darts, union of edges4 of M. Let us
define:

• K1 = K1 ∪ E0 . . . ∪ Ee, where each Ei is a dangling edge
in R1(M,K1 ∪ E0 . . . ∪ Ei−1);
and there is no dangling edge in R1(M,K1 ∪ E0 . . . ∪ Ee);

• K0 = V0∪ . . .∪Vv, where each Vi is a 0-reducible vertex in
R0(R1(M,K1),V0 ∪ . . .∪Vi−1); and there is no 0-reducible
vertex in R0(R1(M,K1),V0 ∪ . . . ∪ Vv);

• N1 = β0(K0 ∪ K1) \ (K0 ∪ K1);

• N2 = β2(K0) \ (K0 ∪ K1).

The 2-map resulting from the merge-and-simplify of M by K1
is MS (M,K1) = (D′, β′1, β

′
2), defined by:

• D′ = D \ (K0 ∪ K1);

• ∀d ∈ D′ \ N1, β′1(d) = β1(d);

• ∀d ∈ N1, β′1(d) = d′ = (fk ◦ . . . ◦ f0 ◦ β1)(d),
where fi = β1 if (fi−1 ◦ . . . ◦ f0 ◦ β1)(d) ∈ K0,
or fi = β1 ◦ β2 if (fi−1 ◦ . . . ◦ f0 ◦ β1)(d) ∈ K1,
and k being the smaller positive integer s.t. d′ ∈ D′;

• ∀d ∈ D′ \ N2, β′2(d) = β2(d);

• ∀d ∈ N2, β′2(d) = β2 ◦ β0 ◦ β
′
1(d).

The first part of the definition adds in K1 all the dangling
edges. Note that edge Ei is dangling in R1(M,K1∪E0 . . .∪Ei−1),
i.e. in the 2-map obtained by removing all edges in K1 plus
all dangling edges E0, . . . , Ei−1. Such a definition is required
because edge Ei is possibly not dangling in the map obtained
by removing all edges in K1, but can become dangling after the
removal of some dangling edges.

In the second part, K0 is defined as the set of all the 0-
reducible vertices. Similarly than for K1, vertex Vi is added
if it is 0-reducible in the 2-map where all the edges in K1 are
removed and all the previous 0-reducible vertices are removed.

N1 is the set of non removed darts, neighbors by β0 of one
removed vertex or removed edge. These darts will have their β1

4By definition of edges in 2-maps, each edge is a set of darts.

modified by the operation. N2 is the set of non removed darts
neighbors of one remove vertex by β2, having their β2 modified.

Then, similarly than the removal operation, the merge-and-
simplify operation defines a new 2-map (D′, β′1, β

′
2) which re-

defines β′1 and/or β′2 for darts concerned by the operation. The
difference is the paths followed for these redefinitions. Con-
trary to the original operation, a removed vertex can now be
traversed starting from a neighbor dart of a removed edge. For
this reason, there are 2 cases in the path traversal, depending
if the last dart belongs to a 0-removed or a 1-removed cell. In
each case, the definition of the original operation is used to fol-
low correctly the path of removed darts: using either β1 to jump
over removed vertices, or β1 ◦ β2 to turn over removed edges.

3.3. Comparison between original and new operations

Let us compare the new merge-and-simplify operation with
the original one, which starts first to remove edges, then to re-
move vertices. In the example given in Fig. 3, we start from
an initial 2-map (Fig. 3a) where an edge is marked to remove,
by an external process (for example an image segmentation cri-
terion). After the removal of this edge, the 2-map shown in
Fig. 3b is obtained which contains one dangling edge and which
is removed. The resulting 2-map (Fig. 3c) contains now two 0-
reducible vertices which are marked to remove. Fig. 3d shows
the final result obtained after all the simplifications. To store
these different steps into an explicit pyramid, 4 different levels
are needed, 42 darts in total, and 11 β links are redefined.

1

2

5

9
4

7

10

1312

8
6

3

11

(a)

5

2

1

10

9

(b)

Figure 4: Same simplification than the example given in Fig. 3, but using now
the merge-and-simplify operation. (a) Initial configuration: edge {12, 13} ∈ K1,
is the only input of the operation. Edge {6, 7} is dangling in MR1 (K1) and is
thus added in K1. Vertices {3, 8} and {4, 11} are 0-reducible in MR1 (K1) and are
thus added in K0. (d) Result of the merge-and-simplify operation, where edges
in K1 then vertices in K0 are removed.

5

Let us reconsider the same example but using now the new
merge-and-simplify operation. As shown in Fig. 4, the starting
configuration is the same: an initial 2-map with only one edge
marked to remove. But contrary to the previous simplification,
dangling edge and 0-reducible vertices are directly marked to
remove in the initial 2-map (Fig. 4a). After applying the merge-
and-simplify operation,the simplified 2-map given in Fig. 4b is
directly obtained in one step.

In this example, let us consider the path of darts traversed
for the definition of β′1(5). 5 ∈ N1 (this is a neighbor dart of
a removed edge). f0 = β1 ◦ β2 because β1(5) ∈ K1; f1 = β1
because 8 = β1 ◦ β2 ◦ β1 ∈ K1, and k = 1 because 9 = β1 ◦

β1 ◦ β2 ◦ β1 ∈ D′. Thus β′1(5) = 9 is defined. To define β′2(5),
the definition of β′1(5) is reused (in order to avoid to redefine
the path in Def. 4), go backward by β0 to retrieve the last dart
of the path in the same edge, then use β2. For dart 5, β′1(5) = 9,
β0(9) = 8 and β2(8) = 2: β′2(5) = 2 is defined (and reciprocally).

Thanks to this new operation, this simplification can be
stored into an explicit pyramid which only has 2 different levels
with 20 darts in total, and 8 β links (versus 4 levels, 42 darts
and 11 β for the original version) are redefined.

Given a dart d ∈ N1, it is straightforward to prove that ∀i,
0 ≤ i < k, (fi ◦ . . . ◦ f0 ◦ β1)(d) ∈ (K0 ∪ K1). Indeed, if we
suppose ∃i, 0 ≤ i < k, di = (fi ◦ . . . ◦ f0 ◦ β1)(d) < (K0 ∪ K1),
then di ∈ D′ = \(K0∪K1), which contradicts k being the smaller
positive integer s.t. d′ ∈ D′. In other words, all darts traversed
during the definition of β′ are removed by the operation, except
the first and the last one.

3.4. Link with sequence of removal operations

Let M = (D, β1, β2) be a 2-map and K1 be a set of edges
of M. We can prove that M′ = MS (M,K1) = (D′, β′1, β

′
2) is

isomorphic to M′′ = R0(R1(R1(M,K1), E),V), with E = E0 ∪

. . .∪Ee, where each Ei is a dangling edge in R1(M,K1∪E0 . . .∪
Ei−1); and there is no dangling edge in R1(M,K1 ∪ E0 . . .∪ Ee);
and V = V0 ∪ . . . ∪ Vv, where each Vi is a 0-reducible vertex in
R0(R1(M,K1),V0 ∪ . . . ∪ Vi−1).

In other words, the same result is obtained by using the
merge-and-simplify operation than using the sequence of 3 op-
erations: (1) edge removal of edges in K1; (2) edge removal of
all dangling edges; (3) vertex removal of all 0-reducible ver-
tices. This property ensures us the validity of our new opera-
tion. The principle of the proof of equivalence is the following.
Starting from the definition of removal operations, which rede-
fine β links, these definitions can be re-written by considering
all the different cases of darts, depending if they belong to a
vertex or an edge removed. At the end, the redefinition done
when using the new operation is the same that the one obtained
by applying successively the three simplifications.

3.5. Merge-and-simplify algorithm

Given a 2-map M and a set of darts K1 (union of edges), the
merge-and-simplify operation produces MS (M,K1). Let see
one algorihm to compute this 2-map from M and K1.

A first naive solution is to copy M into M′, then to progres-
sively simplify M′ in 3 steps: (1) remove all edges in K1; (2) re-
move all dangling edges; (3) remove all 0-reducible vertices.

Hopefully, it is possible to build MS (M,K1) directly in linear
time in number of darts of M, without having to start to copy M
requiring thus less memory allocation/de-allocation.

The principle of our method is (i) to mark all edges and all
vertices to remove directly on M (thanks Algorithm 1); (ii) to
build directly MS (M,K1) by copying only non marked darts.

Algorithm 1: Merge-and-simplify: mark darts.
Input: A 2-map M;

A set of darts K1, union of edges.
Output: MS (M,K1)

1 mark all darts in K1 by m1;
2 foreach dart d of M do
3 while c1(d) is dangling, ignoring all darts marked by

m1 do
4 mark c1(d) by m1;
5 d ← one non marked dart adjacent to c1(d);

6 foreach dart d of M do
7 if c0(d) is 0-reducible, ignoring all darts marked by m0

or by m1 then
8 mark c0(d) by m0;

Algorithm 1 starts by marking all given edges (line 1). Then,
an iteration through each dart d is performed. A test is done
to know if c1(d), the edge containing d, is dangling in the 2-
map obtained from M when removing all marked edges only by
ignoring all darts marked by m1. When c1(d) is dangling, d is
removed to the dart of an edge adjacent to c1(d) (line 5). Indeed,
removing c1(d) can transform the adjacent edge into a dangling
edge. Similarly for vertices, a test is performed to know if c0(d)
is 0-reducible in the 2-map obtained from M when removing
all marked edges and all marked vertices by ignoring all darts
marked by m0 or m1.

After the marking of removed darts, non marked darts can be
copied, and Def. 4 can be used to link these darts together, by
following the paths given in the definition.

4. Our compact combinatorial pyramids

The new merge-and-simplify operation enables a direct defi-
nition of compact combinatorial pyramid.

Definition 5 (Compact combinatorial pyramid). A 2-
dimensional compact combinatorial pyramid is a sequence of
2-maps (M0, . . . ,Ml) where: ∀i, 1 ≤ i ≤ l, Mi = MS (Mi−1,Ki),
with Ki a set of darts in Mi−1, being an union of edges forming
a forest in Mi−1.

Let us compare a compact combinatorial pyramid P with
a classical version P′, which is defined by using only re-
moval operations. In this case, each level Mi in P (1 ≤
i ≤ l) corresponds to 3 levels in P′: M′j, M′j+1, M′j+2, with
j = 3(i − 1) + 1. M′j = R1(M′j−1,Ki) is the level where
given edges are removed. M′j+1 = R1(M′j, Ei0 ∪ . . . ∪ Eili),
where each Eio is a dangling edge in R1(M′j, Ei0 ∪ . . . ∪

6

Ei(o−1)). M′j+2 = R0(M′j+1,Vi0 ∪ . . . ∪ Vimi), where each Vio is
a 0-reducible vertex in R0(M′j+1,Vi0 ∪ . . . ∪ Vi(o−1)).

Three different levels are needed to (1) remove the given
edges which are a forest in the dual 2-map; (2) remove all the
dangling edges; (3) remove all the 0-reducible vertices. (2) and
(3) can not be applied simultaneously by the classical removal
operation because the set of concerned darts are not indepen-
dent. (1) and (2) can be regrouped in a same level because they
both use edge removal. In this case, only 2 levels is needed in
P′ for each level in P (except for the base level).

With the first solution, the height of P′ is three times the
height of P which is our compact version. With the second
solution, the height of P′ is twice the height of P.

Reducing the height of the pyramid is interesting for two rea-
sons: (1) it decreases the memory space required to represent
the pyramid when using an explicit representation, since they
are less darts to represent; (2) it decreases the time complexity
of operations that traverses the pyramid, since this complexity
is often based on the number of levels of the pyramid traversed.

It is important to remind that information described by the
compact combinatorial pyramid is the same than the one de-
scribed by the original version. Indeed, the meaningful levels
are the ones without dangling edges, nor 0-reducible vertices,
and these levels are the same in both pyramid versions.

5. Experiments

All experiments were run on an Intel R©i7-4790 CPU, 4
cores @ 3.60GHz with 32 GB RAM. Both original and com-
pact versions of the combinatorial pyramids have been imple-
mented by using the CGAL implementation of combinatorial
maps (Damiand (2011)). Fig. 5 shows two images used for
the experiments (images from Unsplash (https://unsplash.
com/), taken resp. by C. Hu, D. Dobrila, J. Alexander, K. Toth,
M. Asthoff and T. Naccarato). The sizes of images used are
1834× 2000 (Img1), 2200× 1313 (Img2), 3000× 2000 (Img3),
3456×5184 (Img4), 5616×3744 (Img5) and 1280×853 (Img6).

Figure 5: Two images used for the experimentations (Left) Img1. (Right) Img2.

A combinatorial pyramid was built, starting from a 2-map
that represents all image pixels as basis. In this level each re-
gion has one pixel. Then a new level was added by merging
all pair of adjacent regions such that the difference between the
two regions mean gray level is smaller than a given threshold τ.
We started with τ = 5, and multiplied it by 2 for each new seg-
mentation level. The process was ended when the top level of
the pyramid has only 2 regions (one for the image pixels, the
second one corresponding to the unbounded face).

Fig. 6 presents 2 levels obtained for Img3. Fig. 7 shows the
sum of number of darts of all levels, except the basis, for the
pyramids computed from the 6 images. Each point represents
one image: its x-coordinate is the number of darts of the orig-
inal pyramid and its y-coordinate is the number of darts of the
compact version. The fitting line has a slope of 0.34: the num-
ber of darts used by a compact pyramid can be approximated
by 0.34 times the number of darts of the corresponding original
pyramid. Moreover, Table 1 gives the number of darts used by
the compact combinatorial pyramid in percentage of the num-
ber of darts of the classical one: in average, a compact combi-
natorial pyramid uses only 32.2% of darts of the corresponding
classical pyramid, which is coherent with the slope of the fit-
ting line obtained in Fig. 7. In these results, the number of darts
of the basis were not summed up as it has a specific structure:
this is a set of regular squares glued together (one square per
pixel). Due to this specificity, it is inefficient to represent the
basis using a classical data-structure for 2-maps (with darts and
pointers): it is only implicitly represented.

Figure 6: Two levels of the compact pyramid computed from Img3 (one random
color per region). (Left) level 2. (Right) level 3 with less regions.

5,000,000

15,000,000

25,000,000

35,000,000

43,000,000

 0 2x10
7

 4x10
7

 6x10
7

 8x10
7

 1x10
8

 1.2x10
8

C
o

m
p

a
c
t

Original

Number of darts
Model Fit y=0.34x+b

Figure 7: Number of darts (without basis) of the different pyramids. A point
represents one image: its x-coordinate (resp. y-coordinate) is the number of
darts of the original (resp. compact) pyramid.

Table 1: Number of darts of the compact combinatorial pyramid in percentage
of the number of darts of the classical one.

Img1 Img2 Img3 Img4 Img5 Img6 Average
31.7% 22.0% 23.4% 33.6% 33.4% 35.1% 32.2%

Table 2 gives the computation time (in seconds) to build
the combinatorial pyramids for the 6 images for both versions.
These computation were quite good, taking into account the big
size of images. This table also gives the time used by the con-
struction of the compact version in percentage of the time spent
by the classical version. In average, the compact method uses
64.6% of the time of the classical construction method. Fig. 8

7

Table 2: User time in seconds for constructing (a) the classical or (b) the com-
pact combinatorial pyramid. (c) Time used by the construction of the compact
version in percentage of the time spent by the classical version.

Img1 Img2 Img3 Img4 Img5 Img6
(a) 47.3s 29.9s 69.6s 303.8s 351.4s 14.1s
(b) 30.4s 19.8s 45.9s 189.7s 226.6s 9.1s
(c) 64.3% 66.2% 65.9% 62.4% 64.5% 64.6%

shows these computation times using the same principle that the
one used in Fig. 7 for the number of darts. Each point represents
one image: its x-coordinate (resp. y-coordinate) is the compu-
tation time to construct the original (resp. compact) pyramid.
The fitting line has a slope of 0.63: the computation time can
be approximated to build a compact pyramid by 0.63 times the
computation time to build the corresponding original pyramid.

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350 400

C
o

m
p

a
c
t

Original

Computation time
Model Fit y=0.63x+b

Figure 8: Computation time to build the different pyramids. A point represents
one image: its x-coordinate (resp. y-coordinate) is the computation time to
construct the original (resp. compact) pyramid.

Our experiments show that using the compact version allows
us to decrease the number of darts of about 64% and decrease
also the computation time to build the pyramid of about 27%,
without introducing any drawback. This shows the interest of
using the compact version instead of the original one.

6. Conclusion

In this paper, a new operation on 2-maps is defined, merge-
and-simplify, which allows us to merge some faces then to sim-
plify the dangling edges and the 0-reducible vertices in a single
operation. This operation is equivalent to apply successively
three times the original removal operations. Our new operation
can be used in order to define compact combinatorial pyramids
which decrease the height of previous combinatorial pyramids.
As illustrated in our experiments, this decreases the memory
space used to store such a pyramid in an explicit representation,
and it decreases also the computation time of the pyramid.

In our future work, we are going to define connecting walks,
connecting dart sequences and receptive fields with our new
framework: the three central notions when we want to retrieve
information in a given level based on information on previous
levels. We also would like to extend the merge-and-simplify
operation in higher dimension.

References

Arbelaez, P., Maire, M., Fowlkes, C., Malik, J., 2011. Con-
tour detection and hierarchical image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence
33, 898–916.

de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.,
2000. Computational Geometry: Algorithms and Applica-
tions. Springer-Verlag.

Bister, M., Cornelis, J., Rosenfeld, A., 1990. A critical view of
pyramid segmentation algorithms. Pattern Recognition Let-
ter. 11, 605–617.

Braquelaire, J.P., Brun, L., 1998. Image segmentation with
topological maps and inter-pixel representation. Journal of
Visual Communication and Image representation 9, 62–79.

Brun, L., Kropatsch, W., 1999. Dual contraction of combinato-
rial maps, in: 2nd IAPR-TC-15 Workshop on Graph-based
Representations, Österreichische Computer Gesellschaft,
Haindorf, Austria. pp. 145–154.

Brun, L., Kropatsch, W., 2000. Irregular pyramids with com-
binatorial maps, in: Amin, A., Ferri, F.J., Pudil, P., I nesta,
F.J. (Eds.), Advances in Pattern Recognition, Joint IAPR In-
ternational Workshops SSPR’2000 and SPR’2000, Springer,
Berlin Heidelberg, New York, Alicante, Spain. pp. 256–265.

Brun, L., Kropatsch, W., 2003a. Combinatorial pyramids, in:
Suvisoft (Ed.), IEEE International conference on Image Pro-
cessing (ICIP), Barcelona. pp. 33–37.

Brun, L., Kropatsch, W., 2003b. Contraction kernels and com-
binatorial maps. Pattern Recognition Letters 24, 1051–1057.

Brun, L., Kropatsch, W., 2003c. Receptive fields within the
combinatorial pyramid framework. Graphical Models 65, 23
– 42. Special Issue: Discrete Topology and Geometry for
Image and Object Representation.

Cousty, J., Najman, L., Kenmochi, Y., Guimarães, S., 2018. Hi-
erarchical segmentations with graphs: Quasi-flat zones, min-
imum spanning trees, and saliency maps. Journal of Mathe-
matical Imaging and Vision 60, 479–502.

Damiand, G., 2011. Combinatorial maps, in: CGAL User and
Reference Manual. 3.9 ed. http://www.cgal.org/Pkg/

CombinatorialMaps.

Damiand, G., Lienhardt, P., 2003. Removal and contraction
for n-dimensional generalized maps, in: Proc. of 11th In-
ternational Conference on Discrete Geometry for Computer
Imagery, Springer Berlin/Heidelberg, Naples, Italy. pp. 408–
419.

Damiand, G., Lienhardt, P., 2014. Combinatorial Maps: Effi-
cient Data Structures for Computer Graphics and Image Pro-
cessing. A K Peters/CRC Press.

8

Dufourd, J.F., 2007. Design and formal proof of a new opti-
mal image segmentation program with hypermaps. Pattern
Recogn. 40, 2974–2993.

Edmonds, J., 1960. A combinatorial representation for polyhe-
dral surfaces. Notices of the American Mathematical Society
7.

Fiorio, C., 1996. A topologically consistent representation for
image analysis: the frontiers topological graph, in: Proc.
of International Conference on Discrete Geometry for Com-
puter Imagery, Lyon, France. pp. 151–162.

Fourey, S., Brun, L., 2009. A first step toward combinatorial
pyramids in n-D spaces, in: Graph-based Representations in
Pattern Recognition, Springer, Venice, Italy. pp. 304–313.

Jacques, A., 1970. Constellations et graphes topologiques, in:
Combinatorial Theory and Applications, pp. 657–673.

Jolion, J.M., Montanvert, A., 1992. The adaptive pyramid: A
framework for 2d image analysis. Computer Vision, Graph-
ics and Image Processing 55, 339–348.

Kropatsch, W., 1995. Building irregular pyramids by dual-
graph contraction. Vision, Image and Signal Processing 142,
366–374.

Kropatsch, W., Macho, H., 1995. Finding the structure of con-
nected components using dual irregular pyramids, in: Proc.
of International Conference on Discrete Geometry for Com-
puter Imagery, pp. 147–158, invited lecture.

Kthe, U., 2002. Xpmaps and topological segmentation - a uni-
fied approach to finite topologies in the plane, in: Proc. of In-
ternational Conference on Discrete Geometry for Computer
Imagery, Bordeaux, France. pp. 327–350.

Lienhardt, P., 1991. Topological models for boundary represen-
tation: a comparison with n-dimensional generalized maps.
Computer Aided Design 23, 59–82.

Mäntylä, M., 1988. An Introduction to Solid Modeling. Com-
puter Science Press.

Meer, P., 1989. Stochastic image pyramids. CVGIP 45, 269–
294.

Montanvert, A., Meer, P., Rosenfeld, A., 1991. Hierarchical im-
age analysis using irregular tessellations. IEEE Transactions
on Pattern Analysis and Machine Intelligence 13, 307–316.

Rossignac, J., 2001. 3D compression made simple: Edge-
breaker with zipandwrap on a corner-table, in: Proc. of Inter-
national Conference on Shape Modeling and Applications,
pp. 278–283.

Simon, C., Damiand, G., 2006. Generalized map pyramid
for multi-level 3d image segmentation, in: Proc. of 13th In-
ternational Conference on Discrete Geometry for Computer
Imagery, Springer Berlin/Heidelberg, Szeged, Hungary. pp.
530–541.

Simon, C., Damiand, G., Lienhardt, P., 2005. Receptive
fields for generalized map pyramids: The notion of gen-
eralized orbit, in: Proc. of 12th International Conference
on Discrete Geometry for Computer Imagery, Springer
Berlin/Heidelberg, Poitiers, France. pp. 56–67.

Simon, C., Damiand, G., Lienhardt, P., 2006. nd generalized
map pyramids: Definition, representations and basic opera-
tions. Pattern Recognition (PR) 39, 527–538.

Tutte, W., 1963. A census of planar maps. Canad. J. Math. 15,
249–271.

Weiler, K., 1985. Edge-based data structures for solid mod-
elling in curved-surface environments. Computer Graphics
and Applications 5, 21–40.

9

