

Pierre **S**imon LATM

Terro

Statistical database from existing data sets to assess the performances of a dynamics and microphysics studiesoriented mission: DYCECT

NICOLAS VILTARD, AUDREY MARTINI, JULIEN DELANOË

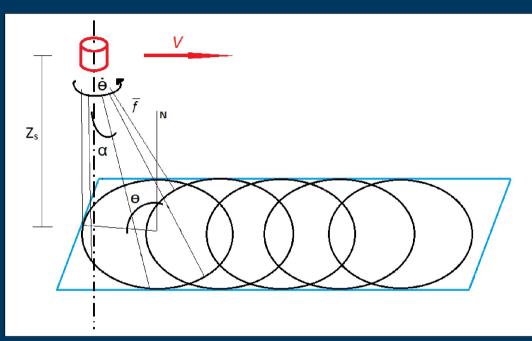
DYCECT context

(DYnamique, énergie et Cycle de l'Eau dans la Convection Tropicale) (Dynamics, energy and water cycle in tropical convection)

• Post-Global Precipitation Measurement concept => 2025-2030

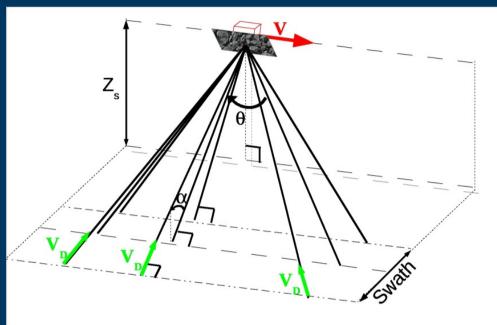
 Retrieve a 3D wind field (u,v,w) and microphysical classifications in cloud systems:

- Convection studies and climatology
- Convection parameterization
- Microphysical processes
- Focused on processes rather than rain retrieval

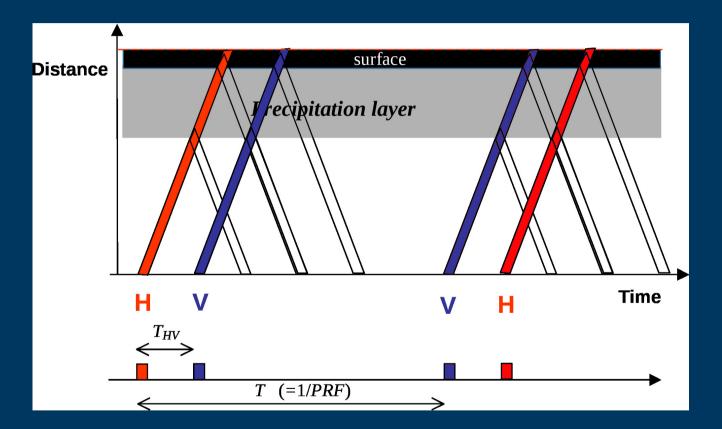

Originally aimed at the Tropics but appropriate for higher latitudes

09/12/2019

Concept 1 example


Similar to PMR imager: rotation of the antenna combined with motion of the satellite makes the beam describe a spiralshaped projected track => noncolinear measurements

- More interesting at 95 GHz.
- Elevation ~ 35° -45° (TBD) depending on retrieval constraints.
- Rotation of antenna between 10 and 30 rpm (TBD).
- Resulting swath about 800 km (450-500 km altitude) but retrieval is very inhomogeneous.


Concept 2 example

AgilityinAzimuthandElevationprovidesthescanning.Three Azimuth anglesare envisioned.

- More realistic option for 35 GHz.
- Elevation ~ 20 to 40°
- A lot more independent samples.
- Resulting swath about 400 km (450 500 km altitude).

Polarimetric Interleaved Pulses (Pazmani 1999)

This makes V_{Amb} and D_{Amb} independent. Data are processed using Pulse Pair technique.

Most critical aspect: NUBF

- Satellite velocity is 7.5 km.s⁻¹ !!
- Target velocities range from a few cm.s⁻¹ to a few m.s⁻¹

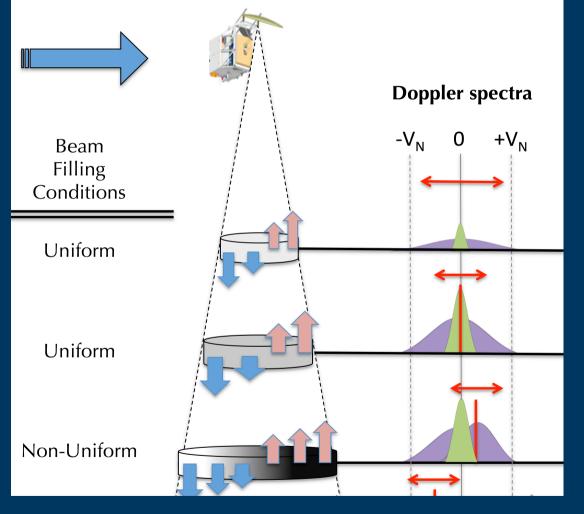


Figure borrowed from WIVERN presentation by A. Illingworth

General characteristics

At 95 GHz, mechanical sampling, rotation is 10 rpm => 45 km between scans

Frequency	F	95	35	GHz
Antenna size	D	2.9	9.0	m
Antenna type		Mecan.	Electro.	
Satellite altitude	Z	450		km
Onboard elev. angle	θ	46.	20 - 40	deg
Half swath	S_w	485	200	km
One-way beam aperture	$ heta_0$	0.08	0.07	deg
3dB one-way cross resolution IFOV	L	1.6	1.1-1.4	km
Pulse duration	au	3.3		μs
Range resolution		500		m
Peak power	P_e	1.8		kW
Pulse repetition frequency	PRF	3750	variable	Hz
H/V & V/H interpair time	T_{HV}	267.		μs
H &V interpulse time	T_{pair}	9.6		μs
Reciever noise	Noise	-119		dBm
0 dB SNR detection threshold	Z_{0SNR}	-7.35		dBZ
10 dB SNR detection threshold	Z_{10SNR}	2.65		dBZ
PP error at 10 dBZ IFOV	σ_{10dBZ}	6.62	59.1	$m.s^{-1}$
PP error at 0 dBZ IFOV	σ_{0dBZ}	22.46	319.5	$m.s^{-1}$
Ambiguous distance	D_{Amb}	40		km
Ambiguous velocity	V_{Amb}	82	223	$m.s^{-1}$

General characteristics

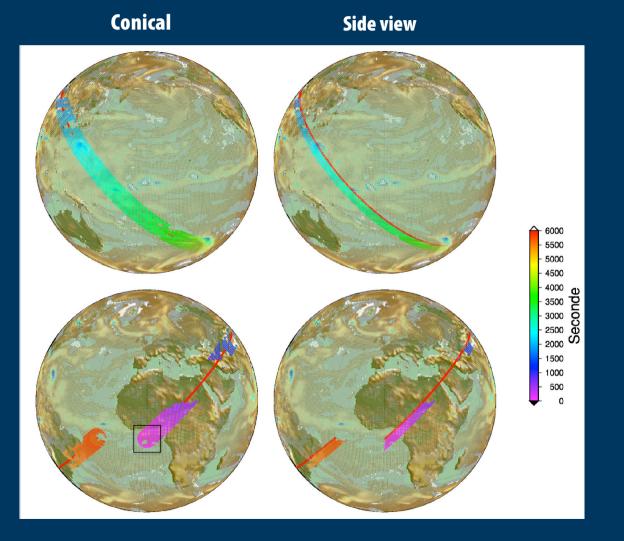
 Using approximated formula from Doviak and Zrnic 1993

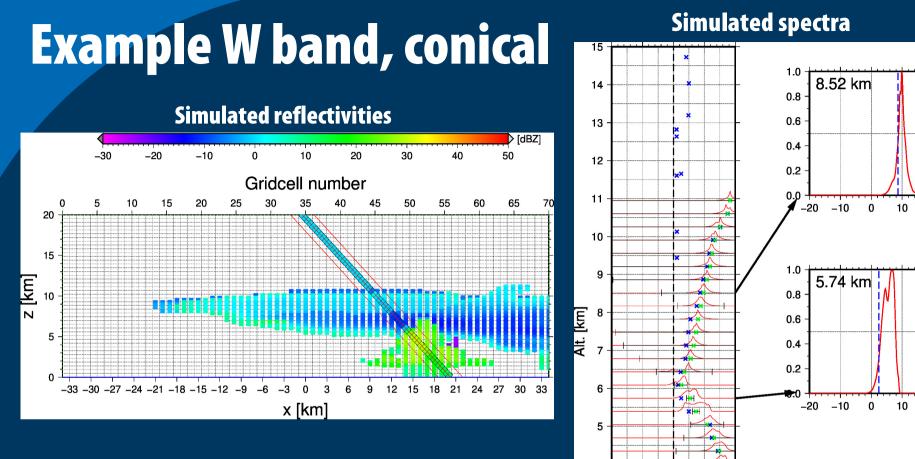
At 95 GHz, mechanical sampling, rotation is 10 rpm => 45 km between scans

Frequency	\mathbf{F}	95	35	GHz	
Antenna size	D	2.9	9.0	m	
Antenna type		Mecan.	Electro.		
Satellite altitude	Z	450		km	
Onboard elev. angle	θ	46 .	20 - 40	deg	
Half swath	S_w	485	200	km	
One-way beam aperture	$ heta_0$	0.08	0.07	deg	
3dB one-way cross resolution	IFOV L	1.6	1.1-1.4	km	
Pulse duration	au	3	.3	μs	
(1 - (1 - (1 - (1 - (1 - (1 - (1 - (1 -			$)^{2} - \mu$) ²
0 <i>PP</i> —	32π	$^2M\rho$	(mT)	T^2	
0 dB SNR detection threshold	Z_{0SNR}	-1.00		uDZ	
10 dB SNR detection threshol	2002.20	2.65		dBZ	
PP error at 10 dBZ IFOV	σ_{10dBZ}	6.62	59.1	$m.s^{-1}$	
PP error at 0 dBZ IFOV	σ_{0dBZ}	22.46	319.5	$m.s^{-1}$	
Ambiguous distance	D_{Amb}	40		km	
Ambiguous velocity	V_{Amb}	82	223	$m.s^{-1}$	

General characteristics

 At 35 GHz to get acceptable perf we need 1024 integrations...


Integrating over 50 pairs of H-V pulses


Frequency	F	95	35	GHz
Antenna size	D	2.9	9.0	m
Antenna type		Mecan.	Electro.	
Satellite altitude	Z	450		km
Onboard elev. angle	θ	46.	20 - 40	deg
Half swath	S_w	485	200	km
One-way beam aperture	θ_0	0.08	0.07	deg
3dB one-way cross resolution Integ. 50 pairs	L	5.3	variable	km
Pulse duration	au	3.3		μs
Range resolution		500		m
Peak power	P_e	1.8		kW
Pulse repetition frequency	PRF	3750	variable	Hz
H/V & V/H interpair time	T_{HV}	267.		μs
H &V interpulse time	T_{pair}	9.6		μs
Reciever noise	Noise	-119		dBm
0 dB SNR detection threshold	Z_{0SNR}	-7.35		dBZ
10 dB SNR detection threshold	Z_{10SNR}	2.65		dBZ
PP error at 10 dBZ IInteg. 50 pairs	σ_{10dBZ}	0.91	8.36	$m.s^{-1}$
PP error at 0 dBZ Integ. 50 pairs	σ_{0dBZ}	3.17	45.0	$m.s^{-1}$
Ambiguous distance	D_{Amb}	40		km
Ambiguous velocity	V_{Amb}	82	223	$m.s^{-1}$

• @ 95 w/ slow rotation and @ 35 w/ "smart" scanning

Sampling illustration

- ERA simulation on September 13, 1975
- Good to get an idea but does not resolve convection...

- WRF simulation (S. Bastin, LATMOS)
- Full 3D
- Single scattering
- Pulse-Pair Processing errors (Doviak and Zrnic)

AGU FALL Meeting 2019-LATMOS

4

3

2

1

0 | . -20

-10

0

V_{Dop} [m.-s⁻¹]

10

20

10

20

20

20

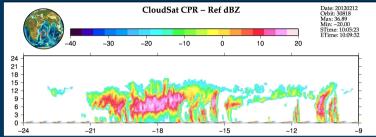
3.31 km

0.8

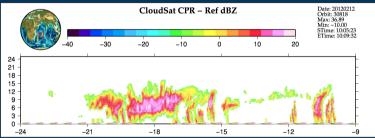
0.6

0.4

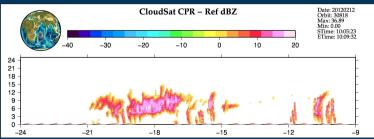
0.2

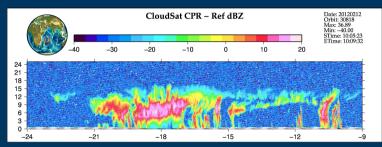

0.0

-20


-10

Expected sensitivity

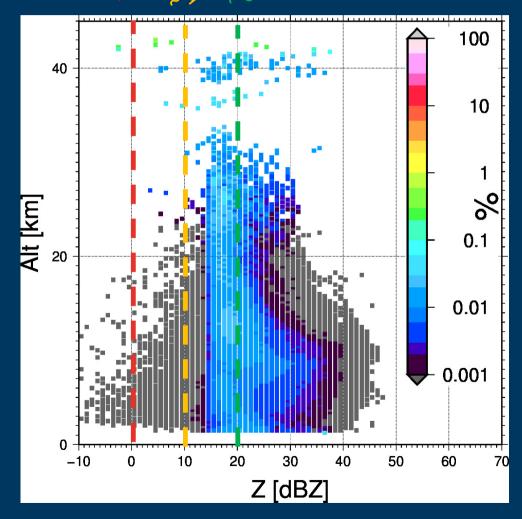

-20 dBZ


-10 dBZ

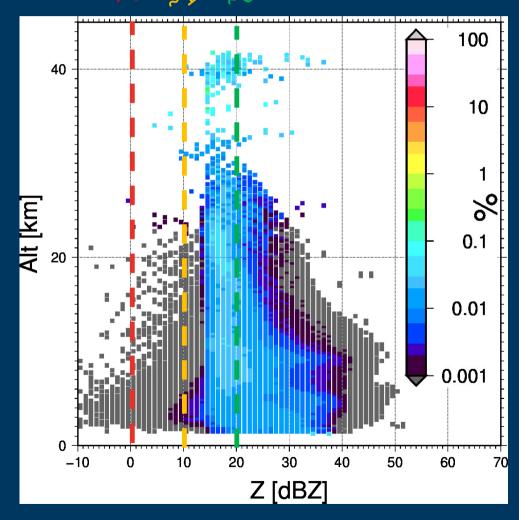
0 dBZ

Original CPR ~ -35 dBZ

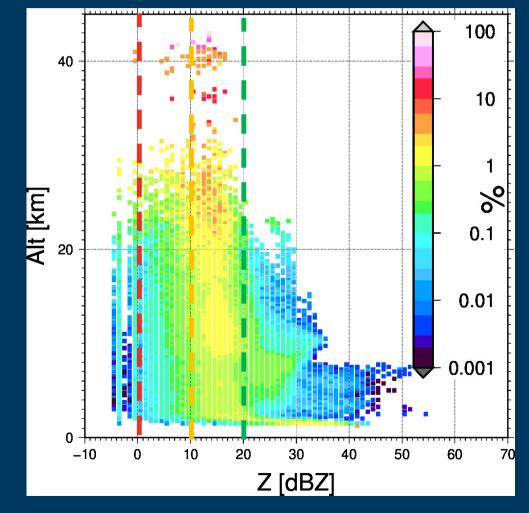
Just to set up ideas, we expect that the nominal sensitivity should be near 0 dBZ...


Building a database from existing sensors

- In order to assess the radar potential, we are building a database from
 - GPM DPR in order to have 3D structure of reflectivity at Ku and Ka band
 - Cloudsat to access higher sensitivity (but has only 2D structure of reflectivity)
 - EarthCare when available will also be a great asset with 2D Z and V_{Dop} !
- We use standard flags from the said products to select "rainy" pixels
- We compute 2D histograms of altitude vs. reflectivity
- We will also make use of the reflectivity 3D structure to assess a more detailed wind retrieval


Average rainy Z at Ku Band from GPM DPR: June

- For 95 Ghz
- Same hypotheses as before,
 50 pulses integration
- 2D histogram of Z occurrence per altitude
- This is GPM Ku Band, we miss a lot of the clouds where Z< 0 dBZ !

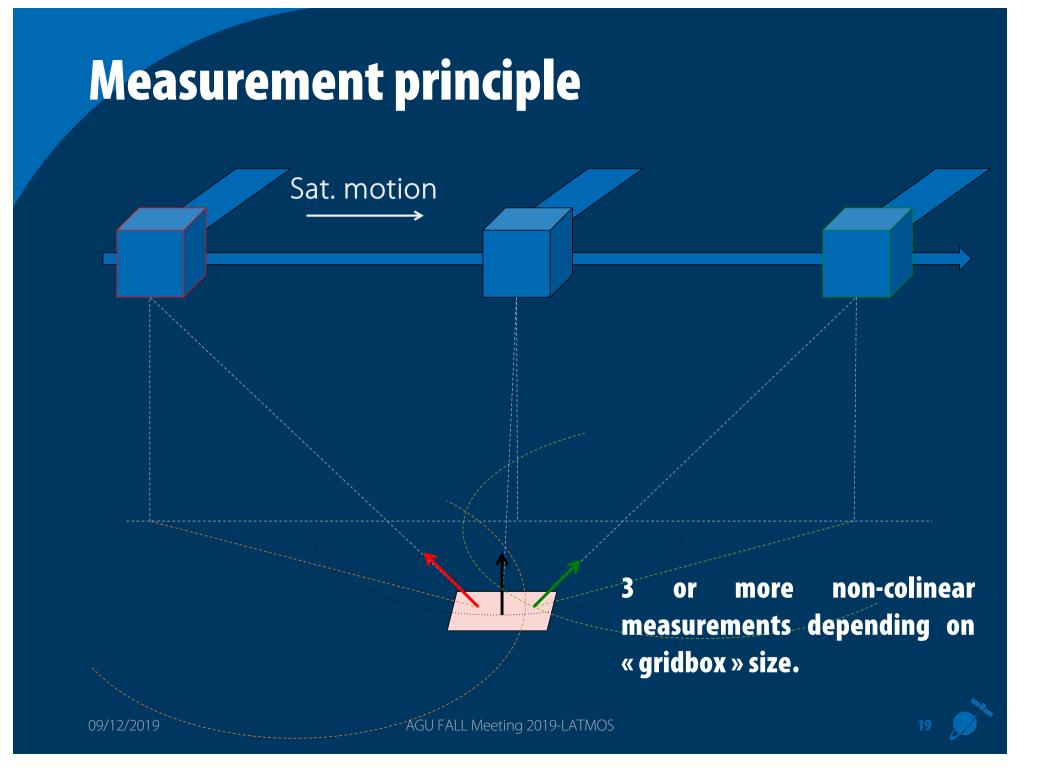

Average rainy Z at Ku Band from GPM DPR: October

- For 95 GHz
- Same hypotheses as before,
 50 pulses integration
- 2D histogram of Z occurrence per altitude
- This is GPM Ku Band, we miss a lot of the clouds where Z< 0 dBZ !

Average rainy Z at Ka Band from GPM DPR: June

- For 35 GHz
- 1024 pulses integration
- 2D histogram of Z occurrence per altitude

Conclusions & Percpectives


• 95 GHz offers better performances

- Mechanical design is simpler but density of pixels is less favorable due to slow rotation for improved independent samples
- Majority of ice precipitations would be observed with an error on Doppler <
 1m.s⁻¹ but clouds are much more critical
- Study with ClouSat database needs to be made

• 35 GHz option is better for rain

- Electronic antenna offers great flexibility but much more complex technically
- 1 m.s⁻¹ error threshold on V_{Dop} is closer to 20 dBZ so we would miss a substantial fraction of precipitations and clouds

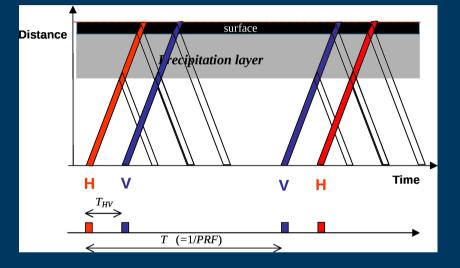
Interleaved H and V pulses (Pazmani 1999)

Ambiguous velocity and distance

$$V_a = \frac{\lambda}{4T_s} = \frac{\lambda PRF}{4} \qquad D_a = \frac{cT_s}{2} = \frac{c}{2PRF}$$

Pulse-Pair Processing:

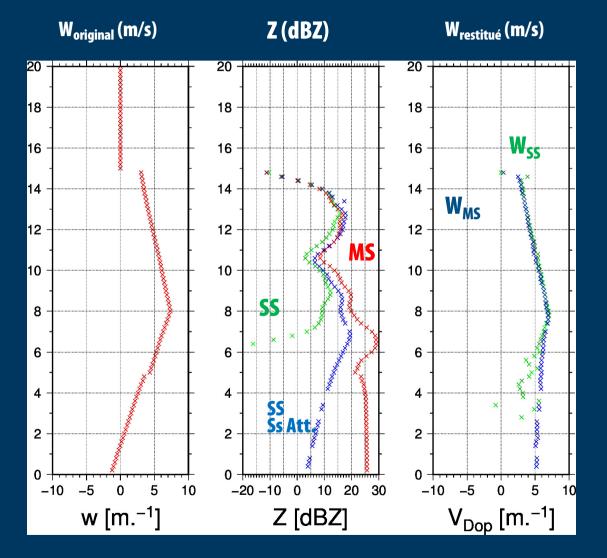
$$\overline{v_R} = -\frac{\lambda}{4\pi T_s} \arg\left(\left\langle E_H(t).E_V * (t+T_s)\right\rangle\right)$$


Decoupling of velocity and distance:

$$V_a = \frac{\lambda}{4T_{HV}} = \frac{\lambda PRF_V}{4} \qquad D_a = \frac{cT}{2} = \frac{c}{2PRF}$$

Handling differential phase effects:

$$\overline{V_R} = -\frac{\lambda}{8\pi T_{HV}} \Big[\arg \Big(\langle E_H(t) \cdot E_V * (t + T_{HV}) \rangle \Big) + \arg \Big(\langle E_V(t) \cdot E_H * (t + T_{HV}) \rangle \Big) \Big]$$


$$\Phi_{DP} = \left[\arg\left(\left\langle E_H(t) \cdot E_V * (t + T_{HV}) \right\rangle \right) - \arg\left(\left\langle E_V(t) \cdot E_H * (t + T_{HV}) \right\rangle \right) \right)$$

Monte-Carlo simulation at 95 GHz

(with F. Szczap, LaMP)

SS: Single Scattering MS: Multiple Scattering

