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Abstract. A self-control method of vibrations is presented in this paper. This method 
combines the passive damping capabilities afforded by viscoelastic materials with the active 
control properties associated with piezoelectric materials. Active control is introduced, using 
the piezoelectric properties, in order to improve the reduction in vibration amplitudes that can 
be obtained by viscoelastic passive damping alone. To this end, a filter has been mounted 
between the sensors and actuators. The resulting nonlinear problem is discretized using the 
recently developed solid–shell finite element SHB20E, due to the advantages it offers in terms 
of accuracy and efficiency, as compared to standard finite elements with the same geometry 
and kinematics. In order to solve the discretized problem, a resolution method using 
DIAMANT approach is developed. A set of selective and representative numerical tests are 
performed on multilayer plates to demonstrate the interest of the proposed damping model. 

Keywords: Vibration analysis, Active-passive control, Finite elements, Solid–shell, 
Piezoelectric effect, Multilayer structures. 

 

1. Introduction 

The design of effective damping systems is a challenging task that engineers are stepping 
up with the increasing demand for structures stressed and alleviated. For this purpose, the 
best-known strategy, and especially the most adopted associated system, consists in 
incorporating viscoelastic materials with various forms. Such viscoelastic materials can be 
found in the form of uniform layers inserted between two elastic layers (viscoelastic core 
sandwiches) [1-4], or as honeycomb filled with viscoelastic materials [5-7]. Several works 
have been contributed in this field, such as Akoussan et al. [8], who proposed a sensitivity 
analysis with regard to different parameters for sandwich plates using the Asymptotic 
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Numerical Method (ANM) combined with the Automatic Differentiation [9]. Worth 
mentioning are also the major contributions of Ferreira et al. [4] as well as Filippi et al. [10], 
who used Carrera’s Unified Formulation (CUF) [11-13] for the analysis of sandwich 
laminated plates. 

Alternatively, core material systems can be found in entangled fibers [14, 15], or as 
viscoelastic inclusions embedded in elastic layers [16]. Unfortunately, this technique does not 
always allow effective passive damping. To improve the damping properties, it is sometimes 
necessary to increase the thickness of the viscoelastic layer. However, limitations are quickly 
encountered in terms of dimensions and mechanical properties of composites, which become 
less resistant as the thickness of the viscoelastic layers becomes larger. Other limitations are 
sometimes associated with the total thickness of the structure, which is related to its practical 
implementation. To overcome these restrictions while increasing the damping properties of 
multilayer structures, the use of piezoelectric materials is desirable and sometimes even 
unavoidable. Indeed, the attractive properties of piezoelectric materials, and especially their 
ability to deform under electrical load and vice versa, make them indispensable. More 
specifically, the current generated by deformation is collected and amplified or attenuated in 
order to control the vibration amplitudes. Some literature studies effectively combined passive 
damping and active control using viscoelastic core sandwiches constrained by layers of 
piezoelectric materials [17, 18]. Controlling this phenomenon is therefore important to better 
implement these hybrid control systems. In the literature, a number of works have been 
devoted to this issue, among which the contributions reported in references [19, 20]. In 
particular, it is clearly shown in these works that the finite element discretization leads to 
frequency-dependent nonlinear problems. The complexity of such problems restricted the 
earlier investigations to PD (Proportional Derivative) type of control laws (see Duigou-
Kersulec [19] and Boudaoud [20], among others). 

In this paper, we propose a method that combines the solid–shell finite element concept 
[21-24] and the DIAMANT approach [25-27] to effectively solve vibration problems. 
Accordingly, the discretization of the resulting vibration problem is achieved using the 
quadratic piezoelectric solid–shell finite element SHB20E developed in [28, 29]. The latter 
represents the extension to piezoelectric materials of the solid–shell element SHB20 proposed 
by Abed-Meraim et al. [30], which shows a number of advantages and capabilities compared 
to its counterpart, the traditional twenty-node finite element resulting from a standard 
displacement-based formulation. With regard to the DIAMANT approach, the latter consists 
of a recently developed method that combines the Automatic Differentiation with the 
Asymptotic Numerical Method. This technique has been proposed in [25-27], where it has 
been used to effectively solve problems of passive vibration damping for viscoelastic core 
sandwiches. Compared to these earlier contributions, the current work represents an extension 
that is specifically intended to solve problems of active-passive vibration damping. 
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2. Formulation and discretization of the problem of active-passive vibration control 

In this section, we consider the vibration problem of multilayer structures combining 
elastic, viscoelastic and piezoelectric layers. The contribution to damping of the viscoelastic 
material results in frequency dependency of the viscoelastic modulus ( )E ω . Regarding the 

piezoelectric material, the latter induces electromechanical coupling. Therefore, we will first 
recall some characteristic features associated with this coupling. Then, the finite element 
discretization of the problem of vibrations of multilayer structures combining these materials 
will be carried out. 

2.1. Electromechanical constitutive equations 

Piezoelectric materials have the capability of generating electricity when subjected to 
mechanical loading (sensors). Conversely, they also have the ability to deform under 
electrical charging (actuators). These properties are described by the following coupled 
electromechanical equations: 

T = ⋅ − ⋅


= ⋅ + ⋅

C e

e

σ εσ εσ εσ ε
εεεε

E

D Eκκκκ
 (1) 

where σ  and ε  represent, respectively, the vector form of the stress and strain tensors; D  
and E  denote the electric displacement and electric field vector, respectively; while C , e  
and κ  stand for the elastic, piezoelectric and dielectric permittivity matrix, respectively. 

The discretized forms { }ε  and { }E  for the strain tensor and the electric field vector are 

related, respectively, to the discretized displacement { }u  and to the discretized electric 

potential { }φφφφ , using the discrete gradient operators u  B  and φ  B , as follows: 

{ } { }
{ } { }

u

φ

  =  


 = −  

B

B

ε u

E φφφφ
 (2) 

In the current contribution, the discrete gradient operators u  B  and φ  B  are obtained by 

finite element discretization for both the recently developed piezoelectric solid–shell 
formulation SHB20E (see Fig. 1), and its counterpart, the standard twenty-node piezoelectric 
solid element HEX20E. 

2.2. Discretization of the problem 

The variational principle pertaining to piezoelectric materials, which provides the 
governing equations for the associated boundary value problem, is described by the Hamilton 
principle [31]. In this weak form of equations of motion, the Lagrangian and the virtual work 
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are appropriately adapted to include the electrical contributions, in addition to the more 
classical mechanical fields 
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where ρ  is the material density; vq , sq  and pq  denote volume, surface and point charge, 

respectively; while vf , sf  and pf  represent volume, surface and point force, respectively. 

The finite element discretization of the boundary value problem governed by Eq. (3) 
generally leads to the following system of discretized equations: 

{ } { } { } { }
{ } { } { }

( )uu uu u

u

φ

φ φφ

ω     + + =     


   + =    

M K K

K K

ɺɺU U F

U Q

φφφφ

φφφφ
 (4) 

where all matrices and vectors involved in Eq. (4) are explicitly defined in Table 1. 

The above matrices are obtained by finite element discretization using both the recently 
developed piezoelectric solid–shell element SHB20E and the standard twenty-node 
piezoelectric solid element HEX20E. The formulation of the SHB20E solid–shell element is 
only briefly outlined hereafter; the interested reader may refer to [29] for the complete details. 

2.3. Solid–shell finite element formulation 

2.3.1. Kinematics and interpolation 

The above-described vibration problem is discretized here using the piezoelectric solid–
shell element SHB20E. The latter is an extension of the quadratic solid–shell element SHB20, 
which has been originally proposed by Abed-Meraim et al. [30]. The starting point for this 
piezoelectric extension is the addition of one piezoelectric degree of freedom (DOF) to each 
node. The resulting SHB20E element denotes a twenty-node hexahedral element. Based on a 
fully three-dimensional approach, this element has three displacement DOFs as well as one 
piezoelectric DOF per node. Nevertheless, to improve the performance of this solid–shell 
element, and to provide it with some desirable shell features, a number of enhancements are 
introduced within its formulation based on the assumed-strain method (ASM). In particular, a 
special direction is chosen, designated as the “thickness”, normal to the mean plane of this 
element, along which a user-defined number of integration points are arranged. Also, an in-

plane reduced-integration rule is used, with int4 n×  integration points (see, e.g., Fig. 1, in the 

particular case when the number of through-thickness integration points is int 3n = ). 

For this element, the spatial coordinates ix  are related to the nodal coordinates iIx  using 

the conventional quadratic shape functions, as follows: 
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( ), ,i iI Ix x N ξ η ζ=  (5) 

where i  represents the spatial directions and ranges from 1 to 3; while I  stands for the node 

number, which ranges from 1 to 20. Likewise, the displacement field iu  is related to the nodal 

displacements iIu  using the same quadratic shape functions, and the same applies to the 

electric potential φ  in terms of its nodal values Iφ : 

( )
( )

, ,

, ,

u
i iI I

I I

u u N

Nφ

ξ η ζ

φ φ ξ η ζ

 =


=
 (6) 

Note that in Eqs. (5) and (6) above, the convention of implied summation over the repeated 
index I  has been adopted. 

2.3.2. Discrete gradient operators 

The discrete gradient operators 
u  B  and 

φ  B , which are associated with the above finite 

element discretization (see Eq. (2)), can be derived in the following compact form: 
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 (7) 

where T
ib , ,ihα  and T

αγ  have been fully detailed in [30]. Note again that, in Eq. (7) and in 

what follows, the convention of implied summation over the repeated index α  is adopted, 
with α  ranging from 1 to 16. 

The discrete gradient operators given by Eq. (7) allow us to compute the stiffness matrix 
uuK , the piezoelectric matrix uφK  and the dielectric matrix φφK . In the same way, the 

corresponding mass matrix uuM , involved in the vibration problem governed by Eq. (4), is 
easily computed using the classical shape functions associated with these quadratic elements. 
Once the governing equations have been discretized in the form of Eq. (4), it is relevant to 
develop an effective method for solving the associated nonlinear problem, which will be the 
object of the next section. 

3. Methods and laws for active vibration control 

Several methods have been proposed for the control of vibrations using piezoelectric 
materials. Some of these strategies are based on the optimum position of the piezoelectric 
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patches [32-34]. Other techniques, such as the LQR (Linear Quadratic Regulator) [35-37] and 
the LQG (Linear Quadratic Gaussian) [38, 39], for instance, determine the gain control for the 
best control of vibrations. We will limit ourselves in this work to the use of retroactive control 
laws, which connect the electrical potential at the edges of the actuators to the one at the 
edges of the sensors. Hence, this allows the use of more complex and elaborate control laws, 
such as a filter of transfer plugged between the actuators and sensors. 

3.1. Proportional Feedback Control 

In this type of control, the voltage generated in the layer set as sensor is amplified and fed 
back via a controller in the other layer used as actuator. In fact, when a structure vibrates, the 
deflection of the piezoelectric layers results in electric potential generation. Hence, by 

denoting the voltage generated at the sensor and at the actuator as sφφφφ  and aφφφφ , respectively, 

the control can be expressed in a comprehensive manner in the form 

{ } { }( )a sH ω=φ φφ φφ φφ φ  (8) 

where ( )H ω  represents the transfer function of a filter in the circuit connecting the sensor to 

the actuator, as illustrated in Fig. 2. By separating the different layers of the structure and by 

applying only a harmonic force 0 ei tF F ω=  to the system, one can rewrite Eq. (4), which 

describes the vibration of a structure, in the form 

2

( ) 0 0

0 0 0 0 0

0 0 0 0 0

s a

s s

a a

u uuu uu

u
s

u
a

φ φ

φ φφ

φ φφ

ω
ω

K K K M

K K

K K

U F

φφφφ
φφφφ

                              − =                                 

 (9) 

The voltage generated at the sensor can therefore be written as 

{ } { }
1

s su
s

φφ φK K
−

   =−       Uφφφφ  (10) 

Combining Eq. (10) with Eq. (8), one obtains 

{ } { }
1

( ) s su
a H φφ φω K K

−
   =−        Uφφφφ  (11) 

Substituting Eqs. (10) and (11) in the first line of Eq. (9), and expressing the stiffness 

matrix as 0( ) ( )uu uu uu
vEω ω= +K K K , one can get 

{ } { }2
0 ( ) ( )v pE Hω ω ωK K K M + − − =   U F  (12) 

wherein the different matrices are given by 
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0 0
1

1
    with       
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sensor

u uuu
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u u
p actuator
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φ φφ φ

φ φφ φ
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−

−

 = −        ==             
 =        =              =

 (13) 

Using the toolbox developed in MATLAB by Koutsawa et al. [25], the functions ( )E ω  

and ( )H ω  can be easily differentiated. Hence, more complex and elaborate laws, such as 

those derived from functions of high-order filters, can easily be considered. Some filters used 
in this work for validation and application purposes are presented below. More details can 
also be found in [40]. 

3.2. Filter transfer functions 

3.2.1. Gaussian filter 

Some applications, such as radar, for example, require filters with symmetric pulse 
response and devoid of oscillations. The ideal shape is described by the Gaussian equation 

2

0

( ) exp
i

H
ωω

ω
  =    

 (14) 

where ω  is the eigenfrequency of the mode that is supposed to be controlled. 

The advantage of this filter is its symmetric shape that is similar to vibration amplitudes. 
This will reduce and even optimize the energy supply to the system through the filter to 
control vibration. 

3.2.2. Chebyshev filter 

The interest in this family of filters is that they can cover a large bandwidth and, thus, 
make it possible to control several simultaneous modes. Among these filters, one may quote 
Lerner’s filters, which make simultaneously optimal (in the sense of Chebyshev) the group 
time and weakening: 

2 a)

( 1) b
( )   ;   a,b  

b (

n

H
ni ω

ω ℝ

+∞

−∞

=
−

−
∈

+
∑  (15) 

By developing in power series and summing this series, one obtains 

2( ) 1 cos   ;      exp
a a 2

b b

a
H π π πωω ϕ ϕ ϕ =

       = +           
−  (16) 
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Both of the above functions will be used to highlight the interest of the developed 
numerical tools, which are intended to solving problems of active-passive vibration control 
based on the DIAMANT approach described below. 

4. Numerical resolution method 

Two approaches have been used in this work to emphasize the interest of active control. 
These consist of the modal analysis, which allows extracting the shock absorption properties 
( , )ηΩ , and the frequency response, which allows extracting the vibration amplitudes ( )U ω  

for each frequency at a given point of the structure. 

4.1. Modal analysis 

This tool is based on the DIAMANT approach, which couples the Automatic 
Differentiation to the Asymptotic Numerical Method. The current tool uses the concepts 
developed in [25-27]. First, one writes the nonlinear problem of free vibrations (9) in the 
following residual form: 

{ }0( , ) ( ) ( ) ( , ) ( , )v pE Hλ ω ω λ λ λ = + − − = + = R K K K M S T 0U U U U  (17) 

In the same way, the homotopy parameter p  is introduced in the form 

[ ]{ }
{ }

0

( , , ) ( , ) ( , )

( , )

( , ) ( ) ( )v p

p p

E H

λ λ λ
λ λ

λ ω ω

 = + =
 = −


 = −  

R S T 0

S K M

T K K

U U U

U U

U U

 (18) 

We then proceed by expanding the unknowns U  and λ  in power series of the homotopy 
parameter p  

0

1

1

0

; 0 1

N
j

j
j

N
j

j
j

p

p

pλ λλ

=

=

 = +
 ≤ ≤
 = +


∑

∑

U U U

 (19) 

The homotopy technique then makes it possible to drive the solution ( , )λU  by extracting 

it branch by branch. Thus, starting from the real eigenvalue problem ( , )λ =S 0U , resulting 

from ( , , ) ( , ) ( , )p pλ λ λ= + =R S T 0U U U  where 0p =  (which has as initial solution 

0 0( , ) ( , )λ λ=U U ), we evaluate the complex solution for the residual eigenvalue problem 

( , )λ =R 0U  corresponding to 1p = . The solution branch ( )( ), ( )p pλU  is obtained by the 

Taylor series ( , )j jS T  of functions ( , )S T , and by solving the following system: 
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( ) ( )( )
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where      { } { } { }
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λ λ λ

λ

= = −

= = = = −

= = = =

− − −      =    
     

 = − + −


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0 0

0 0

0 0

S T TA

A K M K K

S T T

S T
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U U

U U

U

U

U

        denotes the Lagrange multiplierκ

 
(20) 

The complete solution ( , )λU  is obtained by means of the continuation procedure proposed 

in [26]. This procedure makes it possible to compute the exact complex solution, namely the 
eigenmodes U  and the eigenfrequencies ω , which are the square roots of λ . The damped 

frequency nΩ  and the loss factor nη  are then derived for all ranks n  by: 

( )2 2 1n n niω η= Ω +  (21) 

Finally, the method has been implemented into MATLAB in order to extend the 
DIAMANT solver. This tool is used to determine the solutions of Eq. (12). The user only 

needs to supply the matrices 0K , vK , pK  and M , as well as the initial (trial) solution 

0 0( , )λU , the truncation order N  and the desired precision ε . 

Some numerical examples are presented in what follows to validate the developed model 
and to emphasize the interest of the proposed tool for vibration control. 

 

4.2. Frequency response 

The frequency response is determined by the Asymptotic Numerical Method (ANM). The 
detailed procedure has been presented by Azrar et al. [41, 42] with Taylor series expansions 
of λ , U , and function E . This method has been made more robust by Abdoun et al. [43], 
who replaced, in the continuation procedure, the Taylor series by Padé approximants [44]. 
The method, in its initial form presented by Abdoun et al. [43], is restricted to the extraction 
of vibration amplitudes of viscoelastic sandwich structures. We propose here an extension of 
this method in the aim of solving problems of forced vibrations for structures including 
piezoelectric materials for active-passive control. 

4.2.1. Asymptotic Numerical Method 

This algorithm, which combines perturbation techniques with the finite element method, 
was proposed to solve other classes of nonlinear problems. The different steps of the proposed 
algorithm can be summarized as follows: 
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Step 1: One begins by expanding in Taylor series of parameter p , by means of the 

DIAMANT toolbox, the unknowns U , λ  and the characteristic functions E  and H  in the 
form: 

{ }

1

1

0 1 0 12

1

0

0

0

0
1

( )

( )
1

 ;       , ( )

( )

( )

N
j

j
j

N
j

j
j

N
j

j
j

N
j

j
j

p p

p p

p
s

E p E p E

H p H p H

λ λ
λ

λ
λ λ

=

=

=

=

 = +



= +
 = − + −
 = +


 = +


∑

∑

∑

∑

U U U

U U U  (22) 

Step 2: The insertion of Eqs. (22) into Eq. (12) allows identifying at the different orders p  

the following linear systems of equations: 

[ ]{ } { }
[ ]

[ ]{ } [ ] [ ] { }

[ ]{ } [ ] [ ]( )

0 2
0 0

0 0

1 1 1 1 0

1 1
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O

  ;                           (a)
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 (23) 

For a given initial frequency 0 0ω λ= , far from resonance, the solution of the linear 

system (23-a) makes it possible to obtain the initial displacement 0U  from a fixed excitation 

force F . It is worth noting that the tangent matrix [ ]A  in Eqs. (23) is the same for all orders 

j . This means that only a single inversion of this matrix is required for all vectors jU  for the 

j -th branch. Also, it should be noted that matrix [ ]A  as well as vectors jU  are complex. A 

decomposition into integer and imaginary parts has been used in Abdoun et al. [43]. However, 
with the DIAMANT toolbox developed in MATLAB by Koutsawa et al. [25], this 
decomposition is not required. Accordingly, the classical continuation procedure based on 
Taylor series expansion is used. 

4.2.2. Continuation procedure 

The above-presented method has a range of validity corresponding to the radius of 

convergence of the series, characterized by limit[0, ]a  and defined as 

1
1

1
limit

n

n

a
− 

=   
 

U

U
ε  (24) 
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where ε  is an accuracy parameter to be taken sufficiently small to ensure convergence. The 
reader my refer to [45] for further details. 

The whole procedure developed above has been validated and highlighted through the 
benchmark tests presented hereafter. 

5. Numerical tests and application to vibration control  

As a preliminary step, the modal analysis of a cantilever sandwich plate is considered in 
order to validate the proposed resolution method. Then, benchmark tests involving more 
complex control laws will be introduced to demonstrate, on the one hand, the usefulness of 
the resolution method and, on the other hand, the benefits of these control laws. 

5.1. Validation of numerical tools 

5.1.1. Modal analysis 

We consider in this section a five-layer cantilever sandwich plate, with a viscoelastic core 
and piezoelectric faces, as illustrated in Fig. 3. The material properties of the different layers 
are defined in Table 2. 

The viscoelastic behavior of the core is characterized by a constant Young's modulus: 

( )0)( 1v cE E iω η= +  (25) 

where 0E  and cη  represent, respectively, the Young modulus of delayed elasticity and the 

loss factor of the core material. Because vibration control and active damping are not possible 
to investigate using the ABAQUS code, we will compare our simulations to the results given 
by the standard quadratic piezoelectric solid element HEX20E. The latter has been 
preliminarily validated, through comparison of eigenmodes for undamped structures, by 
taking the ABAQUS quadratic piezoelectric solid element C3D20E as reference. The current 
test also allows, among other things, the identification of the appropriate meshes to be used 
with the SHB20E element. Moreover, to highlight the effect of electromechanical coupling, 
we consider the three following configurations: 

- structure without electromechanical coupling; 
- structure with electromechanical coupling and short-circuit; 
- structure with electromechanical coupling and open-circuit. 

Figs. 4 shows the first five eigenmodes of vibration. The corresponding eigenfrequencies 
are reported in Table 3, where the results obtained with the SHB20E element are in excellent 
agreement with those given by the reference elements C3D20E and HEX20E. Also, one may 
notice the slight effect of electromechanical coupling on the natural frequencies. Indeed, the 
short-circuit configuration amounts to dealing with the case where the electromechanical 
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coupling is not accounted for. By contrast, when the circuit is open, the natural frequencies 
increase slightly. This increase in the eigenfrequencies is related to the resulting stiffness 
matrix, which becomes slightly stiffer due to electromechanical coupling. This phenomenon 
will be advantageously used in the sequel for the reduction and the control of vibration 
amplitudes. 

In what follows, the damping properties of the cantilever plate will be evaluated using the 
derivative proportional control law described as: 

{ } { } { }a d s v sg g= + ɺφ φ φφ φ φφ φ φφ φ φ  (26) 

where dg  and vg  denote, respectively, the direct and velocity control gains. Accordingly, the 

associated control function )(H ω  can be expressed as: 

)( d vH g i gω ω= +  (27) 

The obtained results are presented in Figs. 5 and 6 for different values of the control gain 
and the loss factor. A first observation is that the obtained results are in perfect agreement 
with those given by reference elements. In addition, it should be pointed out that fewer 
degrees of freedom (DOFs) are required for the proposed SHB20E element (i.e., 5548 DOFs) 
to achieve results equivalent to those yielded by the HEX20E element (i.e., 19884 DOFs). 
Furthermore, the number of integration points used in the proposed solid–shell formulation is 
also much lower due to the adopted reduced-integration scheme. 

 

More importantly, these graphs show the influence of the active control on the damping 
properties of the structure. Indeed, it initially appears that by increasing the direct gain 
parameter, the damped frequency increases overall up to a certain value of the damping 
coefficient. This increase is due to the increase in the stiffness matrix. However, beyond a 
certain value of the damping coefficient and of the direct gain parameter, the frequency starts 
to decrease, since the stiffness decreases as well. At the same time, the loss factor remains 
almost constant since the direct gain parameter does not induce any loss of energy. 

Concerning the velocity gain, a small variation of the frequency is observed for a low 
damping coefficient, while a more significant increase is obtained for high damping 
coefficients. On the other hand, the loss factor increases with the velocity gain and with the 
damping coefficient. Indeed, the velocity gain control law looks much like that of the 
viscoelastic dissipation, which explains the contribution to damping of the velocity gain. 

In conclusion, this first test allowed us to highlight the interest as well as some limitations 
of this type of active vibration control. In order to enhance the active control, more complex 
laws, such as those resulting from a filter for instance, can be of considerable usefulness. In 
addition, it is sometimes important to engineers to have an idea of the amplitudes of 
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vibrations. To this end, frequency responses need to be computed, which will be done in the 
subsequent benchmark tests. 

5.1.2. Frequency response of a sandwich plate in active-passive control 

We consider now a rectangular plate on simple supports, as shown in Fig. 7. The 
piezoelectric faces are made of PZT-5H whose properties are given in Table 4. Two 
viscoelastic materials are used in the core in order to compare their effectiveness and to show 
their respective influence on active control. These viscoelastic materials consist of ISD112 - 
27°C and DYAD606 - 30°C, whose behavior is described by the generalized Maxwell model: 

( ) 0
1

1
n

j

j j

G G
i

ω
ω

ω=

 ∆
= +  − Ω 

∑  

n=3 for ISD112 
n=5 for DYAD606 

(28) 

where 0G  represents the shear modulus of delayed elasticity, while ( , )j j∆ Ω  are the 

parameters of the generalized Maxwell model given in Tables 5 and 6. The other mechanical 
parameters and piezoelectric properties are indicated in Table 4. 

The elastic layers are made of aluminum. The first three modes of vibration will be 
investigated in order to reveal the interest as well as potential limitations of the different 
methods of control with respect to vibration modes. 

A sinusoidal pulse of amplitude 1000NF =  is applied to excite the first three modes of 
vibration of the plate, as shown in Fig. 8. A combination of direct and velocity control gain 

parameters dg  and vg , respectively, is adopted in order to disclose their respective 

contribution to the reduction of the amplitudes of vibrations for the different modes. 

The simulation results in terms of amplitudes of vibrations for the first three modes are 
shown in Figs. 9–14. Once again, from computational efficiency perspective, the proposed 
piezoelectric solid–shell finite element SHB20E requires 4 times less degrees of freedom to 
provide results equivalent to those given by the reference element HEX20E. Moreover, the 
analysis of the frequency response curves allows us to better understand the influence of the 
various parameters for controlling the amplitudes of vibrations. It is concluded that the 
proportional derivative type control makes it possible to reduce more or less the amplitudes of 
vibrations for these two viscoelastic materials over all the excited modes. It should be noted 

that the choice of the values given to dg  and vg  is motivated by obtaining equivalent 

amplitude reductions. Thus, for the plate whose viscoelastic core is made of ISD112, the 
amplitude of vibration is reduced by approximately 30 to 40% compared to the use of passive 
control alone. As to the plate with viscoelastic layer made of DYAD606, the amplitudes of 
vibration are virtually all attenuated. 
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These analyzes make it possible to highlight all the difficulty in choosing a control law 
capable of attenuating all modes of vibration, whatever the viscoelastic material considered. 
Certainly models of optimal active control, such as LQR, LQG, etc., exist in the literature and 
provide interesting results. Nevertheless, other means such as the addition of filters in the 
control circuit may provide different alternatives. In order to investigate this, we propose 
hereafter active control laws presenting significant frequency dependence. The resolution of 
the corresponding equations will allow us, on the one hand, to validate the developed 
resolution tool and, on the other hand, to show the greater reduction in the amplitudes of 
vibrations by such laws. 

5.2. Application to vibration amplitude reduction for sandwich plates 

In this section, two retroactive control laws are applied to sandwich structures to control 
the amplitudes of vibrations. The first objective is to show the interest of using transfer filters 
and their contribution to the control of vibration amplitudes of structures. The second 
objective is to highlight the usefulness of the developed numerical tool in the consideration of 
nonlinear control laws. 

5.2.1. Control with Gauss filter 

We consider again the structure schematized in Fig. 7. A filter of Gaussian type is added to 
the circuit connecting the sensors to the actuators. The control law described by the function 
of this filter is given by the relation: 

( )
0

2

exp   ;     100
i

H k k
ωω

ω
 

= = 
 

 (29) 

in which ω  represents the frequency dependence, and 0ω  is the natural frequency of the 

mode around which the analysis is performed. The first three modes are also excited by a 
force 1000NF = . The amplitudes obtained with this law are superimposed to those obtained 
by passive damping and represented in Figs. 15–20. To check the validity of these results, we 
also compare the results obtained with the proposed solid–shell element SHB20E to those 
given by the HEX20E (quadratic hexahedral solid element). Once again, the results yielded by 
the solid–shell finite element SHB20E are in good agreement with those given by the 
HEX20E reference element, while the latter requires 4 times more degrees of freedom. Also, 
the analysis of Figs. 15–20 shows a reduction in maximum amplitudes ranging from 40% (for 
mode 1) to 60% (for mode 3), as compared to the passive control obtained by ISD112 - 27°C. 
For a sandwich plate whose core is made of DYAD606 - 30°C, this reduction varies between 
20% (for mode 1) and 60% (for mode 3). The variation of coefficient k , which is involved in 
the filter function given by Eq. (29), may enable one to modulate the amplitude control. 

In order to improve the active control, another filter is placed in the active control circuit 
connecting the sensors to the piezoelectric actuators. 
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5.2.2. Control with Chebyshev filter 

We consider again the same configuration as above, except for the control law, which is 
now described by the following relationship: 

0
0

1
( a bcos   ;   a  ,  b   and   0.65

a
)

i
H k kωω ω

ω
  = + = = = −  

  
 (30) 

The frequency responses depicted in Figs. 21–26 show excellent agreement between the 
reference results provided by the HEX20E element and those obtained with the proposed 
solid–shell element SHB20E, with the latter necessitating once again 4 times less degrees of 
freedom for the same accuracy. Moreover, a much more significant attenuation of the 
amplitudes of vibrations is obtained with the Chebyshev filter, whatever the viscoelastic 
material used for the passive control. Therefore, this type of filter can be used in structures 
where no deflection is allowed, such as printed circuits where even a small deformation may 
cause malfunction of the device in which they are embedded. 

6. Conclusions 

In this work, a methodology, as well as the associated numerical simulation tools, has been 
proposed for active-passive control of vibrations. This is made possible thanks to the 
combination of the passive damping capabilities afforded by viscoelastic materials with the 
active control properties associated with piezoelectric materials. The main originality in the 
current contribution lies in the use of a filter-based controller to modulate the vibration 
amplitudes. For the modeling of the proposed system, a method is devised, which is based on 
the coupling of finite element discretization using a recently developed piezoelectric solid–
shell element with the DIAMANT approach. 

The extraction of the damping properties has been performed by extending the generic tool 
coupling the homotopy technique to the Asymptotic Numerical Method, which has been 
automated with the help of the Automatic Differentiation. The frequency responses of 
vibrations have been determined by a new Asymptotic Numerical Method, especially 
designed for active-passive vibration control. Then, a set of selective and representative 
vibration control tests have been successfully carried out, mainly on sandwich plate 
structures. In a preliminary step, the interest of active control has been shown by the use of 

the Proportional Derivative law for different damping coefficient values cη . To proceed 

further, two viscoelastic materials, the behavior of which depends on the frequency, have 
been introduced and the influence of two parameters, namely the direct and velocity control 

gains dg  and vg , has been investigated. Finally, nonlinear active control laws, which exhibit 

significant frequency dependence, have been introduced with their advantages demonstrated 
in terms of allowed reduction of amplitudes of vibrations. These tests, although applied here 
mainly to sandwich plate structures, can also be extended to structures with more complex 
geometries. 
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Tables 

Table 1. Explicit forms for the matrices and vectors resulting from the electromechanical 
coupling. 

  

Tuu u u

V
dvρ     =     ∫M N N

 Mass matrix 

[ ]   

Tuu u u

V
dv     =     ∫K B C B

 Stiffness matrix 

[ ]   

T

V
dvφφ φ φ     = −     ∫K B Bκκκκ

 Dielectric matrix 

[ ]    ;
T Tu u u u T

V
dvφ φ φ φ         = =         ∫K B e B K K

 Piezoelectric coupling matrix 

{ } { } { }    

T Tu u
v s pV S

dv ds   = + +   ∫ ∫F N f N f f
 Force vector 

{ } { } { }    

T T

v s pV S
dv dsφ φ   = − − −   ∫ ∫Q N q N q q

 Electrical charge vector 

 

Table 2. Mechanical and piezoelectric properties of materials. 

Elastic layers 

3
ρ = 2040 Kg m

E = 45.54 GPa

= 0.33

e

e

eν

−⋅

 

Piezoelectric layers 
(PZT4) 

p

11 22 33

13 23 12

44 55 66

2

15 24

2 2

31 32 33

8

11 22 33

3
ρ =7500 Kg m

C =C =139 GPa ;  C =115.3 GPa

C =C =74.3 GPa ;  C =77.8 GPa

C =C =25.6 GPa ;  C =30.6 GPa 

e =e =12.7 C/m

e =e = 5.21 C/m  ;  e =15.1 C/m

= =1.31 10  F/m ;  =1.15 10

−

− −

⋅

−

κ κ × κ × 8  F/m

 

Viscoelastic layer 

3

v

0

v

ρ = 1200 Kg m

E = 7.25 MPa

= 0.45ν

−⋅
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Table 3. First five eigenfrequencies for the five-layer cantilever sandwich plate. 

Configurations Modes 
C3D20E 
(24×8×5) 

HEX20E 
(24×8×5) 

SHB20E 
(12×4×5) 

Without 
electromechanical 
coupling 

1 38.481 38.519 38.46 
2 153.80 153.93 153.93 
3 180.83 181.23 181.23 
4 434.64 435.05 435.00 
5 460.34 460.53 460.52 

With electromechanical 
coupling  
(Short-circuit) 

1 38.481 38.519 38.519 
2 153.81 153.93 153.93 
3 180.83 181.23 181.23 
4 434.65 435.05 435.00 
5 460.34 460.53 460.52 

With electromechanical 
coupling  
(Open-circuit) 

1 38.859 38.910 38.907 
2 153.89 154.01 154.01 
3 182.44 182.87 182.87 
4 438.77 439.22 439.17 
5 461.05 461.26 461.25 
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Table 4. Mechanical and piezoelectric properties of materials. 

Elastic layers 
(Aluminum) 

3
ρ = 2690 Kg m

E = 70.3 GPa

= 0.345

e

e

eν

−⋅

 

Piezoelectric layers 
(PZT-5H) 

3

p

11 22 33

12 13 23

44 55 66

2

15 24

2 2

31 32 33

8 8

11 22 33

ρ =7730 Kg m

C =C =C =126 GPa  

C =79.5 GPa ;  C =C =84.1 GPa;

C =C =23.0 GPa ;  C =23.3 GPa;

e =e =17 C/m

e =e = 6.5 C/m ;  e =23.3 C/m

= =1.303 10  F/m ;  =1.503 10  F/m

 

−

− −

⋅

−

κ κ × κ ×
 

Viscoelastic layer made 
of (ISD112 - 27°C) 

-3

v

0

v

ρ = 1600 Kg m

E = 1.49 MPa

= 0.49ν

⋅

 

Viscoelastic layer made 
of (DYAD606 - 30°C) 

3

v

0

v

ρ = 1104 Kg m

E = 5.3922 MPa

= 0.29ν

−⋅

 

 

Table 5. Viscoelastic parameters for ISD112 - 27°C. 

j j∆  -1(rad.s )jΩ   

1 0.746 468.7 
2 3.265 4742.4 
3 43.284 71532.5 

 

Table 6. Viscoelastic parameters for DYAD606 - 30°C. 

j j∆  -1(rad.s )jΩ   

1 5.40 73.06 
2 14.15 453.34 
3 1.43 8.83 
4 28.33 3406.80 
5 128.85 52781.28 
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Figures 

 

Figure 1. Schematic representation for the reference geometry of the SHB20E element as well 
as for the location of its integration points in the case when the number of through-thickness 

integration points is int 3n = . 

 

 

Figure 2. Active-passive damping system using a viscoelastic material and piezoelectric 
layers with filter controller.  

 

 

Figure 3. Five-layer cantilever sandwich plate with viscoelastic core and piezoelectric faces.  
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Figure 4. First five eigenmodes for the five-layer cantilever sandwich plate.  

 

 

Figure 5. Damping parameters with variation of the direct control gain dg  ( 0vg = ). 
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Figure 6. Damping parameters with variation of the velocity control gain vg  ( 0dg = ). 

 

 

Figure 7. Simply supported five-layer sandwich plate.  
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Figure 8. Loading applied to the plate for different excited modes.  

 

 

Figure 9. Frequency response with combination of the coefficients of the Proportional 
Derivative law (ISD112 - 27°C) – Mode 1.  
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Figure 10. Frequency response with combination of the coefficients of the Proportional 
Derivative law (ISD112 - 27°C) – Mode 2.  

 

 

Figure 11. Frequency response with combination of the coefficients of the Proportional 
Derivative law (ISD112 - 27°C) – Mode 3.  
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Figure 12. Frequency response with combination of the coefficients of the Proportional 
Derivative law (DYAD606 - 30°C) – Mode 1.  

 

 

Figure 13. Frequency response with combination of the coefficients of the Proportional 
Derivative law (DYAD606 - 30°C) – Mode 2.  
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Figure 14. Frequency response with combination of the coefficients of the Proportional 
Derivative law (DYAD606 - 30°C) – Mode 3.  

 

 

Figure 15. Frequency response with ISD112 - 27°C and Gauss filter – Mode 1.  

 

250 300 350 400 450 500 550
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Frequency (Hz)

V
ib

ra
tio

n 
a

m
pl

itu
de

s 
(m

m
)

(gd=10 ; gv=0.01)

(gd=0 ; gv=0.01)

(gd=10 ; gv=0)

(gd=0 ; gv=0)

HEX20E − 24×20×5
SHB20E − 12×10×5

Passive damping

Hybrid control
(Gauss filter)

0 50 100 150 200 250 300 350 400
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Frequency (Hz)

V
ib

ra
tio

n 
a

m
p

lit
ud

e
s 

(m
m

)

HEX20E − 24×20×5
SHB20E − 12×10×5



30 

 

Figure 16. Frequency response with ISD112 - 27°C and Gauss filter – Mode 2.  

 

 

Figure 17. Frequency response with ISD112 - 27°C and Gauss filter – Mode 3.  
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Figure 18. Frequency response with DYAD606 - 30°C and Gauss filter – Mode 1.  

 

 

Figure 19. Frequency response with DYAD606 - 30°C and Gauss filter – Mode 2.  
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Figure 20. Frequency response with DYAD606 - 30°C and Gauss filter – Mode 3.  

 

 

Figure 21. Frequency response with ISD112 - 27°C and Chebyshev filter – Mode 1.  
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Figure 22. Frequency response with ISD112 - 27°C and Chebyshev filter – Mode 2.  

 

 

Figure 23. Frequency response with ISD112 - 27°C and Chebyshev filter – Mode 3.  
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Figure 24. Frequency response with DYAD606 - 30°C and Chebyshev filter – Mode 1.  

 

 

Figure 25. Frequency response with DYAD606 - 30°C and Chebyshev filter – Mode 2.  
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Figure 26. Frequency response with DYAD606 - 30°C and Chebyshev filter – Mode 3. 
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