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Abstract. A self-control method of vibrations is presented this paper. This method
combines the passive damping capabilities affotolediscoelastic materials with the active
control properties associated with piezoelectri¢cemals. Active control is introduced, using
the piezoelectric properties, in order to imprdve teduction in vibration amplitudes that can
be obtained by viscoelastic passive damping al®oethis end, a filter has been mounted
between the sensors and actuators. The resultiniinear problem is discretized using the
recently developed solid—shell finite element SHB2@ue to the advantages it offers in terms
of accuracy and efficiency, as compared to stantiaitg elements with the same geometry
and kinematics. In order to solve the discretizedblem, a resolution method using
DIAMANT approach is developed. A set of selectived aepresentative numerical tests are
performed on multilayer plates to demonstrate titerést of the proposed damping model.

Keywords: Vibration analysis, Active-passive control, Faitelements, Solid—shell,
Piezoelectric effect, Multilayer structures.

1. Introduction

The design of effective damping systems is a chgifey task that engineers are stepping
up with the increasing demand for structures stesend alleviated. For this purpose, the
best-known strategy, and especially the most adomssociated system, consists in
incorporating viscoelastic materials with variowsnis. Such viscoelastic materials can be
found in the form of uniform layers inserted betwde/o elastic layers (viscoelastic core
sandwiches) I-4], or as honeycomb filled with viscoelastic matkxifb-7]. Several works
have been contributed in this field, such as Akansst al. ], who proposed a sensitivity
analysis with regard to different parameters fondséch plates using the Asymptotic



Numerical Method (ANM) combined with the AutomatiDifferentiation P]. Worth
mentioning are also the major contributions of &earet al. 4] as well as Filippi et al.10],
who used Carrera’s Unified Formulation (CUFR)1{13 for the analysis of sandwich
laminated plates.

Alternatively, core material systems can be foundentangled fibers1f, 15, or as
viscoelastic inclusions embedded in elastic lay&6 Unfortunately, this technique does not
always allow effective passive damping. To imprtive damping properties, it is sometimes
necessary to increase the thickness of the visstielayer. However, limitations are quickly
encountered in terms of dimensions and mechanrcg@lepties of composites, which become
less resistant as the thickness of the viscoel&sters becomes larger. Other limitations are
sometimes associated with the total thickness efkthucture, which is related to its practical
implementation. To overcome these restrictions evinkreasing the damping properties of
multilayer structures, the use of piezoelectric enats is desirable and sometimes even
unavoidable. Indeed, the attractive propertiesietzqgelectric materials, and especially their
ability to deform under electrical load and vicersze make them indispensable. More
specifically, the current generated by deformatsnollected and amplified or attenuated in
order to control the vibration amplitudes. Someréture studies effectively combined passive
damping and active control using viscoelastic ceamdwiches constrained by layers of
piezoelectric materialsl/, 18]. Controlling this phenomenon is therefore impntteo better
implement these hybrid control systems. In therditere, a number of works have been
devoted to this issue, among which the contribstiogported in referenced9 20]. In
particular, it is clearly shown in these works thia¢ finite element discretization leads to
frequency-dependent nonlinear problems. The contglet such problems restricted the
earlier investigations to PD (Proportional Deriva)i type of control laws (see Duigou-
Kersulec 9] and Boudaoudd0Q], among others).

In this paper, we propose a method that combinessdiid—shell finite element concept
[21-24 and the DIAMANT approach 25-27 to effectively solve vibration problems.
Accordingly, the discretization of the resultingbration problem is achieved using the
quadratic piezoelectric solid—shell finite elem&HB20E developed in2B, 29]. The latter
represents the extension to piezoelectric mateoialise solid—shell element SHB20 proposed
by Abed-Meraim et al.J0], which shows a number of advantages and capabiliompared
to its counterpart, the traditional twenty-nodeiténelement resulting from a standard
displacement-based formulation. With regard toDW&MANT approach, the latter consists
of a recently developed method that combines théorAatic Differentiation with the
Asymptotic Numerical Method. This technique hasrbpeoposed ing5-27, where it has
been used to effectively solve problems of passibeation damping for viscoelastic core
sandwiches. Compared to these earlier contributtbiescurrent work represents an extension
that is specifically intended to solve problemsciive-passive vibration damping.



2. Formulation and discretization of the problem of ative-passive vibration control

In this section, we consider the vibration problemmultilayer structures combining
elastic, viscoelastic and piezoelectric layers. Tostribution to damping of the viscoelastic
material results in frequency dependency of theoakastic modulusE(w) . Regarding the
piezoelectric material, the latter induces elec&ohanical coupling. Therefore, we will first
recall some characteristic features associated thigh coupling. Then, the finite element
discretization of the problem of vibrations of nilalger structures combining these materials
will be carried out.

2.1. Electromechanical constitutive equations

Piezoelectric materials have the capability of gatiweg electricity when subjected to
mechanical loading (sensors). Conversely, they #&awe the ability to deform under
electrical charging (actuators). These properties @gescribed by the following coupled
electromechanical equations:

(1)

o=Clk-€[E
D=el&+K[E

where ¢ and ¢ represent, respectively, the vector form of thhesst and strain tensorf)
and E denote the electric displacement and electrid figdctor, respectively; whil€ , e
and k stand for the elastic, piezoelectric and dielegtgrmittivity matrix, respectively.

The discretized form§e} and{E} for the strain tensor and the electric field vecice

related, respectively, to the discretized displamein{u} and to the discretized electric

potential{g} , using the discrete gradient operatE)&”] and[B‘”] , as follows:

{e} =B [{u}

(€} =-[6"]{g @

In the current contribution, the discrete grad'[emrators[B“] and [Bﬂ are obtained by

finite element discretization for both the recentligveloped piezoelectric solid—shell
formulation SHB20E (see Fid), and its counterpart, the standard twenty-nodeqalectric
solid element HEX20E.

2.2. Discretization of the problem

The variational principle pertaining to piezoelectmaterials, which provides the
governing equations for the associated boundanyeviatoblem, is described by the Hamilton
principle [31]. In this weak form of equations of motion, thegkangian and the virtual work



are appropriately adapted to include the electramaitributions, in addition to the more
classical mechanical fields

~[ pi Budv-[ odedv+ | f,Bu dw [ f [Bu dsf (B

=—jVDmEdv+jqu mdszqsmqa ds+ q,[Bp )

where p is the material densityg},, g, and q, denote volume, surface and point charge,

respectively;, whilef,, f, and f represent volume, surface and point force, resmdyt

The finite element discretization of the boundasiue problem governed by E®3)(
generally leads to the following system of dis@edi equations:

(M {u}+[K “(@) [{u} +[K “[{g ={F}
[k H{u}+[K*]{g} ={Q}

where all matrices and vectors involved in EL.gre explicitly defined in Table 1.

(4)

The above matrices are obtained by finite eleméstretization using both the recently
developed piezoelectric solid—shell element SHB28&d the standard twenty-node
piezoelectric solid element HEX20E. The formulatminthe SHB20E solid—shell element is
only briefly outlined hereafter; the interesteddelamay refer to49] for the complete details.

2.3. Solid—shell finite element formulation
2.3.1. Kinematics and interpolation

The above-described vibration problem is discretibere using the piezoelectric solid—
shell element SHB20E. The latter is an extensiah@fyuadratic solid—shell element SHB20,
which has been originally proposed by Abed-Merainale [30]. The starting point for this
piezoelectric extension is the addition of one pa&ectric degree of freedom (DOF) to each
node. The resulting SHB20E element denotes a twamiye hexahedral element. Based on a
fully three-dimensional approach, this element these displacement DOFs as well as one
piezoelectric DOF per node. Nevertheless, to imgrthe performance of this solid—shell
element, and to provide it with some desirableldleatures, a number of enhancements are
introduced within its formulation based on the assd-strain method (ASM). In particular, a
special direction is chosen, designated as theKii@ss”, normal to the mean plane of this
element, along which a user-defined number of natiggn points are arranged. Also, an in-
plane reduced-integration rule is used, wdtkn, . integration points (see, e.g., Fig.in the

particular case when the number of through-thickmetegration points is),, =3).

For this element, the spatial coordinatesare related to the nodal coordinates using
the conventional quadratic shape functions, as\ial



x =% N (€7.0) ®)

wherei represents the spatial directions and ranges fram3; while| stands for the node
number, which ranges from 1 to 20. Likewise, trepliicement fieldy, is related to the nodal

displacementsu, using the same quadratic shape functions, andsdéhee applies to the

electric potentiakp in terms of its nodal valueg :

{ui =y N (&17.¢) )

quﬂNwl (51’7!()

Note that in Egs.5) and @) above, the convention of implied summation oher repeated
index | has been adopted.

2.3.2. Discrete gradient operators

The discrete gradient operatc[rB“] and [B"”} , which are associated with the above finite

element discretization (see Eq. (2)), can be ddrnineghe following compact form:

b +h, g7 0 0
O b;— +ha,2y; O T T
0 0 b +h, gy S
B"= bl +h, »T bl+h p7 oa' ’ ; B?=|b; +h, », (7)
2 a2 a 1 Y a T T
b; +h, 7,
 +h oot 0 y +h, 2o |
b3 L . . b-|1-_ ”vlyi
L O b3 +ha,3y0/ b2 +ha,2ya_

where b, h,; andy, have been fully detailed irB]. Note again that, in Eq7) and in

what follows, the convention of implied summatioveo the repeated index is adopted,
with a ranging from 1 to 16.

The discrete gradient operators given by Eq. (Ibwalis to compute the stiffness matrix
K", the piezoelectric matribK"” and the dielectric matrixXX #. In the same way, the
corresponding mass matriM ™, involved in the vibration problem governed by K4), is
easily computed using the classical shape funct@sssciated with these quadratic elements.
Once the governing equations have been discretizdéite form of Eq. (4), it is relevant to
develop an effective method for solving the asgsedianonlinear problem, which will be the
object of the next section.

3. Methods and laws for active vibration control

Several methods have been proposed for the coatreibrations using piezoelectric
materials. Some of these strategies are basedeooptimum position of the piezoelectric



patches 32-34. Other techniques, such as the LQR (Linear QuadRegulator) $5-37 and

the LQG (Linear Quadratic GaussiaB8[39], for instance, determine the gain control for the
best control of vibrations. We will limit ourselvesthis work to the use of retroactive control
laws, which connect the electrical potential at duges of the actuators to the one at the
edges of the sensors. Hence, this allows the useooé complex and elaborate control laws,
such as a filter of transfer plugged between theadors and sensors.

3.1. Proportional Feedback Control

In this type of control, the voltage generatedhie layer set as sensor is amplified and fed
back via a controller in the other layer used asator. In fact, when a structure vibrates, the
deflection of the piezoelectric layers results ilectic potential generation. Hence, by
denoting the voltage generated at the sensor atiek a&ctuator agp, and @, , respectively,

the control can be expressed in a comprehensivaenamthe form
{9.} =H(W){e]} (8)

where H(w) represents the transfer function of a filter ia tfircuit connecting the sensor to
the actuator, as illustrated in Fig). By separating the different layers of the struetand by
applying only a harmonic forc& = F,€“ to the system, one can rewrite Ed), (which
describes the vibration of a structure, in the form

K"(w) K" K" “ 0 o0}|[u F
K K" 0 |-« 0 0 O|{gt=10 (9)
K 7 0 K™ 0 0 0|l|e, 0

The voltage generated at the sensor can there¢oneitien as

{o.}=—[x™] K *J{u} (10)
Combining Eg. 10) with Eqg. @), one obtains

(0.} =H@[K"] [k *]{u} (11)

Substituting Egs.10) and (1) in the first line of Eq. ¥), and expressing the stiffness
matrix asK " (w) =K ", + E(wK *,, one can get

Ko+ E(@K, —H(@K ,—ai [{U}={F} (12)

wherein the different matrices are given by



K 0— K qu —K sensor 1

JKe=KE with K amaer = [ Ws]l < (13)
K p— K actuator K sensor — [K U%HK WST {< Ws]

M —M

Using the toolbox developed in MATLAB by Koutsawaa. [25], the functions E(w)
and H(w) can be easily differentiated. Hence, more compled elaborate laws, such as

those derived from functions of high-order filtecan easily be considered. Some filters used
in this work for validation and application purpsesare presented below. More details can
also be found in4Q].

3.2. Filter transfer functions
3.2.1. Gaussian filter

Some applications, such as radar, for example,inediters with symmetric pulse
response and devoid of oscillations. The ideal shaplescribed by the Gaussian equation

H(w) = exp[iﬁ)] (14)
2

where w is the eigenfrequency of the mode that is supptisée controlled.

The advantage of this filter is its symmetric shépe is similar to vibration amplitudes.
This will reduce and even optimize the energy syppl the system through the filter to
control vibration.

3.2.2. Chebyshev filter

The interest in this family of filters is that thean cover a large bandwidth and, thus,
make it possible to control several simultaneousl@so Among these filters, one may quote
Lerner’s filters, which make simultaneously optintal the sense of Chebyshev) the group
time and weakening:

=)'
H(w)_;bJri(a)—Zna) - abe R (13)

By developing in power series and summing thisesene obtains

= b
;o @= exEHT%l

H(w) = n9¢[l+ @’ cos[nc—u (16)
a a




Both of the above functions will be used to hightighe interest of the developed
numerical tools, which are intended to solving peals of active-passive vibration control
based on the DIAMANT approach described below.

4. Numerical resolution method

Two approaches have been used in this work to esmg#h#he interest of active control.
These consist of the modal analysis, which allowtsaeting the shock absorption properties
(Q,n7), and the frequency response, which allows extrgdine vibration amplitudes (w)

for each frequency at a given point of the strugtur

4.1. Modal analysis

This tool is based on the DIAMANT approach, whiclouples the Automatic
Differentiation to the Asymptotic Numerical Metho@he current tool uses the concepts
developed in 25-27. First, one writes the nonlinear problem of frabrations Q) in the
following residual form:

R(U,A)=[K,+E(@K,~H(@K ,-M [{U}s U,)T U.1)0 (17)

In the same way, the homotopy paramepers introduced in the form

R(U,A,p)=SU,A)+ pTU,4)=0
S(U, 1) =[K,-AM [{u} (18)

T(U,A)=[ E(@K ,-H(wK , {u}

We then proceed by expanding the unknowhsand A in power series of the homotopy
parameterp

N .
U=U,+> p'U,
j=1

N
A=h+Y A

j=1

O<p=1 (19)

The homotopy technique then makes it possible i@ dhe solution(U,A) by extracting
it branch by branch. Thus, starting from the regemvalue problenS(U,A) = 0O, resulting
from R(U,A,p)=SU,A)+ pTU,A1)=0 where p=0 (which has as initial solution
(U,4)=(U,,4,)), we evaluate the complex solution for the redideigenvalue problem
R(U,A) =0 corresponding top =1. The solution branci{U (p),4(p)) is obtained by the

Taylor serieg(S;, T;) of functions(S, T), and by solving the following system:



Ay Uol (U _|ASju-a =B Tpb £ Th
U, 0|k 0

Ay =K o= AM +p(E(AK , —H(AK ,)
where 1 Yo Sinon-d t B oy h b T
’ "Uo P{Suu0a-1 + B Topcoas |

k denotes the Lagrange multiplier

(20)

The complete solutiofU, ) is obtained by means of the continuation procegunposed
in [26]. This procedure makes it possible to computeetkect complex solution, namely the
eigenmoded) and the eigenfrequencies, which are the square roots 4f. The damped
frequencyQ, and the loss factoy, are then derived for all ranks by:

w?=Q.2(1+in,) (21)

Finally, the method has been implemented into MABLAn order to extend the

DIAMANT solver. This tool is used to determine thelutions of Eq. 12). The user only

needs to supply the matricé§,, K,, K and M, as well as the initial (trial) solution

(U,,4,), the truncation ordeN and the desired precisian

Some numerical examples are presented in whatwslto validate the developed model
and to emphasize the interest of the proposedaoweibration control.

4.2. Frequency response

The frequency response is determined by the Asytopdumerical Method (ANM). The
detailed procedure has been presented by Azrdr [gt1a42] with Taylor series expansions
of A, U, and functionE. This method has been made more robust by Abdbah &3],
who replaced, in the continuation procedure, thgldraseries by Padé approximant&i
The method, in its initial form presented by Abdatral. 3], is restricted to the extraction
of vibration amplitudes of viscoelastic sandwictustures. We propose here an extension of
this method in the aim of solving problems of fafcebrations for structures including
piezoelectric materials for active-passive control.

4.2.1. Asymptotic Numerical Method

This algorithm, which combines perturbation teclueis; with the finite element method,
was proposed to solve other classes of nonlinednlgms. The different steps of the proposed
algorithm can be summarized as follows:



Step 1 One begins by expanding in Taylor series of pateamp, by means of the

DIAMANT toolbox, the unknowndJ , A and the characteristic functior's and H in the
form:

N .
U(p)=U,+> p'U,

j=1

)I(p):)lo+ip")lj .
N I p=={(U-U, U+ a-A, N} (22)
E(p) = EO+Z PE

N .
H(p)=H,+> P'H,

=1

Step 2 The insertion of Eqs2@) into Eq. (2) allows identifying at the different ordens
the following linear systems of equations:

[AlUY =(F] o
[A]=[K©@+EK,-HK ,] © 7
Oordrel: [A{u} :[Al[M |-EK,]+H,K p]]{UQ} ¢ (@23

Ordre j> 2 [A]{Uj}={iz:/1i [M]—Z(E K,]-H K p})}{uo} ©)

Ordre O : {

For a given initial frequencyy =./A,, far from resonance, the solution of the linear
system 23-a) makes it possible to obtain the initial displ@entU, from a fixed excitation
force F . It is worth noting that the tangent mat{iA] in Egs. 23) is the same for all orders
] . This means that only a single inversion of thitnx is required for all vectord; for the
j -th branch. Also, it should be noted that mafulx| as well as vectort); are complex. A

decomposition into integer and imaginary partsieen used in Abdoun et ad.J. However,
with the DIAMANT toolbox developed in MATLAB by Koutsawat el. [25], this
decomposition is not required. Accordingly, the sieal continuation procedure based on
Taylor series expansion is used.

4.2.2. Continuation procedure

The above-presented method has a range of valalityesponding to the radius of
convergence of the series, characterizefObg; ., ] and defined as

imit

Kmit = (6 ||U1|| J”_l (24)

10



where € is an accuracy parameter to be taken sufficiesitiall to ensure convergence. The
reader my refer to4b] for further details.

The whole procedure developed above has been \adidatid highlighted through the
benchmark tests presented hereafter.

5. Numerical tests and application to vibration contrd

As a preliminary step, the modal analysis of a tewgr sandwich plate is considered in
order to validate the proposed resolution methduen] benchmark tests involving more
complex control laws will be introduced to demonstrain the one hand, the usefulness of
the resolution method and, on the other hand, ¢inefits of these control laws.

5.1. Validation of numerical tools
5.1.1. Modal analysis

We consider in this section a five-layer cantilesandwich plate, with a viscoelastic core
and piezoelectric faces, as illustrated in BigThe material properties of the different layers
are defined in Tabl2.

The viscoelastic behavior of the core is charamterby a constant Young's modulus:
E,(w) = B (1+i7,) (25)

where E, and 7, represent, respectively, the Young modulus of aelagiasticity and the

loss factor of the core material. Because vibrationtrol and active damping are not possible
to investigate using the ABAQUS code, we will comparesanulations to the results given
by the standard quadratic piezoelectric solid elmMEEX20E. The latter has been
preliminarily validated, through comparison of eigeodes for undamped structures, by
taking the ABAQUS quadratic piezoelectric solid elen€3D20E as reference. The current
test also allows, among other things, the identificaof the appropriate meshes to be used
with the SHB20E element. Moreover, to highlight thie& of electromechanical coupling,
we consider the three following configurations:

- structure without electromechanical coupling;
- structure with electromechanical coupling and skoduit;
- structure with electromechanical coupling and opiecuiit.

Figs. 4 shows the first five eigenmodes of vibration. Tloeresponding eigenfrequencies
are reported in Tablg, where the results obtained with the SHB20E elemeniraexcellent
agreement with those given by the reference elen@BB20E and HEX20E. Also, one may
notice the slight effect of electromechanical conglon the natural frequencies. Indeed, the
short-circuit configuration amounts to dealing witle case where the electromechanical

11



coupling is not accounted for. By contrast, when dineuit is open, the natural frequencies
increase slightly. This increase in the eigenfregies is related to the resulting stiffness
matrix, which becomes slightly stiffer due to eleatiechanical coupling. This phenomenon
will be advantageously used in the sequel for tlducton and the control of vibration
amplitudes.

In what follows, the damping properties of the cawelr plate will be evaluated using the
derivative proportional control law described as:

{@) =0,{0}+0f0} (26)

where g, and g, denote, respectively, the direct and velocity oargains. Accordingly, the
associated control functioll () can be expressed as:

H(w) =g, +iag, (27)

The obtained results are presented in Fagand6 for different values of the control gain
and the loss factor. A first observation is thag tibtained results are in perfect agreement
with those given by reference elements. In additibrshould be pointed out that fewer
degrees of freedom (DOFs) are required for the megp&HB20E element (i.e., 5548 DOFs)
to achieve results equivalent to those yieldedHey HEX20E element (i.e., 19884 DOFs).
Furthermore, the number of integration points usetthe proposed solid—shell formulation is
also much lower due to the adopted reduced-integratheme.

More importantly, these graphs show the influencehef active control on the damping
properties of the structure. Indeed, it initiallppgars that by increasing the direct gain
parameter, the damped frequency increases ovearatb ua certain value of the damping
coefficient. This increase is due to the increas¢he stiffness matrix. However, beyond a
certain value of the damping coefficient and of direct gain parameter, the frequency starts
to decrease, since the stiffness decreases asAtdlie same time, the loss factor remains
almost constant since the direct gain parametes doeinduce any loss of energy.

Concerning the velocity gain, a small variationtloé frequency is observed for a low
damping coefficient, while a more significant inase is obtained for high damping
coefficients. On the other hand, the loss factoreiases with the velocity gain and with the
damping coefficient. Indeed, the velocity gain eohtlaw looks much like that of the
viscoelastic dissipation, which explains the conttitin to damping of the velocity gain.

In conclusion, this first test allowed us to highlighe interest as well as some limitations
of this type of active vibration control. In ordi&r enhance the active control, more complex
laws, such as those resulting from a filter for anse, can be of considerable usefulness. In
addition, it is sometimes important to engineershave an idea of the amplitudes of

12



vibrations. To this end, frequency responses nedzktcomputed, which will be done in the
subsequent benchmark tests.

5.1.2. Frequency response of a sandwich plate in activ&stva control

We consider now a rectangular plate on simple supp@s shown in Fig7. The
piezoelectric faces are made of PZT-5H whose pragseréire given in Tabld. Two
viscoelastic materials are used in the core inraimeompare their effectiveness and to show
their respective influence on active control. Theseoelastic materials consist of ISD112 -
27°C and DYADG606 - 30°C, whose behavior is describethbygeneralized Maxwell model:

G(w)=Go(1+ L J

j=1 a)_in

(28)
n=3 for ISD112

n=5 for DYAD606

where G, represents the shear modulus of delayed elastieityle (A;,Q;) are the

parameters of the generalized Maxwell model givemahles5 and6. The other mechanical
parameters and piezoelectric properties are ingticiait Tabled.

The elastic layers are made of aluminum. The finsee modes of vibration will be
investigated in order to reveal the interest asl aelpotential limitations of the different
methods of control with respect to vibration modes.

A sinusoidal pulse of amplitudé =1000N is applied to excite the first three modes of
vibration of the plate, as shown in FB). A combination of direct and velocity control gain
parametersg, and g,, respectively, is adopted in order to discloseirthespective

contribution to the reduction of the amplitudewitirations for the different modes.

The simulation results in terms of amplitudes dirations for the first three modes are
shown in Figs9-14. Once again, from computational efficiency perspe¢ the proposed
piezoelectric solid—shell finite element SHB20Euiees 4 times less degrees of freedom to
provide results equivalent to those given by theremce element HEX20E. Moreover, the
analysis of the frequency response curves allow® letter understand the influence of the
various parameters for controlling the amplituddsvibrations. It is concluded that the
proportional derivative type control makes it pb$sito reduce more or less the amplitudes of
vibrations for these two viscoelastic materialsroa# the excited modes. It should be noted
that the choice of the values given t) and g, is motivated by obtaining equivalent

amplitude reductions. Thus, for the plate whoseogtastic core is made of 1ISD112, the
amplitude of vibration is reduced by approximatglyto 40% compared to the use of passive
control alone. As to the plate with viscoelastigelamade of DYAD606, the amplitudes of

vibration are virtually all attenuated.
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These analyzes make it possible to highlight adl difficulty in choosing a control law
capable of attenuating all modes of vibration, what the viscoelastic material considered.
Certainly models of optimal active control, suchLgR, LQG, etc., exist in the literature and
provide interesting results. Nevertheless, otheamaesuch as the addition of filters in the
control circuit may provide different alternatives. order to investigate this, we propose
hereafter active control laws presenting significequency dependence. The resolution of
the corresponding equations will allow us, on thee dand, to validate the developed
resolution tool and, on the other hand, to showgreater reduction in the amplitudes of
vibrations by such laws.

5.2. Application to vibration amplitude reduction for salwich plates

In this section, two retroactive control laws appléed to sandwich structures to control
the amplitudes of vibrations. The first objectiget@ show the interest of using transfer filters
and their contribution to the control of vibratiammplitudes of structures. The second
objective is to highlight the usefulness of thea@leped numerical tool in the consideration of
nonlinear control laws.

5.2.1. Control with Gauss filter

We consider again the structure schematized in7-ig.filter of Gaussian type is added to
the circuit connecting the sensors to the actuaidre control law described by the function
of this filter is given by the relation:

H(a)):kexp(ii)j k= 10( (29)
23

in which w represents the frequency dependence, @nds the natural frequency of the

mode around which the analysis is performed. Trat three modes are also excited by a
force F =1000N. The amplitudes obtained with this law are suppdsed to those obtained
by passive damping and represented in Fi§s20. To check the validity of these results, we
also compare the results obtained with the propesd#id—shell element SHB20E to those
given by the HEX20E (quadratic hexahedral solidrelet). Once again, the results yielded by
the solid—shell finite element SHB20E are in goagteament with those given by the
HEX20E reference element, while the latter requirénes more degrees of freedom. Also,
the analysis of Figsl5-20 shows a reduction in maximum amplitudes rangiongnfd0% (for
mode 1) to 60% (for mode 3), as compared to theiyp@asontrol obtained by ISD112 - 27°C.
For a sandwich plate whose core is made of DYAD686°C, this reduction varies between
20% (for mode 1) and 60% (for mode 3). The varratf coefficientk , which is involved in
the filter function given by Eg2Q), may enable one to modulate the amplitude cantrol

In order to improve the active control, anothetefilis placed in the active control circuit
connecting the sensors to the piezoelectric aatsiato
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5.2.2. Control with Chebyshev filter

We consider again the same configuration as albexegept for the control law, which is
now described by the following relationship:

H(w)=k(a+bco{%dn , &) ,b% andk=- 0. (30)

The frequency responses depicted in Fijs26 show excellent agreement between the
reference results provided by the HEX20E elemeit #wose obtained with the proposed
solid—shell element SHB20E, with the latter nedatisig once again 4 times less degrees of
freedom for the same accuracy. Moreover, a muchensignificant attenuation of the
amplitudes of vibrations is obtained with the Chadmy filter, whatever the viscoelastic
material used for the passive control. Therefdnes type of filter can be used in structures
where no deflection is allowed, such as printedutis where even a small deformation may
cause malfunction of the device in which they anbedded.

6. Conclusions

In this work, a methodology, as well as the assediaumerical simulation tools, has been
proposed for active-passive control of vibratiofi$is is made possible thanks to the
combination of the passive damping capabilitiepraid by viscoelastic materials with the
active control properties associated with piezddteenaterials. The main originality in the
current contribution lies in the use of a filtersbd controller to modulate the vibration
amplitudes. For the modeling of the proposed systemethod is devised, which is based on
the coupling of finite element discretization usiagecently developed piezoelectric solid—
shell element with the DIAMANT approach.

The extraction of the damping properties has begfopned by extending the generic tool
coupling the homotopy technique to the Asymptotiocmrical Method, which has been
automated with the help of the Automatic Differatibn. The frequency responses of
vibrations have been determined by a new Asymptbltionerical Method, especially
designed for active-passive vibration control. Thanset of selective and representative
vibration control tests have been successfully i@@rrout, mainly on sandwich plate
structures. In a preliminary step, the interesadive control has been shown by the use of

the Proportional Derivative law for different damgi coefficient valuesy,. To proceed
further, two viscoelastic materials, the behavibrwbich depends on the frequency, have
been introduced and the influence of two parametemnely the direct and velocity control
gains g, and g,, has been investigated. Finally, nonlinear actwetrol laws, which exhibit
significant frequency dependence, have been intedlwith their advantages demonstrated
in terms of allowed reduction of amplitudes of ations. These tests, although applied here
mainly to sandwich plate structures, can also kdergled to structures with more complex
geometries.
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Tables

Table 1. Explicit forms for the matrices and vestmsulting from the electromechanical

coupling.

(M= ([N v
[k*]=[ [ ] [C][B ]dv
[K#]=-[ [B *] [x][B*]av
[K*]=] [B" [e] B?]dv;
{F}=] [N* ]{f dv+j[N
{

=-J,[N“] {a}av-[ [N

Mass matrix
Stiffness matrix

Dielectric matrix

[ ] = [K W] ! Piezoelectric coupling matrix
] {f} ds+f b Force vector
w]T{ Cls} ds- O,  Electrical charge vector

Table 2. Mechanical and piezoelectric propertiesaferials.

Elastic layers

p.= 2040 Kgom®
E,=45.54 GPa
v,=0.33

Piezoelectric layers
(PZT4)

p,=7500 Kgm"®

C,=C,,=139 GPa; G =115.3 GPa
C,=C,=743GPa; G =77.8 GPa
C,=C,.=25.6 GPa; ¢ =30.6 GPa
e,=e, =12.7 C/m

e,=e,= 521C/h ; g =15.1 Cfm
K,=K,,=1.31x 10° F/im K, =1.16 IDF/m

Viscoelastic layer

p,= 1200 Kgom®
E,=7.25MPa
v,=0.45
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Table 3. First five eigenfrequencies for the fiagdr cantilever sandwich plate.

C3D20E HEX20E SHB20E

Configurations Modes (24x8x5) (24x8x5) (124x5)
1 38.481 38.519 38.46
Without 2 153.80 153.93 153.93
electromechanical 3 180.83 181.23 181.23
coupling 4 434.64 435.05 435.00
5 460.34 460.53 460.52
1 38.481 38.519 38.519
With electromechanical 2 153.81 153.93 153.93
coupling 3 180.83 181.23 181.23
(Short-circuit) 4 434.65 435.05 435.00
5 460.34 460.53 460.52
1 38.859 38.910 38.907
With electromechanical 2 153.89 154.01 154.01
coupling 3 182.44 182.87 182.87
(Open-circuit) 4 438.77 439.22 439.17
5 461.05 461.26 461.25
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Table 4. Mechanical and piezoelectric propertiesafterials.

p.= 2690 KgIm®
E,=70.3GPa
v,=0.345

Elastic layers
(Aluminum)

p,=7730 KgOm®

C,=C,,=C,,=126 GPa

C,=79.5GPa; ¢ =G =84.1 GPa;
Piezoelectric layers C,,=C.,=23.0GPa; ¢ =23.3 GPa;
(PZT-5H) e, =e, =17 C/h

e,=e,=- 6.5C/m ; g =23.3C/m

K,=K,,=1.303x 10" F/m k., =1.508 10

F

p,= 1600 Kgln?
E,=1.49 MPa
v,=0.49

Viscoelastic layer made
of (ISD112 - 27°C)

p, = 1104 Kgom”®
Viscoelastic layer made E,=5.3922 MPa

of (DYAD606 - 30°C)
v,=0.29

Table 5. Viscoelastic parameters for ISD112 - 27°C.

i A, Q,(rad.s")
1 0.746 468.7

2 3.265 4742.4
3 43.284 71532.5

Table 6. Viscoelastic parameters for DYAD606 - 30°C

i A, Q,(rad.s")
1 5.40 73.06

2 14.15 453.34
3 1.43 8.83

4 28.33 3406.80
5 128.85 52781.28
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Figures

16

_>77

Figure 1. Schematic representation for the refergmometry of the SHB20E element as well
as for the location of its integration points i ttase when the number of through-thickness
integration points is1,, =3.

/ Sensor (s
| Piezoelectric |
Elastic
Controller| i i
(F'It ) Viscoelastic
ilter
Elastic
| Piezoelectric

|
Figure 2. Active-passive damping system using eoakastic material and piezoelectric
layers with filter controller.

Actuator (a)

Jm: h/50

Piezoelectric
Elastic he=22h/5(
Viscoelastic hv= 4h/50
Elastic he= 22h/5(
Piezoelectric

Thp: h/50

Figure 3. Five-layer cantilever sandwich plate witcoelastic core and piezoelectric faces.
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Mode 1 Mode 2 Mode 3

Figure 4. First five eigenmodes for the five-lagantilever sandwich plate.
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Figure 5. Damping parameters with variation ofdirect control gaing, (g, =0).
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Figure 7. Simply supported five-layer sandwich @lat
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Mode | Mode 2

Mode 3

Figure 8. Loading applied to the plate for diffdrercited modes.
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Figure 9. Frequency response with combination efciefficients of the Proportional
Derivative law (ISD112 - 27°C) — Mode 1.
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Figure 10. Frequency response with combinatiomefcbefficients of the Proportional
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Figure 11. Frequency response with combinatiomefcbefficients of the Proportional
Derivative law (ISD112 - 27°C) — Mode 3.
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Figure 22. Frequency response with ISD112 - 27°€CG@mebyshev filter — Mode 2.
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Figure 23. Frequency response with ISD112 - 27°€CG@mebyshev filter — Mode 3.
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Figure 24. Frequency response with DYAD606 - 30A@ @hebyshev filter — Mode 1.
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Figure 25. Frequency response with DYADG606 - 30A@ @hebyshev filter — Mode 2.
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Figure 26. Frequency response with DYAD606 - 30A@ @hebyshev filter — Mode 3.
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