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Abstract

Near saturation, air bubbles and pockets can be trapped in the porous network
of soils. The aim of this paper was to present a coupled model that takes into
account the effect of this entrapped air on the poro-elasto-plastic behavior of the
soil. The model takes into account the physical-mechanical interactions between
different phases as well as the kinematics of each constituent (liquid water,
dissolved air, gaseous air and solid grains). This new model was implemented
in a FEM code. Some numerical simulations were performed to demonstrate its
ability to reproduce a continuous transition of unsaturated to saturated states.

Keywords: Quasi-saturated soils; poro-elasto-plasticity; entrapped air in
porous media

1. Introduction

For the design and the construction of geostructures, the knowledge of the
response of soils subjected simultaneously to mechanical and hydraulic loadings
is essential. In general, soils can be considered as multiphase porous media
composed of the solid phase and porous space. Two or even more fluid phases
can be simultaneously present in the porous space. For most cases in geotech-
nics, the two fluid phases are a liquid phase (water with other species) and a
gas phase (air, water vapor). The hydromechanical behavior of soils depends
not only on the constitutive behaviour of the solid skeleton, but also on the
interaction between different phases.

Many experimental results have shown the important role of the gaseous
phase in the hydromechanical behaviour of soils [1, 2, 3, 4]. And this effect
was already taken into account in numerous constitutive elasto-plastic models
[5, 6, 7, 8, 9].

∗Corresponding author
Email addresses: antonin.fabbri@entpe.fr (A. Fabbri), kwaikwan.wong@entpe.fr

(H.K.K. Wong), batien.lai@entpe.fr (B. Lai), t.bui@plaxis.com (T.A. Bui),
denis.branque@entpe.fr (D. Branque)

Preprint submitted to Elsevier November 26, 2019



Actually, at degrees of saturation lower than 85%, the gaseous phase is con-
tinuous. The coexistence of liquid water (a wetting liquid) and gaseous air
(non-wetting gas) leads to the surface tension phenomenon, and a difference
between their pressures, commonly called ”suction”. It results in an appar-
ent attraction between grains, thus increasing the intergranular normal contact
force. This has the effect of increasing the shear strength and the stiffness of
the soil skeleton.
If a fair number of theoretical and experimental studies have explored the be-
havior of unsaturated soils, it is not the case for the transition between partially
saturated and fully saturated states, called the ”quasi-saturated state”, which
is almost never considered. The lack of researches in this domain is not in line
with its importance. Indeed, earthwork materials are usually compacted to their
optimum Proctor density. Under this condition, the saturation degree is close
to 80% and the gaseous phase, which is no longer continuous, takes the form of
air pockets and bubbles entrapped within the liquid phase [10]. The presence
of this entrapped air seems to significantly influence the behavior of the soil.
Several studies indicate that the entrapped air affects the soil’s hydraulic and
mechanical properties [11, 12, 13]. However, at the degree of saturation men-
tioned above, it appears that neither unsaturated nor saturated formalisms can
accurately reproduce the behavior of fine compacted soils.
For that purpose, a first coupled hydro elastic model that takes into account the
physical-mechanical interactions between different phases as well as the kinemat-
ics of each constituent (liquid water, dissolved air, gaseous air and solid grains)
has been recently developed [14]. In particular, this model accounts for the in-
terfacial tension, migration of gaseous and liquid phases, which have important
impacts on the mechanical behaviour. The development leads to a system of
highly non-linear partial differential equations which can be solved numerically
using the finite element method. This model developed allows simulating the
quasi-saturated soils behaviors and the continuous transition between the sat-
uration domains. In order to complete the model presented in [14], the main
objective of this paper is to present an extension of the theoretical developments
to the elastoplastic behaviors of soils. At first, physical descriptions of air en-
trapment process in soil and air content evolution are presented. A simplification
of the mass conservation equation, based on the analysis of characteristic time
of the diffusion process of dissolved air is proposed. The second part of the
paper is dedicated to the development of elasto-plastic law of behavior. For
that purpose, a definition of the generalized effective stress for all saturation
domains is introduced, as well as some assumptions on the evolution of loading
surface with suction in the quasi-saturated domain. At last, the new model has
been implemented in a numerical code Hydromech written in C++, developed
originally by [15], that has been used to simulate oedometer tests with different
hydromechanical loading paths.
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Figure 1: Schematic representation of the entrapped air pockets and air bubbles within the
porous network

2. Description of entrapped air

2.1. Air bubbles and air pockets

The air phase is defined as ”entrapped” when it is no longer in contact with
the external atmosphere. As already discussed by Vaughan [16], for a given
entrapped air volume, all the air molecules can either be formulated as numerous
spherical bubbles of radius rbubble embedded within the liquid phase or take a
more complex geometry that closely follows the shape of the porous space to
maximize its volume-to-surface ratio. A schematic diagram of the distinction
between air bubbles and air pockets is reported in Figure 1.

The migration of air bubbles through the porous network can be due to their
advection by the liquid phase or by their transport within the liquid phase, which
can be regarded as a diffusion process. At constant pressure and temperature,
they do not modify the free energy of the solid matrix. Their sole mechanical
impact is to reduce the apparent compressibility of the liquid phase. The absence
of interaction with the surface of the pores forces these bubbles to have a radius
lower than the characteristic percolation size of the porous network, denoted
by rperc. If not, their unobstructed movement across the porous space network
becomes unlikely and the spherical geometry of the entrapped air volumes may
be modified at their interactions with the surface of the pores. In this case,
the entrapped air is assumed to form air pockets whose spatial migration can
only take place by dissolution in liquid water followed by advective transport
and Fickian diffusion of the dissolved air molecules (see, for example, [17]).
Due to evident geometrical constraints, the radius of the liquid-gas interface,
rpocket, is lower than the radius of the pore, rp where the pocket is located. This
description gives the following relation between the radii of the porous network
and of the liquid-gas interfaces:

3



rbubble < rperc ≤ rpocket ≤ rp. (1)

2.2. Equilibrium between gaseous and dissolved air molecules

The thermodynamic equilibrium between dissolved air and gaseous air is
assumed to be reached anywhere at any time. Consequently, at constant pres-
sure, the air pocket dissolution kinetics are driven by the velocity of dissolved
air-molecule migration within the liquid phase, while the dissolution/bubbling
processes induced by gas pressure variation are assumed to be instantaneous.
Under the assumption of dilute solutions and perfect gas, the amount of air
dissolved in liquid water is directly linked to the gaseous air pressure through
Henry’s law (cf. [14] for more details):

PG = KH
MH2O

MG
m̄eq, (2)

where PG is the gas pressure, m̄eq is the mass of dissolved air per unit of liquid
water mass at equilibrium with the entrapped air pockets, MH2O and MG are
the molar mass of water and air, respectively, and KH is Henry’s constant. At
20oC, and assuming that air is composed of 20% O2 and 80% N2, KH ≈7300
MPa.
The use of the Henry’s law requires the existence of stable air pockets within the
pore network of the REV. To account for the full saturation case, we introduce
m̄, which is the mass of dissolved air per unit of liquid water mass:

m̄ =
maL

mL
, (3)

where maL is the mass of dissolved air per unit of total initial volume (that is
volume of solid matrix and pore space) and mL is the mass of liquid water per
unit of total initial volume.

When the air in the gaseous state still exists within the REV, SL < 1, we
have m̄ = m̄eq. When the fully saturated state is reached SL = 1 (that is when
all the pore air in the REV has been dissolved), eq. (2) is no longer applicable.
In this case, m̄ ≤ m̄eq. In this case the following conditions are considered:

m̄eq ≥ m̄ ≥ 0 ; 1 ≥ SL ≥ 0 ; (m̄− m̄eq) (1− SL) = 0. (4)

The relation (2) indicates that the dissolution process is directly related to
the gas pressure within the air pockets, which is in turn linked to the shape of
the liquid-air interface through Young-Laplace’s law:

PG − PL =
2γL,G

r
, (5)

where PL is the liquid pressure, γL,G is the surface tension of the liquid-gas
interface, r is its radius, which is assumed to be spherical, r = rbubble for the
air bubbles and r = rpocket for the air pockets. Since rbubble < rpocket, the
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combined use of eqs. (2) and (5) results in a higher concentration of dissolved
air in the vicinity of the air bubbles than in the vicinity of the air pockets.
As a consequence, dissolved air migrates from the bubbles toward the pockets,
which ultimately makes the bubbles disappear in favor of the pockets. Because
the characteristic diffusion time at the pore scale is much shorter than other
characteristic times at the structural scale, the coalescence of small air pockets
is assumed to be instantaneous.
In conclusion to this analysis, trapped air is assumed to take exclusively the
form of air pockets (spherical or non-spherical) whose kinematics are similar
to the solid skeleton’s. To assess the geometry of these pockets, and especially
of their interface with the surrounding liquid phase, it is necessary to make
assumptions on how these pockets are created and their evolution.

2.3. From partial saturation to saturation: air entrapment mechanism

The physical origin of air entrapment can be explained by the diagram in Fig-
ure 2A: during wetting of an initially partially saturated soil, the smaller pores
of the porous network are invaded by the liquid phase, which forces the evacu-
ation of the gaseous phase out of the medium through the connected network
of larger pores, which remain dried [18]. When the saturation ratio increases
above a certain threshold, denoted by SEe , which is close to 90% (cf. [18], for
example), all the pores with a radius lower than or equal to the percolation ra-
dius become saturated by water. At that stage, the gas’s relative permeability
reaches zero, but some air remains in the larger pores. This air can be consid-
ered as ”entrapped” since all the capillaries that connect these pores to the rest
of the porous network are saturated with water. The total volume of entrapped
air within an REV with an initial volume of dΩ0 just after connectivity of the
gas phase is lost is equal to φ(1 − SEe )dΩ0, where φ is the Lagrangian poros-
ity. It should be remembered that the capillary pressure, or suction, is defined
as the difference between the nonwetting fluid (G) and the wetting fluid (L):
Pc = PG − PL. The value of Pc needed to reach saturation SEe is denoted by
Pc,e and, assuming a spherical liquid-gas interface, a negligible thickness of the
water adsorbed layer, and a wetting angle of 0o, is equal to:

Pc,e =
2γL,G

rperc
. (6)

Rigorously, Pc,e should be called ”percolation suction” since it marks the
transition between a continuous and a discontinuous gas phase. For the sake of
simplicity, we assume here that Pc,e can be confounded with entry air suction,
which means that the hysteresis between drainage and wetting is ignored.
According to this description, the interface radius of all the air pockets just after
their creation during a wetting process is equal to rperc. After this stage, the
geometry of the pockets may change due to dissolution/bubbling processes or to
their mechanical deformation. Whatever these transformations, they take on a
shape that maximizes their interface radius with the surrounding liquid phase.
It is quite difficult to predict the evolution of the optimal interface radius with
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Figure 2: A: Schematic representation of the air entrapment process. B: Diagram of the
snap-off effect.

air content since the geometry of the air pocket may be quite complex.
To overcome this problem, any decrease of air content is assumed to induce a
reduction of the number of pockets rather than the decrease of their size; and
vice-versa, the air content increase leads to the creation of new air pockets of
optimized size, which may be notably induced by the so-called snap-off effect
(see Figure 2B). This assumption seems to be in agreement with the microto-
mography observations made by [19]. It may be explained by the fact that the
volume and the shape of air pockets are driven by the geometry of the pore
where they are trapped. At equilibrium, the trapped air phase consists of nu-
merous pockets with the same liquid-gas interface radii, which are as high as
possible. When the air content decreases, some pockets may be more impacted
by others. These pockets will then dissolve and feed the other (more stable)
pockets so that they keep the same geometry.

In conclusion, all the stable pockets are assumed to have the same interface
radius with the liquid phase, and this radius is assumed to remain constant and
equal to rperc. A consequence of this assumption is that, even if the entrapped
air is in the form of isolated pockets, its pressure is homogeneous within a RVE
and the poromechanical mixture theory’s approach, notably presented in [20],
can be applied.

2.4. From saturation to partial saturation: air entrance mechanism

Creation of embedded air pockets and bubbles within the liquid phase during
a drainage stage from the fully saturated state can result from two major mech-
anisms. The first one is the heterogeneous nucleation of dissolved air. However,
a rough estimation using a formalism similar to the one presented in [21] leads
to the occurrence of nucleation for a supersaturation of dissolved air within the
range of 1.1-1.2, which is quite unlikely in geotechnical applications.
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The second mechanism is the snap-off effect. However, this effect remains lo-
cated near the external surfaces of the material and should occur for suction
levels within the range of entry air suction.
In conclusion, a direct transition, without the occurrence of trapped air, is as-
sumed from the saturated to the unsaturated domains.

2.5. Conclusions on the definition of in-pore phases and the limits of saturation
domains

For the sake of simplicity, the gravity term is not considered in the following
development.
The above physical description leads to the consideration of two in-pore phases
(liquid, L, and gas, G), each composed of two components: the liquid phase is
made of liquid water (w) and dissolved air (aL), while the gas phase is made of
dry air (aG) and water vapor (v). In addition, two types of distinct behavior
have been identified for the gas phase: it can be either free if Patm − PL ≥ Pc,e
or trapped if Patm−PL ≥ Pc,e. To facilitate the integration of this discontinuity
into the equations, without loss of generality, the gaseous phase will conceptually
be divided into two sets that can freely exchange within each other (see Figure
3). The first is the part that is invaded by water during the wetting process
before the loss of connectivity of the gaseous phase. The gaseous phase within
this volume is denoted with the superscript (m). The remaining part therefore
corresponds to locations where the air is entrapped when the saturation attains
the threshold Se. The air within this volume is denoted by the superscript (t).
It is important to underline that this distinction between these two geometrical
domains of the air phase is only made to simplify the derivations and that it
is not necessary for the development of the model. Using these notations, the
saturation ratio can be expressed as:

SL = 1− S(m)
aG − S

(t)
aG, (7)

where SL is the saturation ratio, S
(m)
aG is the fraction of the volume presently

occupied by the gaseous phase that is invaded by the liquid phase when SL = Se
(or when Patm − PL = Pc,e), while S

(t)
aG represents the complementary part

that remains to be occupied by the entrapped air when SL = Se (or when
Patm − PL = Pc,e).

The porous medium is considered ”unsaturated” as long as the gaseous phase
remains continuous and connected. This happens when the difference between
the atmospheric pressure and the in-pore liquid pressure is higher than the entry
air suction. Within this domain, the relationship between suction and saturation
degree is depicted by the retention curve. A fairly large number of closed-form
equations exist to reproduce this curve accurately for different materials. In
this study we use the prominent equation provided by Brooks and Corey [22]
for saturation ratios ranging between 0 and Se:

SL = Se

(
Patm − PL

Pc,e

)−a
for Patm − PL ≥ Pc,e. (8)
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Figure 3: Shape of the retention curve and diagram of the unsaturated and quasi-saturated
domains

The combination of (7) and (8) gives:

S
(m)
aG = Se

(
1−

(
Patm − PL

Pc,e

)−a)
for Patm − PL ≥ Pc,e, (9a)

S
(t)
aG = 1− Se for Patm − PL ≥ Pc,e. (9b)

When the gaseous phase becomes discontinuous (no ”free” air is left), S
(m)
aG

becomes null and the gas pressure can exceed Patm. According to the description
of air pockets presented above, and assuming that pv � paG, the link between
the gas pressure and the liquid pressure is:

PG = PL + Pc,e ≈ paG for Patm − PL ≤ Pc,e, (10)

where paG is the partial pressure of dry air.
The quantity of entrapped air can change due to dissolution or bubbling. When
all of the entrapped air is dissolved, the material becomes fully saturated. The
mathematical conditions that define the fully saturated states are SaG = 0 and
Patm − PL ≤ Pc,e. This description leads to the shape of the retention curve
shown in Figure 3.

The impact of the compaction on the transition between the unsaturated
and the quasi-saturated domains is taken into account through the variation of
Pc,e with the void ratio. The general tendency, which is observed on alluvials
soils by [23], and on finer soils by [24], is a decrease of Pc,e when the void ratio
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increase. But this relation is not unique and must be experimentally determined
for each soil.

3. Behavior of the in-pore phases

3.1. Mass conservation equations

To predict the behavior of both liquid and gas phases, it is necessary to
consider two distinct mass conservations equations. In this paper, similarly to
what is done in [14], the mass conservations of water (both liquid and vapour)
and air (both gaseous and dissolved) are chosen. It leads to the following system
of equation (For more detail, see [14]):

ρ0
L e

1 + e0

(
Ae
∂e

∂t
+Ap

∂PL

∂t
−
∂S

(t)
aG

∂t

)
= ∇ · (DL∇PL) , (11)

ρ0
L e

1 + e0

(
SL
∂m̄

∂t
+Bp

∂PL

∂t
+Be

∂e

∂t
+

(
β1
ρG

ρ0
L

− m̄
)
∂S

(t)
aG

∂t

)
= ∇ · (m̄DL∇PL + ρLDe∇m̄) , (12)

with

Ap =
SL

KL
−
∂S

(m)
aG

∂PL

Ae =
SL

e
−
∂S

(m)
aG

∂e

Bp = m̄

(
SL

KL
−
∂S

(m)
aG

∂PL

)
+ β1

ρG

ρ0
L

S
(t)
aG

PG

Be = m̄

(
SL

e
−
∂S

(m)
aG

∂e

)
+ β1S

(t)
aG

ρG

ρ0
L

(
1

e
+

1

PG

∂Pc,e
∂e

)
,

where, ρL is the density of liquid water, KL its bulk modulus, ρG is the density

of the gas, e is the void ratio and e0 is the initial void ratio. ∂S
(m)
aG /∂e and

∂S
(m)
aG /∂PL can be calculated in accordance with the relation (9). De is the

effective diffusion coefficient of dissolved air within the liquid water and DL is
the global permeability coefficient of water, which is equal to:

DL =

(
KL +

cv
ρL
δp

)
, (13)

with cv the mass concentration of vapor per unit of gas volume, KL the transport
coefficient of liquid water, and δp the transport coefficient of vapor. They satisfy:

KL = ρ0
L

κ0κ
L
r

ηL
; δp = Dv

e

MH2O

RT
, (14)
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where κ0 is the material’s intrinsic permeability, in m2; κL
r is liquid water’s

relative permeability coefficient, which is a nondimensional quantity that varies
between 0 (at a low saturation ratio) and 1 (when the material is fully satu-
rated); ηL is the dynamic viscosity of liquid water; Dv

e is the effective diffusion
coefficient of water vapor within the air phase, R is the perfect gas constant, T
the absolut temperature and MH2O the molar mass of water.
For the variation of KL with saturation, the relation proposed by Martin et al.
[25] is used, due to its simplicity and its quite good consistency with experimen-
tal data on fine soils:

KL = K0
L (SL)3, (15)

where K0
L = ρ0

Lκ0/ηL is the value of KL at full saturation.

For the variation of δp, Millington’s expression [26] is arbitrarily chosen:

δp = δ0
p (1− SL)7/3, (16)

where δ0
p is the value of δp for a dried material.

Finally, β1 is defined by:

β1 = Y(Pc,e − Patm + PL), (17)

with Y(x) = 0 for x < 0 and Y(x) = 1 otherwise (step function). In other
words, β1 = 0 for the unsaturated domain and β1 = 1 for the quasi-saturated
and fully saturated domains.

The final step to close the system is to consider the equilibrium between
gaseous and dissolved air, as is depicted by the relation (4). In other words, m̄
should be equal to m̄eq = (PGMG)/(MH2OKH) in the unsaturated and quasi-

saturated domains, while S
(t)
aG = 0 in the fully saturated domain. A necessary

and sufficient condition to fulfill these two conditions is to consider the following

form for the variation of S
(t)
aG:

∂S
(t)
aG

∂t
= β2

(
Cp
∂PL

∂t
+ Ce

∂e

∂t
−∇ ·

(
m̄

(
KL +

cv
ρL
δp

)
∇PL + ρLDe∇m̄

))
,

(18)
where

Cp =
ρ0

L e

1 + e0

(
m̄eq

(
SL

KL
−
∂S

(m)
aG

∂PL

)
+
β1

PG

(
m̄eqSL +

ρG

ρ0
L

S
(t)
aG

))

Ce =
ρ0

L e

1 + e0

((
m̄eqSL + β1S

(t)
aG

ρG

ρ0
L

)(
1

e
− β1

1

PG

∂Pc,e
∂e

)
− m̄eq ∂S

(m)
aG

∂e

)
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and

β2 =
(1 + e0) sign(SaG)

eρ0
L

(
m̄eq − β1

ρG
ρL

) , (19)

with sign(SaG)=0 when SaG = 0 (when the material is fully saturated) and
sign(SaG)=1 when SaG > 0 (the material is either unsaturated or quasi-saturated).

3.2. Simplification of the system of equation

The analysis of the relations (12) and (18) leads to the definition of τD,
which is the characteristic time of the dissolved air diffusion:

τD ≈
e

1 + e0

L2

Dv
e

, (20)

where L is the characteristic length.

If τD is strongly higher than the characteristic time of the solicitation and/or
observation, the diffusion processes can be ignored, and the system of equation
(11), (12), and (18) is simplified to:

ρ0
L e

1 + e0

(
Ae
∂e

∂t
+Ap

∂PL

∂t
−
∂S

(t)
aG

∂t

)
= ∇ · (DL∇PL) , (21a)

∂S
(t)
aG

∂t
= β2

(
Cp
∂PL

∂t
+ Ce

∂e

∂t
−∇ · (m̄eqDL∇PL)

)
. (21b)

3.3. Numerical application of the mass conservation equations

To illustrate the system formed by equations (11), (12), and (18), a first
calculation was performed considering an undeformable porous material (i.e.,
for ∂e/∂t = 0). This calculation considered the 1D configuration of a cylindrical
5-cm-high sample totally isolated on its lateral surfaces. This was done using the
data reported in Table 1 and the calculation was performed with a home-made
finite volume code computed in C.

The sample was initially in the unsaturated domain, with a saturation ratio
equal to S0

L = 0.0012 and therefore:

PL(x, t = 0) = P0 = Patm − Pc,e
(
Se
S0

L

)(1/a)

= 10kPa (22a)

m̄(x, t = 0) = m̄0 =
MGPatm

KHMH2O
= 2.2× 10−5 (22b)

S
(t)
aG(x, t = 0) = 1− Se (22c)

At t = 0 the material was put in contact with liquid water at one end of the
sample. Its pressure linearly increased from P0 = 10 [kPa] to Patm in 864 s and
remained constant until the end of the simulation. The dissolved air content
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Symbol Description Value [unity]

T Temperature 293 [K]
Patm Atmospheric pressure 100 [kPa]

KH Henry’s constant 7326 [MPa]
R Perfect gas constant 8.314 [J/K/mol]
KL Bulk modulus of liquid water 1970 [MPa]
MH2O Molar mass of water 18 [g/mol]
ρL Density of water 1000 [kg/m3]
MG Molar mass of air 29 [g/mol]

e0 Void ratio 0.53

Se Degree of saturation at air entry 0.9
Pc,e Entry air suction 10 [kPa]
a Coef. of the retention curve 3

De Diffusion coef. of dissolved air 2.2 10−11 [m2/s]
KL transport coef. of liquid water 1.43 10−8 [s]
δp Diffusion coef. of vapor 1.5 10−11 [s]

Table 1: Numerical values used for the simulation.

A B

C

Figure 4: Liquid pressure (A), dissolved air content (B), and saturation ratio (C) profiles at
three times obtained from the numerical application of the mass conservation equations for
an undeformable porous medium.

within this water remained constant and equal to m̄0 = 2.2× 10−5. The results
of the simulation are reported in Figure 4.

At first the model shows spacial and temporal transitions from unsaturated
domain to quasi-saturated domain. As long as PL < Patm − Pc,e = 90[kPa],
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the material is under the unsaturated domain. The evolution of the saturation
ratio is driven by the relation (8), and m̄ remains constant and equal to m̄0.
When the material becomes quasi-saturated, the shape of the saturation ratio
evolution changes and it is driven by the compressibility and dissolution of the
air phase. The pressure of the gas phase is no longer equal to Patm, which
then increases the dissolved air content. As a result, a gradient of dissolved air
content is created between the core of the material and its boundary, which will
progressively dissolve all the entrapped air. The propagation of this dissolution
front, which is driven by the diffusion process of dissolved air, is very slow (less
than 2 mm in 150 h). This numerical example thus clearly shows that even
though the diffusion of dissolved air must be taken into account to properly
model the long term behavior of quasi-saturated soils, the simplified system of
equation (12) and (18) may be acceptable when short term behavior is assessed.

4. Mechanical equilibrium and rheological law

4.1. Sign convention and definition of the mechanical variables

Most of the elasto-plastic laws for unsaturated soils were developed with
the sign convention of soil mechanics. Consequently, in this paper compressive
stresses are taken as positives and positive strains express contraction.To derive
the rheological law, the classical scalar variables of the Cam Clay model, namely
the volumetric strain εv, the mean stress σv, the deviatoric strain εd and the
deviatoric stress σd, are used. They are linked to the stress and strain tensors
through the relations:

εv = tr(ε) ; εd =

√
2

3
εd : εd, (23a)

σv =
1

3
tr(σ) ; σd =

√
3

2
σd : σd, (23b)

where ε and σ are the strain and stress tensors while εd and σd are their
deviatoric parts, which are defined by:

εd = ε− εv
3
δ ; σd = σ − σvδ, (23c)

where δ is the second order identity tensor.

For an axisymmetric problem, the relations (23) simplified in the form:

εv = ε1 + 2ε2 ; εd =
2

3
|ε1 − ε2| , (24a)

σv =
1

3
(σ1 + 2σ2) ; σd = |σ1 − σ2| , (24b)

where ε1 and σ1 are the principal strain and the principal stress along the axis
of symmetry, while ε2 and σ2 are the principal stress and principal strain along
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the radial and orthoradial directions.

Consistently with the classical strain decomposition assumption, volumetric
and deviatoric strains can be split in elastic (superscript e) and plastic (super-
script p) parts:

εv = εev + εpv ; εd = εed + εpd. (25)

Under the soil mechanics sign convention the relation between the effective
stress and the total stress is:

σ′ = σ − P̄φδ ; σ′v =
1

3
(σ1 + 2σ2)− P̄φ, (26)

where σ′ is the effective stress tensor, σ′v is the mean effective stress, P̄φ is the
equivalent pore pressure. In the saturated regime, P̄φ = PL, and σ′ is equal to
Terzaghi’s effective stress. In the quasi-saturated and unsaturated regime, the
effect of the interfacial energy is ignored, P̄φ = (1− χ(SL))PG + χ(SL)PL, and
σ′ is equal to Bishop’s effective stress. Finally, since this study focuses on the
high saturation ratio, the assumption χ(SL) = SL is used. On the basis of these
restrictions, the extensive use of the relation (17)that define the coefficient β1

as well as the ones that specify the values of S
(t)
aG, S

(m)
aG and PG for the different

domain of saturation (equations 7-10) and bellow), allows to write P̄φ and its
temporal derivation in the forms:

P̄φ = (β1 + (1− β1)SL)PL + (1− β1)(1− SL)Patm + β1S
(t)
aGPc,e, (27)

∂P̄φ
∂t

= [β1 + (1− β1)(1− a)SL]
∂PL

∂t
+ Pc,e

∂S
(t)
aG

∂t
, (28)

where we recall that a is the coefficient of the Brooks and Correy retention
curve.

4.2. Elastoplastic rheological law

To describe the elastic behavior, the isotropic logarithmic elastic behavior
of the Cam Clay model is adopted:

dεv =
dσ′v
K

; K =
1 + e0

k
σ′v, (29a)

dεd =
dσd
3G

; G =
3(1− 2ν)

2(1 + ν)
K, (29b)

where e0 denotes the initial void ratio, K and G are the bulk and the shear
moduli, while ν, which is assumed to be constant, is the Poisson ratio. This
elastic law leads to a linear variation of the volumetric strain (or void ratio)
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Figure 5: Variation of the void ratio with the logarithm of the mean effective stress during
isotropic compressions at several suction values. σ0

0 and σ0
c stand for the initial saturated and

unsaturated preconsolidation stresses, respectively.

with the logarithm of the mean effective stress during an elastic isotropic com-
pression, and the slope of this variation is equal to k (cf. Figure 5).

To describe the plastic behavior, the general framework of isotropic strain-
hardening poroelastoplasticity (cf. [27]) is used with the following expression
for the loading surface:

f(σ′v, σd, σc) = σ2
d −M2σ′v (σc − σ′v) . (30)

In plane (σ′v, σd), it leads to the elliptic criterion drawn in the Figure (6A).
The size of the loading surface is driven by a constant M , which is the slope
of the critical state line, and the hardening dual variable σc. From a physical
point of view, σc is the preconsolidation stress. That is, during an isotropic
compression load, no plastic strain occurs as long as σ′v remains strictly lower
than σc. As a consequence, in the plane (σ′v, Pc), the variation of σc, which is
described by the loading collapse curve (cf. Figure 6B), directly limits the elastic
zone. Within the wide range of formulations available, a slight modification of
Alonso et al.’s formulation [5] is chosen to describe the variation of σc with Pc:

σc
σref

=

(
σ0

σref

) lsat−k

l(Pc)−k

. (31)

In this expression, σ0 is the value of σc at full saturation. lsat is the stiffness
parameter of saturated soil that corresponds to the slope of the void ratio vari-
ation with the logarithm of the effective mean stress during an isotropic virgin

15



compression (i.e., for σ′v which is higher than the initial preconsolidation stress
denoted by σ0

c in the Figure 5, and hence σc = σ′v). The l(Pc) function in (31)
accounts for the increase of resistance and stiffness with suction. The choice of
this function’s formulation is particularly important because it determines the
shape of the loading surface, which then affects the capacity of the model to
reproduce wetting collapse. When the material is quasi-saturated, on the basis
of experimental studies on lateritic and saprolitic soils [28] as well as Gangetic
silt and Canyon Dam clay [29], l(Pc) is assumed to remain equal to lsat. Ac-
cording to the relation (31), this assumption leads to σc = σ0 when Pc ≤ Pc,e.
Despite the high number of experimental studies conducted on this subject, no
clear tendencies have been observed when the material is unsaturated. In some
studies, l increases Pc, while in others it decreases [8]. In this paper, to be con-
sistent with the relation (31), a form similar to the one proposed by Alonso et
al. [5] is adopted. It follows that the formulation of l(Pc) for the three domains
of saturation can be described by:

l(Pc) = (1− β1)lsat

(
(1− r) e−b(Pc−Pc,e) + r

)
+ β1lsat, (32)

where b and r are two material parameters and β1 is defined by the relation
(17).

A direct consequence of this form of l(Pc) is that σc is equal to σ0 in the
quasi-saturated regime (cf. Figure 6). The physical meaning of this result is
that no capillary hardening (or softening) is assumed as long as the air phase
is entrapped, thus, from the point of view of the solid skeleton, the soil is satu-
rated. Even if this result seems quite natural, it still needs to be experimentally
verified.

Finally, the evolution of the preconsolidation pressure with the hardening
variable, namely εpv, is assumed to follow the Cam Clay incremental law:

dσ0 =
1 + e0

lsat − k
σ0 dεpv ⇒

∂σc
∂εpv

=
1 + e0

l(Pc)− k
σc. (33)

Assuming the associated flow rules, the combination of the consistency cond-
tion (i.e. df = 0 during yield) with the relations (30), (31), (32), and (33)
provides the following relations for the plastic strains, in which ξ denotes the
ratio between the deviatoric and mean effective stresses (ξ = σd/σ

′
v):

∂εpv
∂t

=
o

Λ
∂f

∂σ′v
, (34a)

∂εpd
∂t

=
o

Λ
∂f

∂σd
, (34b)

where the plastic multiplier is equal to:

o

Λ=
1

H

(
∂f

∂σ′v

∂σ′v
∂t

+
∂f

∂σd

∂σd
∂t

+
∂f

∂Pc

∂Pc
∂t

)
, (34c)
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Figure 6: Evolution of the loading surface with suction in the (σ′v , σd) and (σ′v , Pc) planes.

with

H =
(1 + e0)(σ′v)

3
(
M4 − ξ4

)
l(Pc)− k

(34d)

and
∂f

∂σ′v
= σ′v

(
M2 − ξ2

)
, (34e)

∂f

∂σd
= 2σ′vξ, (34f)

∂f

∂Pc
= (β1 − 1)

(lsat − k) lsat(1− r) b e−b(Pc−Pc,e) ln
(
σ0

σref

)
(l(Pc)− k)2

(σ′v)
2
(
M2 − ξ2

)
.

(34g)
The combination of (25), (29), and (34) eventually provides:

(
dεv
dεd

)
=

 1
K + L

H

(
∂f
∂σ′v

)2
L
H

∂f
∂σ′v

∂f
∂σd

L
H

∂f
∂σ′v

∂f
∂Pc

,

L
H

∂f
∂σ′v

1
3G + L

H

(
∂f
∂σd

)2
L
H

∂f
∂σd

∂f
∂Pc

 ·
 dσ′v

dσd
dPc

 ,

(35)
where L = 1 if f = 0 (elastoplastic evolution) and L = 0 if f < 0 (elastic
evolution).

4.3. Mechanical equilibrium

If the body forces are neglected, the local mechanical equilibrium leads to
the relation:
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∇ ·
(
∂σ′

∂t
+
∂P̄φ
∂t
δ

)
= 0. (36)

The injection of the elastic incremental laws (29) in (36) leads to:

∇ ·
(
ET :

∂(ε− εp)
∂t

+
∂P̄φ
∂t
δ

)
= ∇ ·

(
CT :

∂ε

∂t
+
∂P̄φ
∂t
δ

)
= 0, (37)

where ET is the tangent fourth-order tensor of elasticity for which ET : dεe =
Kεevδ + 2Gεed, and ε is related to the displacement field, denoted by u through
the relation: ε = −(1/2)(t∇u + ∇u). Finally, CT is the apparent tangent
fourth-order elasto-plastic tensor of stiffness.

5. Numerical implementation

5.1. Final set of equations

Within the limits of short-term behaviors for which the diffusion of dissolved
air is negligible, the final set of the equation is composed of the two partial dif-
ferential equations (12-21b) and (37), where the two unknowns are the liquid
pressure PL and the displacement field u.

The resulting model uses 12 parameters that can be classified into the fol-
lowing three groups:

• The first group consists of the eight parameters of the elastoplastic rheo-
logical law. The elastic parameter k, the slope of the NCL at saturation
(lsat), and the preconsolidation pressure (σ0) can be directly determined
by conventional isotropic compression tests on saturated soils. They can
also be indirectly determined from a saturated oedometer test. The pa-
rameters b and r, which express the variation of l with capillary pressure,
can be estimated from two additional isotropic compressions (or oedome-
ter) tests, but under unsaturated conditions. The slope of the CLS (M)
and the Poisson coefficient (ν) can be determined from at least one tri-
axial test (several triaxial tests at several confinement pressures provides
a better assessment). Finally, the initial void ratio e0 can be estimated
from the mass variation between fully saturated and dried states.

• The second group contains the three parameters of the retention curve:
Pc,e, a, and Se.

• The last group contains the two transport parameters, namely KL and δp,
which can be determined from classical standardized tests. If the long-
term behavior is considered, the knowledge of an additional parameter,
namely the effective diffusion of dissolved air (Dv

e ), is required.
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5.2. Discretisation

The following developments will be limited to 1D problems under oedometric
conditions along the x axis. In that case, all quantities only depend on the
spatial coordiante x and time t while u = uex and thus εxx = −∂u/∂x is the sole
non null componant of ε. For the stress field, only σxx intervenes in the unique
equilibrium condition ∂σxx/∂x = 0. The external surface force T = −σ · n,
with n the outgoing normal vector, is the external surface force, also reduces to
a scalar T (the x-component) at each of the two extremities.
The multiplication of the two equations respectively by a virtual displacement
field, denoted by u∗ = u∗ex, and a virtual pressure field P ∗ followed by an
integration leads, after simplification and while neglecting the variation SmaG

with e, to the following expression for the variational formulation:∫
Ω

(
ε(u∗) : CT : ε(u̇)− ∂u∗

∂x

∂P̄φ
∂t

)
dΩ =

∫
Γ

u∗
∂T

∂t
dΓ, (38)

∫
Ω

(
φρ0

LP
∗

(
Ap

∂PL

∂t
−
∂S

(t)
aG

∂t
+
SL

φ

∂u̇

∂x

)
+
∂P ∗

∂x
DL

∂PL

∂x

)
dΩ =

∫
Γ

P ∗qLdΓ,

(39)
where Ω is the total volume of the domain and Γ is its surface. The notations
φ = e/(1 + e0) and u̇ = ∂u/∂t are used to simplfy the reading of expressions,
while qL = DL∇PL · n is the water influx at the external surface.

Using the classic finite element discretization, the integral over the domain
Ω is the sum of integrals over each element Ωi. The displacements and pressure
fields inside an element at any time t is expressed as a combination of the
elementary nodal displacements via a set of shape functions:

u(x, t) =
∑
k

Nu
i,jUi,j ; u∗(x, t) =

∑
k

Nu
i,jU

∗
i,j , (40)

PL(x, t) =
∑
k

Np
i,kPi,j ; P ∗(x, t) =

∑
k

Np
i,kP

∗
i,k. (41)

The choice of the type of element for the spacial discretization is essential.
As noted by [30], the interpolation degree for the displacement fields must be
strictly higher than whose of pressure fields. Here, the same approach as the
one developed in [15] is used, which consists in considering linear elements for
pressure fields (k = 2) and quadratic elements for displacement fields (j = 3).
It leads to the spacial discretization represented in the Figure 7.

Applying the above discretization to the variational equations, and after
assembling the elementary contributions, while accounting for the arbitrariness
of the virtual field, we get:

D∂U
∂t

+Q∂P
∂t

= Fu
S + Fu

T , (42)
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Figure 7: Diagram of an element i with 3 interpolation node for the displacement (nodes 1, 2
and 3), two nodes for the pressure (nodes 1 and 2) and two Gauss nodes.

R∂U
∂t

+ S ∂P
∂t

+ T P = F p
S + F p

q (43)

where U and P are the global matrices of nodal displacements and pressure at
the structural level, with D, Q, , R, S, T , Fu

S , Fu
T , F p

S and F p
q coming from

the assemblage of elementary matrices Di, Qi, , Ri, Si, T i, Fu
S,i, F

u
T,i, F

p
S,i and

F p
q,i of the form:

Di =

∫
Ωi

(Bu
i )tCTBu

i dΩ ;

Qi = −
∫

Ωi

(Bu
i )t ((1− β1)(1− a)SL + β1)Np

i dΩ ;

Fu
S,i =

∫
Ωi

(Bu
i )tβ1Pc,e

∂S
(t)
aG

∂t
dΩ ;

Fu
T,i =

∫
Ωi

(Nu
i )t

∂T

∂t
dΩ ;

Ri =

∫
Ωi

(Np
i )tρ0

LSLB
u
i dΩ ;

Si =

∫
Ωi

(Np
i )tφρ0

LApN
p
i dΩ ;

Ti =

∫
Ωi

(Bp
i )tDLB

p
i dΩ ;

F p
S,i =

∫
Ωi

(Np
i )tφρ0

L

∂S
(t)
aG

∂t
dΩ ;

F p
q,i =

∫
Ωi

(Np
i )tqLdΩ ;

where
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Nu
i = [Nu

i,1 N
u
i,2 N

u
i,3] ; Np

i = [Np
i,1 N

p
i,2] ; Bu

i =
∂Nu

i

∂x
; Bp

i =
∂Np

i

∂x
.

5.3. Resolution scheme

This poro-elastoplastic system of equations was implemented in the code
Hydromec1D initially developed by [15]. The resolution uses a classical iterative
method to compute the stress correction due to the plastic strain, based on the
elastic stiffness. For this 1D problem, where computation time is not an issue,
a very small time step is used to ensure convergence.

6. Results and discussion

The consistency of the results provided by the model was tested on a com-
parison with the experimental data provided by Magnan and Dang [31], which
is illustrated in Figure 8. This experiment is described in detail in [32].

Pressure sensor

Figure 8: Diagram of the consolidated-undrained oedometer test on clay samples from Cubzac-
les-Ponts conducted by [31].

Roughly it consists in an undrained oedometer test, with an axial stress
ranging from 28 kPa to 800 kPa, on a quasi-saturated 5-cm-high sample 6.5 cm
in diameter. To simulate this test, the system of equation (12-21b) and (37)
is solved using an adaptation of the finite element code Hydromech developed
by [15]. In this experiment, the soil sample was taken from a site in Cubzac-
les-Ponts, in southeastern France, whose parameters are summarized in Table 2
(data provided by [33]).

Two simulations were performed: with and without air dissolution. The
results are reported in Figure 9.
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A B

Figure 9: Comparison between the model results and the data from Magnan and Dang’s
experiment

A good match is observed between the calculated excess pore pressures and
those from the experimental measurements (cf. Figure 9A). Moreover, it can
be observed that the consideration of air dissolution significantly affects the
model’s prediction. For this example, and with the set of material parameters
adopted, the simulation that takes into account air dissolution leads to a bet-
ter estimation of the void ratio evolution, whereas the simulation ignoring air
dissolution underestimates the deformability (see Figure 9B). The difference be-
tween the two simulations is significant because the soil under consideration is
highly deformable. These results highlight the importance to take into account
the air dissolution phenomenon for a precise estimation of the deformability of
quasi-saturated soils.

Symbol Description Value [unity]

e0 Initial void ratio 2.13
k Slope of the swelling line 0.05
ν Poisson’s ratio 0.3

lsat Slope of the NCL at saturation 0.6
b Model parameter 0.75
r Model parameter 12.5 [MPa−1]
σ0 Preconsolidation pressure at saturation 28 [kPa]
M Slope of the CLS 0.75

Se Degree of saturation at air entry 0.915
Pc,e Entry air suction 110 [kPa]
a Coefficient of the retention curve 0.4

K0
L Coefficient of permeability at saturation 5× 10−10 [s]
δ0p Dried effective diffusion of vapor 1.5× 10−11 [s]

Table 2: Material parameter of the soil from Cubzac-les-Ponts from [33].
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The same kind of results were obtained using an elastic approach in [14].
However, contrary to what it was made in [14], where it was necessary to adjust
the value of the elastic parameters, the elasto-plastic parameters used to obtain
the results of the Figure 9 were direclty the ones provided by [33]. In other
words, no calibration of model parameter was realized.

This result gives thus some confidence on the accuracy of this model when
the soil remains in the quasi-saturated domain. It is however not sufficient to
test the model’s ability to correctly reproduce the transitions (both spacial and
temporal) among the several domains of saturation and to analyze the impor-
tance of taking into account the elasto-plastic processes.

For this purpose, a theoretical simulation was undertaken considering an
oedometric imbibition (null radial displacement and flows) at constant axial
stress. An initially unsaturated homogeneous 5-cm-thick sample was subjected
to a monotonic increase of liquid pressure at the top boundary surface (x = 0),
from -250 [kPa] to 900 [kPa] in 150[s]. At the bottom boundary (x = 5cm), a no-
flux condition was considered. The total axial stress was kept constant equal to
its initial value σxx(x, t) = 1MPa. Finally, the mass concentration of dissolved
air in the incoming liquid water was, at any time, equal to the concentration
of dissolved air within the pores of the sample, which were directly in contact
with the external surfaces. The results of this simulation are shown in Figure 10.

Until t = 37s the whole sample is unsaturated (US). The liquid saturation
profile is directly linked to the liquid pressure through the retention curve (8)
because the gas pressure is kept equal to Patm.
At x = 0m, the transition between the unsaturated (US) and quasi-saturated
(QS) domains occurs for t = 37s. This is illustrated by the variation in shape
of both SL(t) (see Figure 10A) and PG(t) curves (see Figure 10B). The former
stems from the modification of the link between SL and PL, which is no longer
driven by (8) in the quasi-saturated domain, but by air dissolution and com-
pressibility, as depicted by the relation (21b). The latter is the consequence
of the assumptions that the gas pressure is equal to the atmospheric pressure
in the unsaturated domain and that the difference between the gas pressure
and the liquid pressure becomes constant in the quasi-saturated domain (see
eq. (10)). In line with (26), this augmentation of the gas pressure induces a
reduction of the effective stress. It explains the increase of slope observed in
Figure 10D, which denotes an acceleration of the void ratio increase when the
material becomes quasi-saturated. In addition, as it is shown in Figures 10C
and D, the decrease in effective stress induces an elastoplastic transition, which
occurs while the material is under the quasi-saturated regime of saturation. In
consequence, an accurate modeling of the quasi-saturated domain appears to be
important for an accurate prediction of the soil deformation.

At x = 0m and t = 145s, the value of the saturation ratio reaches 1, and
the material becomes fully saturated. From then on, the saturation remains
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Figure 10: Results of the numerical simulation of oedometric imbibition. US, QS, and FS stand
for the unsaturated, quasi-saturated, and fully saturated domains, respectively. A: Saturation
ratio at three locations over time. B: Evolution at x = 0 of liquid and gas pressures. C:
Effective stress at the x = 0 surface over time. C: Evolution of the void ratio as a function
of the effective stress at x = 0. The dotted line represents the transition between the elastic
(EL) and the elastoplastic (EP) behaviors. D: Void ratio at three locations over time.

constantly equal to 1. This analysis demonstrates the ability of the model to
reproduce temporal transitions of saturation domains, irrespective of the me-
chanical behavior of the solid skeleton (either elastic or elastoplastic).
Finally, the ability of the model to reproduce the spacial transitions of satura-
tion domains is illustrated in Figure 10A, in which a coexistence of the three
saturation domains can be observed at t = 150s.

These two numerical examples demonstrate some of the abilities of the the-
oretical framework developed. However, the extent to which this degree of
complexity is necessary to properly design earthworks near saturation can be
questioned. Concerning the entrapped air dissolution process, the first numeri-
cal example shows the strong effects on both soil deformability and the evolution
of entrapped air content with in-pore pressure. Ignoring this phenomenon would
underestimate the deformability of the soil and to overestimate the air content
within the soil. It would thus be prejudicial in the assessment of rutting, for
example.
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A great asset of this model is that it allows continuous and smooth spatial
and temporal transitions between the saturation domains. The importance of
the transition between the unsaturated and the quasi-saturated states is quite
obvious. Although the top layer of an earthwork (such as an earth dam or a
road or railway embankment) is quite often in an unsaturated state, the deeper
layers remain quasi-saturated. Thus, interfaces between the saturation domains
will be present, and a simulation that considers only one saturation domain will
not accurately estimate the global deformation of the earthwork. In addition,
using physical parameters of real soil, the model predicts a transition between
the quasi-saturated and the fully saturated domains for an excess pore water
pressure of 300 kPa, which corresponds to a 30-m column of water. In all cases
in which such excess pore pressures may be encountered, the transitions between
the saturation domains should be taken into account.

Other models allowing one to take into account the entrapped air phase and
to consider transitions of the saturation domain have already been developed
in the past. Compared to these models, the main addition of this new model
is to provide a better physical description of the behavior of entrapped air by
considering that it is attached to the solid skeleton rather than to the fluid phase
and that its pressure is driven by the liquid-gas interface curvature, which tends
to be as small as possible. However, without additional experimental data,
no definitive conclusion can be drawn on the most accurate strategy to model
quasi-saturated soils.

In addition, this model is still subjected to some major limitations. At first,
only isothermal configurations are considered. As it is underlined by [34, 35],
temperature variations would affect the elasto-plastic behavior of the soil, its
retention curve (similarly to what is presented in [36]) and dissolution/bubbling
processes of entrapped air. Thus, spatial and temporal variations of the tem-
perature field may significantly change the impact of the entrapped air on the
global behavior of the soil. Secondly, this model assumes that the material is
isotropic, which is unlikely due to the directional compaction method commonly
used. A more realistic model would therefore assume a transverse isotropic be-
havior such as the one depicted by [37] for Tournemire argillites. Among the
same line, if clay soils are considered, it might not be entirely justified to assume
that the compressibility of the solid matrix is negligible. It would be necessary
to introduce the Biot’s coefficient in the expression of the effective stress and
to consider the variation of porosity at constant macroscopic strain caused by
the deformation of solid particles [20]. Finally, for a global hydromechanical
assessment, the impact of the pore space deformations (plastic, thermal, cracks,
etc.) on the transfer properties, which may be far from negligible [38], as well
as the hysteresis of the retention curve in the US domain [39] should be taken
into account.
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7. Conclusion

The behaviour of quasi-saturated materials is an important factor to be con-
sidered when designing cuttings and embankments in which earthwork materials
are compacted to the optimum proctor density. Typically, soil compaction is
performed at the optimum Proctor or on the wet side of the optimum, which
means that the soil is in a highly saturated state. In such case, the gas phase may
become discontinuous and take the form of entrapped air pockets. In this con-
text, the construction of a theoretical model for this type of soils was presented
in this paper. It has required the consideration of various physical-mechanical
phenomena and their couplings occurring within the tri-phasic medium consist-
ing of the solid grains, liquid water containing dissolved air and the entrapped
air pockets. In particular, the conditions leading to the presence of these pockets
within the porous network, their evolution and their migration were discussed.
Although they are trapped in the pores, their dissolution can take place. Dis-
solved air can migrate through the pore space, either by following the flow of
the fluid or by diffusion. The development leads to a system of highly non-linear
partial differential equations which was solved numerically using the finite ele-
ment method. A simplification of the system for short term behaviors was then
proposed.
On the basis of this simplified system, a new elasto-plastic hydromechanical
model has been developed that takes into account the physical-mechanical in-
teractions between these different in-pore phases and the solid matrix. For
that purpose, a bishop effective stress with ξ(SL) = SL was considered, and no
variation of preconsolidation effective stress and of the slope of the NCL were
assumed when the soil is quasi-saturated.
This new model has been implemented in a numerical code Hydromech written
in C++, developed originally by [15] that has been used to simulate oedome-
ter tests with different hydromechanical loading paths. In particular, this code
allows to simulate consistently the transition across different regimes of satura-
tion, both with respect to space (progressive translation of a boundary between
two neighbouring regimes) and to time (transition of one regime to another at
a fixed material point); which constituted a difficult modelling problem at the
start. Numerical studies carried out show that this model gives consistent re-
sults providing a clear demonstration of its ability to simulate with precision
the hydro-mechanical behaviour of quasi-saturated soils containing entrapped
air.
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