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TM8 represses developmental timing in
Nicotiana benthamiana and has functionally
diversified in angiosperms
Heleen Coenen1†, Tom Viaene1†, Michiel Vandenbussche2 and Koen Geuten1*

Abstract

Background: MADS-box genes are key regulators of plant reproductive development and members of most lineages
of this gene family have been extensively studied. However, the function and diversification of the ancient TM8 lineage
remains elusive to date. The available data suggest a possible function in flower development in tomato and
fast evolution through numerous gene loss events in flowering plants.

Results: We show the broad conservation of TM8 within angiosperms and find that in contrast to other MADS-box
gene lineages, no gene duplicates have been retained after major whole genome duplication events. Through
knock-down of NbTM8 by virus induced gene silencing in Nicotiana benthamiana, we show that NbTM8
represses miR172 together with another MADS-box gene, SHORT VEGETATIVE PHASE (NbSVP). In the closely
related species Petunia hybrida, PhTM8 is not expressed under the conditions we investigated and consistent
with this, a knock-out mutant did not show a phenotype. Finally, we generated transgenic tomato plants in
which TM8 was silenced or ectopically expressed, but these plants did not display a clear phenotype. Therefore, no
clear function could be confirmed for Solanum lycopersium.

Conclusions: While the presence of TM8 is generally conserved, it remains difficult to propose a general function in
angiosperms. Based on all the available data to date, supplemented with our own results, TM8 function seems to have
diversified quickly throughout angiosperms and acts as repressor of miR172 in Nicotiana benthamiana, together with
NbSVP.

Keywords: TM8, SVP, VIGS, Nicotiana benthamiana, Repressor of miR172, RNAi, Overexpression, Solanum lycopersium,
Petunia hybrida

Background
MIKCC-type MADS-box genes are plant transcription
factors involved in diverse developmental processes [1–
3]. In gymnosperms, 12 clades can be distinguished
while 17 clades are present in angiosperms as a result of
duplication events [4]. MICKC-type MADS-box genes
are generally known for their roles in the flowering tran-
sition, floral meristem and floral organ identity, fruit and
seed development. Their key role in plant reproductive
processes, often of interest for crop improvement, has
led to the functional characterization of most members

in at least one species. The function of a few MIKCC-
type lineages, however, remains elusive, and the Tomato
MADS 8-clade (TM8) is one of these [5].
Because of its absence in classical model species such

as Arabidopsis, maize and rice, TM8 was originally not
functionally characterized in any species. A recent phy-
logenomic study evaluating the evolutionary conserva-
tion of MICK-type MADS box genes in angiosperms,
describes five independent losses of the TM8-clade
throughout the angiosperms, making it the most often
lost MADS-box lineage, next to FLOWERING LOCUS C
(FLC) [6]. On the other hand, as a result of the increas-
ing number of available genomes and sequences, it be-
came clear that TM8 homologs appear to be present
throughout the spermatophytes.
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Tomato MADS 8 (TM8) was the first member of the
clade to be identified when it was isolated from Solanum
lycopersicum. It was classified as an ‘early’ flowering
gene, expressed in floral meristems and to a lesser extent
in the three inner floral whorls [7]. Its first
characterization was also in tomato. Overexpression of
full length TM8-antisense RNA resulted in defects of the
female floral organs, male and female sterility and par-
thenocarpy in three out of 12 transgenic lines [8]. More
recently, in an effort to thoroughly characterize TM8,
Daminato et al. produced transgenic tomatoes overex-
pressing full-length TM8 and plants expressing TM8
fused to the SRDX transcriptional repressor domain [9].
They observed malformations of stamens in three out of
22 independent TM8 overexpression lines, and consist-
ent with this, expression of B-genes was altered in these
flowers. The 15 35S:TM8:SRDX lines displayed more
pronounced phenotypes like epinastic darker green
leaves and oblong ovaries and fruits, which were seed-
less. Flower and fruit peduncles appeared longer and the
abscission zone was abnormal. JOINTLESS, an SVP
homolog, was significantly down regulated in these
plants. The authors concluded that TM8 plays some role
in the development of tomato flowers by possible inter-
actions with MACROCALYX.
Aside from this study, hardly any functional data on

TM8 have been presented thus far. Few studies, mostly
pursuing a genome wide analysis of MADS-box genes in
a certain species, report the presence of TM8 in a diver-
sity of genomes and a function has sometimes been pro-
posed based on gene expression data. In Cucumis
sativus, ERAF17, the cucumber TM8 ortholog, is in-
volved in the development of female flowers after induc-
tion by ethylene [10]. In Antirrhinum majus, the TM8
ortholog DEFH7, is only expressed in young bracts (un-
published observations, [11]). Hileman et al. detected
TM8 in nearly all tomato tissues, albeit to a lesser extent
in roots, seedlings, carpels and green fruit [12]. In Vitis
vinifera, VvTM8 was detected in latent buds during the
flowering transition, in later stages of flower develop-
ment and in tendrils [13]. However, in a more recent
transcriptional analysis of tendril and inflorescence de-
velopment, VvTM8 was not mentioned [14]. In a mo-
lecular study of fleshy fruit-like structures in
gymnosperms, TM8 was unexpectedly identified [15],
again displaying a broad expression pattern in both vege-
tative and reproductive structures. TbTM8 was most
highly expressed during arilus development in Taxus
baccata. In Ginkgo biloba, three TM8-like genes are
expressed in leaves, but are also present in male and fe-
male cones and during seed and fleshy sarcotesta devel-
opment. Based on these observations, TM8 was assigned
a role in fleshy fruit-like development in gymnosperms.
In another genome-wide identification of MADS-box

genes in Prunus mume, PmMADS26 was identified as
the sole TM8 ortholog expressed only in the pistil and
the fruit, its expression gradually increasing during rip-
ening [16]. In the closely related Prunus persica on the
other hand, the TM8 ortholog, identified as Ppe-
MADS35, was only very lowly expressed in roots, leaves,
cotyledons, embryo’s and fruits [17]. In a study in pear,
PpTM8–1 showed high expression in the bud, branch,
leaf and root but not in the flower, while PpTM8–2 was
highly expressed in all tissues [18]. A similar pattern was
found in Malus domesticus, where one TM8 homolog,
MdMADS045 showed expression in fruits and strong ex-
pression during flower development, while the other,
MdMADS111, was rather lowly expressed in most tis-
sues except in the developing fruits [19].
Though no clear general or conserved role for TM8

can be concluded from these diverse expression data,
most studies share a broad TM8 expression pattern,
both in vegetative and reproductive tissues and most
often during floral meristem and fruit development.
Therefore, TM8 is most commonly assigned a function
in flower and fruit development [9, 13, 15]. However,
clear knock-down or knock-out mutants are not avail-
able and seem necessary to provide more insight into its
true role. In this study, we evaluate the function of TM8
function within Solanaceae by means of a Petunia
hybrida (Petunia) PhTM8 knock-out mutant, and trans-
genically altered TM8 expression in Nicotiana benthami-
ana (Nicotiana) and Solanum lycopersicum (tomato).
The diverse results obtained in this work combined with
the miscellaneous data from previous studies listed
above, support the idea of rapid functional evolution of
the TM8 gene.

Results
TM8 was not retained after major genome duplication
events
Recent studies showed that TM8 is highly conserved in
gymnosperms, and that this clade even expanded in
gymnosperms, becoming one of the largest MADS-box
clades in fruitless seed plants [4]. In angiosperms on the
other hand, it is designated to be the most often lost
MADS-box subclade together with FLC [6]. To gain fur-
ther insight in its evolutionary history we reconstructed
its phylogeny in angiosperms, thereby not only focussing
on where it was lost, but also trying to describe its wide-
spread conservation. To do this, we used sequences
from all available genomes to date in Phytozome 12 and
the Sol Genomics Network (Additional file 1), supple-
mented with sequences from EST and transcriptome da-
tabases on NCBI and the oneKP platform [20, 21].
Special efforts were made to identify orthologs in species
belonging to orders lacking fully available genomes.

Coenen et al. BMC Plant Biology  (2018) 18:129 Page 2 of 16



The resulting phylogeny clearly demonstrates that
TM8 is indeed present in many orders throughout the
angiosperms and that the gene phylogeny follows the
angiosperm phylogeny (Fig. 1, Additional file 2). This
implies that no major duplications occurred within the
TM8-lineage, which is in contrast to most other
MADS-box genes which, like other transcription factors,
are generally conserved after whole genome duplications
[22, 23]. On the other hand, the number of cases in
which TM8 was lost or could not be identified are strik-
ingly numerous and well spread throughout angiosperm
evolution. No TM8 orthologs could be detected in
species belonging to Nymphaeales, to all monocots
minus the Alismatales, to Trochodendrales, to Gunner-
ales, Dilleniales, Santanales, Fabales, Gentianales or
Boraginales in addition to other smaller orders and
many important families like the Brassicaceae. Only one
or a few orthologs were identified in the Chloranthales,
Proteales, Buxales, Geraniales and Cornales. While we
cannot draw final conclusions about its loss in a species
when no fully sequenced genome is available, to date
many species are broadly sampled and have extensive
transcriptome data available. The lack of TM8 from
these databases does suggest its absence in these taxa.

NbTM8 and NbSVP repress miR172 in Nicotiana
benthamiana
We decided to use Nicotiana benthamiana for the initial
characterization of TM8, as it has been proven to be an
excellent model species for virus induced gene silencing
(VIGS), a rapid and easy method to obtain loss of function
phenotypes [24]. To first evaluate when and where TM8
functions in Nicotiana, we used qPCR and in situ
hybridization (Fig. 2). The qPCR results show that NbTM8
is strongly expressed in the stem and to a lesser extent in
seedlings, leaves and floral organs (Fig. 2a). The in situ hy-
bridizations reveal NbTM8 expression in both developing
shoots and flowers (Fig. 2b, c; Additional file 3). Expres-
sion in a developmental series of plants, each with one
more leaf, shows a strong peak early in vegetative develop-
ment around the initiation of the fourth leaf. Its expres-
sion drops after this peak and increases again only around
the ninth or tenth leaf and continues to increase until the
first flower appears (14th leaf) (Fig. 2d). We hypothesized
that the first peak might be around the juvenile-adult tran-
sition, therefore we also quantified miR156 and miR172
levels by stem-loop qPCR (Fig. 2e). In agreement with this
hypothesis we found that the first peak in NbTM8 expres-
sion coincides almost perfectly with the moment that
miR156 drops below the increasing miR172 level. In Ara-
bidopsis, this juvenile-adult transition is characterized by
the production of trichomes on the abaxial sides of leaves
[25], so we studied the juvenile-adult transition in Nicoti-
ana to identify similar markers for this phase change. We

observed that both large trichomes and a pointed leaf tip
emerge around the third and fourth leaf, confirming that
the phase transition indeed takes place at this point
(Additional file 4A–C). The second peak in NbTM8 ex-
pression coincides with the increased expression of a
homolog of SUPPRESSOR OF CONSTANS 1 in Nicotiana
(NbSOC1) as shown in the graph by a grey arrow (Fig. 2d,
e and Additional file 4D). SOC1 is a marker of floral in-
duction in Arabidopsis and is strongly expressed during
the floral transition [26]. These observations suggest that
NbTM8 acts during both phase transitions in Nicotiana,
possibly by regulating miR156 and miR172.
As MADS-box genes often function in heteromeric

complexes, we considered whether a protein interaction
partner might be involved in this regulation. A good
candidate would be SHORT VEGETATIVE PHASE
(SVP), another MADS-box gene involved in the floral
transition by down regulation of miR172 in Arabidopsis
[27]. We first tested the ability of NbSVP and NbTM8 to
interact using yeast-two-hybrid. While we found a posi-
tive interaction in one direction (AD-SVP + BD-TM8),
the result in the other direction (AD-TM8 + BD-SVP)
remains inconclusive due to the auto-activation of
NbSVP (Fig. 2f ). Therefore, we subsequently performed
co-immunoprecipitation from Arabidopsis leaf meso-
phyll protoplasts and confirmed that these proteins can
interact in vitro (Fig. 2g).
Therefore, we decided to also characterize NbSVP.

qPCR reveals that NbSVP is more strongly expressed in
seedlings and leaves and to a lesser extent in the stem
when compared to NbTM8 (Fig. 2h). It seems thus that
both NbTM8 and NbSVP acquire their strongest expres-
sion levels in the vegetative parts of Nicotiana benthami-
ana, and that the relative expression of NbSVP in
flowers is also lower than for NbTM8 compared to the
expression in the vegetative parts. In situ hybridization
of NbSVP further reveals that NbSVP is expressed in
developing shoots, similar to NbTM8, but in contrast, its
expression is absent in floral meristems (Fig. 2i, j;
Additional file 3). This is similar to Arabidopsis where
SVP expression is constant during vegetative growth but
reduces in the inflorescences and further disappears
during flower development [28, 29]. qPCR in a develop-
mental series reveals that in contrast to NbTM8, expres-
sion of NbSVP is continuously stronger and shows no
major peaks early in vegetative development. Similar to
NbTM8, NbSVP mRNA expression increases when the
flowering process starts, around the time when
Nicotiana APETALA1 (NbAP1) is expressed (Fig. 2k,
Additional file 4D).
These data on the co-expression and interaction of

NbSVP and NbTM8, suggests that NbTM8 together with
NbSVP may have overlapping roles in the transition of
the shoot to flowering. Expression of NbTM8 early in
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vegetative development further suggests that NbTM8
might play a role in the juvenile to adult transition.
We evaluated the effect of NbTM8 and NbSVP knock

down by using virus induced gene silencing. Empty vec-
tor (EV) transformed Agrobacterium was injected in
control plants. The resulting NbTM8-VIGS plants and
NbSVP-VIGS plants were remarkably similar in several
ways. NbTM8-VIGS plants displayed a range of charac-
teristic defects in both flowers and inflorescence leaves.
The most often observed anomaly (in 15% of the VIGS
flowers compared to 3% in EV, p = 0.018) was an in-
creased number of floral organs in the outer three
whorls of VIGS plants compared to EV plants, a charac-
teristic also regularly displayed by NbSVP-VIGS plants
(19% of the flowers compared to 3% in EV, p = 0.004)

(Fig. 3a). Furthermore, in some cases, NbTM8-VIGS
petal tubes were twisted or sometimes even open (Fig.
3b, c). Leaves in the inflorescence were smaller, twisted
and darker green (Fig. 3d). Overall, NbTM8-VIGS plants
can be described as undergoing accelerated development
based on the increased rate of flower and leaf produc-
tion. Both NbTM8-VIGS and NbSVP-VIGS plants were
early flowering when using the number of leaves before
flowering as a proxy (Fig. 3e–f ). They flower early by ap-
proximately three leaves compared to control plants,
suggesting that both NbSVP and NbTM8 function as re-
pressors of the floral transition in Nicotiana (Fig. 3e).
For NbSVP this should not come as a surprise, as
SVP-like genes have been shown to act as a repressor of
the floral transition in Arabidopsis thaliana [28]. For
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TM8 however, an early flowering phenotype has not yet
been attributed to a member of this subfamily. qPCR
confirmed much reduced NbTM8 and NbSVP expression
in both inflorescence leaves and flowers of NbTM8-VIGS
and NbSVP-VIGS plants respectively compared to the
EV control (Fig. 3g). Interestingly, the observed pheno-
types strongly resemble those of Nicotiana plants that
constitutively express Arabidopsis miR172 (Fig. 3a–c)
[30]. To verify whether increased expression of miR172
may explain some of the phenotypes, miR172 expression
levels were quantified in NbTM8-VIGS and
NbSVP-VIGS lines. The results show that miR172 is
strongly upregulated in the VIGS lines in comparison to
EV control plants (Fig. 3g, h). Because NbTM8 and
NbSVP can interact and show similar phenotypes, they
might also regulate each other. Indeed, NbSVP silencing
results in the concomitant down regulation of NbTM8
(Fig. 3h), while silencing of NbTM8 does not affect the
NbSVP level (Fig. 3g).
As silencing seemed to accelerate developmental tran-

sitions, we addressed whether constitutive expression
would delay these transitions by generating transgenic
NbTM8 and NbSVP overexpression plants. While cau-
tion is required interpreting overexpression phenotypes
due to off-target binding, we observed a number of con-
sistent alterations. Out of all 35S:NbTM8 lines, the
strongest one showed a dramatic transformation of all
leaves into juvenile leaves and inflorescence bracts
remained sepal-like (Fig. 3i, j). Two lines showed a sig-
nificant increase in lifespan – more than threefold – and
senescence was delayed as indicated by a comparison in
chlorophyll levels (Fig. 3k, l). Furthermore, these stron-
gest lines did not produce any seed. In all transgenic
lines, petal tubes were severely reduced in size and be-
came more greenish (Fig. 3m, n), a phenotype that was
previously observed in plants that constitutively express
Arabidopsis APETALA2 (AP2) in Nicotiana [30]. Trans-
genic plants overexpressing NbSVP also display similar
phenotypes as 35S:NbTM8 plants. They also resulted in
reduced and greenish petal tubes (Fig. 3m, o–q). Scanning

electron microscopy shows that this is a consequence
of a partial petal to sepal transformation (Fig. 3s). In
other 35S:NbSVP lines the petal tube was even more
strongly reduced while sepals were enlarged (Fig. 3p,
q). The sepals and carpels were leaf-like, as previously
described for ectopically expressed SVP-like genes in
other Solanaceae species (Fig. 3p–r) [31]. Both in
35S:NbTM8 and 35S:NbSVP lines, miR172 was signifi-
cantly down regulated (Fig. 3t, u).
Together, NbTM8 and NbSVP transcripts have over-

lapping expression patterns in the shoot apical meristem,
in leaves, bracts and in flower meristems. Their expres-
sion patterns are uncoupled when sepal primordia
emerge and NbSVP expression disappears. Given the
above data, it is plausible that NbTM8 and NbSVP act as
negative regulators of miR172 in Nicotiana and may
control the timing of developmental transitions together
by repressing miR172 levels.

TM8 appears to have lost its function in Petunia hybrida
The next step was to evaluate the conservation of this
flowering repressor complex in other species. The closely
related Petunia is an excellent model, considering the
availability of a PhTM8 knock-out mutant which contains
a footprint resulting from a dTph1 transposon insertion in
the start codon, leading to a frame shift (Additional file 5).
We phenotyped 19 footprint-mutant plants (phtm8) and
21 wild-type plants for developmental and morphological
traits, but no differences in flowering time, leaf or flower
morphology could be observed (Fig. 4).
To evaluate the effect of PhTM8 overexpression, we

tried to generate 35S:PhTM8 lines but we were not able to
clone PhTM8 from Petunia cDNA despite of extensive
cloning efforts (see methods). In a subsequent search for
PhTM8 expression data we found that PhTM8 was also
not picked up in a MADS-box gene screening of various
Petunia cDNA libraries by Immink et al. [32].
Blasting in all available Petunia transcriptome and EST

databases to date did not deliver any hits either, suggesting
that PhTM8 is not or only very weakly expressed in

(See figure on previous page.)
Fig. 3 Effects of silencing and overexpression of NbTM8 and NbSVP. a Extra floral organs in NbTM8- and NbSVP-VIGS plants, similar to the 35S:miR172
phenotype. b Twisted petal tubes in some NbTM8-VIGS plants. c Split petal tubes in NbTM8-VIGS and 35S:miR172 plants. d NbTM8-VIGS plants have
smaller, greenisher and twisted leaves in the inflorescence. e Early flowering and accelerated development in NbTM8-VIGS and NbSVP-VIGS plants.
Asterisks indicate significant differences at the 0.01 significance level applying a Student’s t-test. f NbSVP-VIGS plants are early flowering compared to
control plants. (Arrows indicate first flowers). g Relative expression of NbTM8, miR172 and NbSVP in inflorescence tissue of NbTM8-VIGS and control
plants. h Relative expression of NbSVP, miR172 and NbTM8 in NbSVP-VIGS and control plants. i Strongest 35S:NbTM8 line grows more slowly and only
develops juvenile leaves. j Sepal and bracts of EV compared to sepal and sepaloid bracts of 35S:NbTM8. k Close-up of adult leaf compared to
35S:NbTM8 leaf. l Comparison of chlorophyll levels between 4 month old EV plants and 8 month old 35S:NbTM8 plants.m Reduced petal tubes in
35S:NbTM8, 35S:NbSVP, and 35S:NbAP2 flowers. N) Strongly reduced petal tube of 35S:NbTM8 flower. o Petaloid sepals in 35S:NbSVP lines. p Leaf-like
sepals in 35S:NbSVP lines in comparison to EV. q Strongly reduced petal tube and enlarged sepals of 35S:NbSVP flower. r Leaf like carpels in 35S:NbSVP
flower. s Scanning electron microscopy of EV sepals and petals compared to 35S:NbTM8 and 35S:NbSVP petals. Scale bar represents 50 μm. t Relative
expression levels of NbTM8 and miR172 in inflorescence tissue of control and 35S:NbTM8 lines. u qPCR of NbSVP and miR172 in inflorescence tissue of
control and 35S:NbSVP. EV: empty vector control lines. Error bars are standard error of the mean of three technical replicates
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Petunia, at least in normal growth conditions. In the pro-
tein sequence however, no obvious deviation from other
TM8 orthologs or marks of pseudogenization can be ob-
served (Additional file 6). The protein could therefore still
be functional, but might only be expressed in conditions
that haven’t been tested yet.
Taken together, PhTM8 appears not to act as a floral

repressor in Petunia in contrast to NbTM8 in Nicotiana
and its function appears to have diverged between these
species belonging to the same family.

The function in tomato also remains unclear
Since Petunia did not seem to express PhTM8, we con-
tinued our investigations in tomato, another member of
the Solanceae family and the first species in which TM8
was identified [7]. Two overexpression lines and 22
RNAi lines were obtained by Agrobacterium-mediated
transformation. Control lines were obtained from unin-
fected explants grown on non-selective medium. Once

transferred to soil, all T0-lines were genotyped and at-
tentively observed for possible abnormalities of vegeta-
tive and reproductive organs, but no obvious consistent
deviations were observed. Even though many fruits in all
three groups were parthenocarpic, enough seed could be
obtained from both transgenic and control lines to
evaluate TM8 function in the T1 generation, which was
not possible using VIGS in Nicotiana. The two 35S:TM8
and 14 selected TM8-RNAi transgenic T1-lines were ge-
notyped and subsequently tested for altered TM8 ex-
pression by RT-PCR (Additional file 7).
Based on the results in Nicotiana we expected that al-

tered expression of TM8 could result in a change of
flowering time or number of leaves before floral initi-
ation, however, this was not what we observed (Fig. 4c).
Only one of the 14 tested TM8-RNAi lines was on aver-
age late flowering compared to control, and one
35S:TM8 line was early flowering, opposite to what we
observed in Nicotiana, but more important, not

a

c

d

b

Fig. 4 PhTM8 mutant and TM8 altered transgenic tomatoes do not differ from control plants. a Mean and standard deviation of flowering time,
number of leaves before flowering or number of floral organs of the PhTM8 knock-out mutant and wild-type. b No apparent difference between
wild-type Petunia and phtm8. c Mean and standard deviation of flowering time, number of leaves before flowering, number of floral organs or
anomalies in the stamen cone of transgenic tomatoes and control. d Control, TM8 silenced and overexpressed tomatoes. p-values are determined
by unpaired two-tailed Students t-test
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consistent with any of the other lines. Aside from flow-
ering time, we attentively phenotyped the first three
flowers of each T1 plant for deformed stamen cones,
extra floral organs and other morphological abnor-
malities. Again, while the absolute majority of these
flowers appeared normal, a few control, TM8-RNAi
flowers and 35S:TM8 flowers had a split stamen cone
(Fig. 4c, d). Only three flowers, one in each group,
showed this in a severe form as described by [9] (Fig.
4c, Additional file 8). Extra floral organs as seen in
Nicotiana were also observed, but again in very low
numbers and both in control and in TM8-RNAi and
35S:TM8 lines (Fig. 4c, Additional file 8).
Together, we conclude that transgenic tomato plants

overexpressing TM8 or silencing TM8 do not differ from
controls and that no obvious function can be concluded
for tomato. Our data suggest that TM8 does not act as a

flowering repressor in Solanum lycopersium, as it does
in Nicotiana.

Expression profiles throughout evolution are diverse
Although we cannot generalize a repressor function for
TM8 to all Solanaceae, we asked if we could find a gen-
eral pattern of expression throughout evolution. We
compared available data from the literature to newly
generated expression of TM8 in Cryptomeria japonica,
Papaver somniferum, Vitis vinifera, Carica papaya and
Antirrhinum majus (Fig. 5). Based on these data, we
might cautiously say that throughout evolution expres-
sion in leaves decreased, while expression in all other tis-
sues varies too much or not enough data is available yet
to draw any conclusions. In general, these data support
the idea that TM8 function is not widely conserved.
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Papaver somniferum - PsTM8

Taxa Source Species Ortholog
root stem leaf shoot sepals petals stamens/male strobili carpels/young ovules green yellow ripe

Coenen & Viaene Cryptomeria japonica CjTM8-1 / 3 5 3 / / 1 3 / / /
Coenen & Viaene Cryptomeria japonica CjTM8-2 / 1 5 1 / / 0 1 / / /
Lovisetto et al., 2012 Taxus baccata TbTM8 / / 2 / / / 2 3 5 4 3
Lovisetto et al., 2012 Ginko bilboa GbMADS6 / / 5 / / / 4 4 3 3 3
Lovisetto et al., 2012 Ginko bilboa GbMADS7 / / 4 / / / 3 3 1 3 2
Lovisetto et al., 2012 Ginko bilboa GbMADS11 / / 1 / / / 0 1 1 0 0

Basal EudicotsCoenen & Viaene Papaver somniferum PsTM8 / 4 5 3 1 1 1 1 / / /
Díaz-Riquelme Vitis vinifera VvTM8 3 / 2 3 5 5 5 5 3 3 3
Coenen & Viaene Vitis vinifera VvTM9 / 5 2 1 3 3 3 3 / / /
Su-Cheng et al., 2014 Gossypium hirsutum GhMADS36 3 3 1 3 3 3 3 0 / / /
Xu et al., 2014 Prunus mume PmMADS26 2 3 0 / 0 0 0 4 1 2 4
Wells et al., 2015 Prunus persica PpeMADS35 1 / 0 / / / / / 0 0 0

Pyrus PpTM8-1 5 5 5 / 0 0 0 0 / / /
Pyrus PpTM8-2 5 5 5 / 5 5 5 5 / / /

Kumar et al., 2016 Malus domesticus MdMADS045 / / / 3 4 4 4 4 4 3 3
Kumar et al., 2016 Malus domesticus MdMADS111 / / / 1 2 2 2 2 4 0 3
Hu et al., 2002 Cucumis sativus CsMADS10 (=ERAF17) 0 3 0 / 3 3 3 3 / / /
Coenen & Viaene Carica papaya CpTM8 / 5 1 2 3 3 3 3 / / /
Coenen & Viaene Antirrhinum majus DEFH7 / 5 1 3 3 3 3 3 / / /
Li, 2002 Antirrhinum majus DEFH7 0 0 0 0 0 0 0 0 0 0 0
Coenen & Viaene Nicotianan benthamiana NbTM8 1 5 1 / 2 1 1 1 / / /
Hileman et al., 2006 Solanum lycopersium TM8 1 / 3 4 3 3 2 2 5 3
Daminato et al., 2014 Solanum lycopersium TM8 / / 2 / 2 5 3 1 1 3 2

Asterids

reproductive structures fruit/fruit-like structuresvegetative structures

Gymnosperms

Basal Rosids
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Niu et al., 2016
Niu et al., 2016
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Fig. 5 TM8 expression profiles. a Relative expression of TM8 in Cryptomeria japonica, Papaver somniferum, Vitis vinifera, Carica papaya and Antirrhinum
majus in two biological replicates. Error bars represent standard deviations. b TM8 expression throughout evolution comprising all expression data
to date
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Discussion
While most MADS-box gene clades are well character-
ized in at least one model organism, only limited and
often inconsistent findings have been published about
the TM8-clade. In an effort to contribute new knowledge
about TM8, we reconstructed its phylogenetic history in
angiosperms and characterized the gene in three Solana-
ceae species.
The TM8-lineage is one of the more ancient

MADS-box lineages as it was already present in the last
common ancestor of the Spermatophytes [4]. We found
that unlike most other MADS-box transcription factors,
its duplicates were not retained after major duplication
events like the ε and γ whole genome duplication and
triplication, preceding the origin of the angiosperms and
core eudicots respectively [33, 34]. In Solanaceae, which
also underwent an additional whole genome triplication,
TM8 is again mostly present as a single copy gene. The
lack of duplicates in angiosperms is probably the main
reason why TM8 was lost several independent times [6].
However, the fact that so many angiosperm species
could flourish without it, suggests that its function be-
came generally less necessary, that it became specific for
certain environments or that its function rapidly evolved
in angiosperms.
We have shown that in Nicotiana benthamiana the

TM8 orthologue NbTM8 functions as a repressor of
miR172. NbTM8 expression levels are positively regu-
lated by NbSVP and their protein products interact. Both
transcription factors have overlapping expression pat-
terns in the shoot. Similar as for NbTM8, we identified
NbSVP to function as a repressor of miR172. While we
are able to propose a function in Nicotiana benthamiana
this function appears not to be strongly conserved in
other closely related Solanaceae species. The lack of a
clear phenotype in the Petunia TM8-mutant and both
the TM8 overexpression and RNAi transgenic tomato
lines, suggests that TM8 has no important function in
these species. We must therefore conclude that TM8
function has strongly diverged or was even lost between
these closely related species, even though their protein
sequences appear to be conserved.
It appears that both SVP and TM8 are part of a regula-

tory module that rapidly evolved in Solanaceae species
and may have broadly contributed to phenotypic diver-
sity between species. Indeed, also SVP function diverged
within Solanaceae. In the closely related Nicotiana taba-
cum NtSVP was found to regulate pedicel elongation
[35]. In tomato the SVP homologue is JOINTLESS where
it functions in abscission zone development and in-
florescence architecture [36, 37]. In Physalis species
MFP2 regulates the inflated calyx after pollination
[31]. Outside of Solanaceae, the Antirrhinum majus
homologue of SVP is INCOMPOSITA, which prevents

prophyll development and controls floral meristem
identity [38].
For tomato, our results do not fully correspond to

those found in a similar study performed by Daminato
et al. [9]. The authors described morphological malfor-
mations in the androecia in three out of 22 TM8 overex-
pression lines as the only macroscopic difference
compared to wild-type tomatoes [9]. We observed the
same phenotype together with other disturbances of the
floral whorl patterning, both in OE, RNAi and control
plants. It must be noted here that most flowers of all our
T0-lines looked perfectly normal, and only a few flowers
of a few plants displayed this anomaly, often in the first
flowers to open. In Daminato et al., it was not specified
how many flowers in the transgenic lines displayed this
phenotype. Where normal wild-type tomatoes were used
as control in Daminato et al., we used tomatoes obtained
from uninoculated callus grown in vitro and we
hypothesize that the malformations observed in both
studies could possibly be due to somaclonal variation
[39]. In addition, only two wild-type tomatoes were de-
scribed as a control, and since the low prevalence of the
phenotype, at least in our case, it is not unlikely that the
authors therefore missed the presence of split stamen
cones in wild-type lines in their study. Alternatively, the
fact that we only generated two overexpression lines,
may in turn explain why we didn’t observe a consistent
splayed out stamen phenotype.
Another explanation could be that Daminato et al.

used the longer splice variant (NM_001247176.2) for
their construct which indeed seems to occur regularly
throughout Solanaceae as seen in our alignment
(Additional file 6). We used the shorter variant as this
was the clone we picked up from our cDNA. The short
variant shows a deletion from bp 142 to bp 155 (located
in the last part of the K-domain) and occurs regularly in
Solanaceae. Thus far, nothing has been reported on the
possible differences between both splice variants. It is
not unlikely that the indel influences higher order com-
plex formation, as is proposed for the K3-domain, and
therefore the protein lost its functionality [40]. To evalu-
ate the effect of the shorter and longer splice variant,
both should be evaluated in the same experimental
setup.
Finally, we noticed several intriguing similarities with

another MADS-box gene, FLOWERING LOCUS C (FLC).
FLC plays a key role in the vernalization response in Ara-
bidopsis [41]. It represses flowering pathway integrators
FLOWERING LOCUS T (FT) and SUPPRESSOR OF
OVEREXPRESSION OF CONSTANS1 (SOC1). It is epige-
netically downregulated by cold, allowing the plant only to
flower after a prolonged period of cold [42, 43]. A first
similarity to TM8 is that both genes share the same loca-
tion in the genome, as it was recently described that both
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are syntenic to SEPALATA3 (SEP3) [44, 45]. The FLC
gene, however, originated later than TM8, and it has been
suggested that the FLC-like genes could be derived from a
TM8 homolog in an ancestral angiosperm [44, 45]. Sec-
ondly, it is also notable that both genes are the
MADS-box clades that were lost most frequently through-
out angiosperms [6]. Interestingly, in most cases where
one was lost, the other is still present, meaning that most
genomes contain at least one of them. Thirdly, there
seems to be a functional link as well: both have been
assigned to be repressors of developmental transitions and
flowering and act through regulation of the microRNA
pathway, at least in Nicotiana regarding TM8 [46]. Fur-
thermore, both share SVP as their interaction partner dur-
ing these repressing activities [47]. Like FLC, the function
of SVP in the delay of the phase transitions is linked to
temperature [48, 49]. Considering that both FLC and SVP
are temperature dependent genes, it seems an interesting
option to evaluate the effect of temperature on TM8 func-
tionality in future research.

Conclusions
We aimed to resolve one of the remaining open ques-
tions about MADS-box gene functions. We were able to
generate functional data in three related Solanaceae spe-
cies, but it remains difficult to generalize a function
within angiosperms or even Solanaceae. While TM8
seems to perform a function as repressor of miR172 in
Nicotiana benthamiana, its function seems to have di-
verged quickly between members of the same family. It
has been proposed before that TM8 is a rapidly evolving
gene [4] and our data are in line with this view.

Methods
All primers used throughout the research are listed in
Additional file 9. All constructs were verified by sequen-
cing before usage.

Phylogenetic analyses
Previously identified TM8 accessions from various spe-
cies were used to blast (blastn) in all Viridiplantae ge-
nomes available to date provided by Phytozome 12.0
[20] and the Sol Genomics Network [50] (Additional file
1). All resulting coding sequences were aligned using
MAFT and an initial phylogenetic tree was built using
PhyML as implemented in Geneious with the GTR sub-
stitution model and default parameters [51, 52]. All se-
quences that fell within the strongly supported
TM8-clade (SH-like branch support = 1) were selected
for further analysis. SOC1 genes were used as an out-
group to root the tree. The TM8-sequences detected in
fully sequenced genomes were supplemented with hits
resulting from blastn searches in the NCBI NT, EST and
TSA databanks and the oneKP platform to find

representatives in all angiosperm orders [21]. The final
data matrix consisting of 177 sequences was again
aligned by MAFT, manually optimized and the most
likely tree was constructed using PhyML with SPR tree
topology search and the GTR substitution model and
evaluated by bootstrap analysis with 100 replicates [53].
Complete phylogeny including all accession numbers is
provided in the Additional file 2.

Plant material and growth conditions
We received transgenic Nicotiana benthamiana lines
overexpressing Arabidopsis miR-172a-1 from Xuemei
Chen (UC Riverside, Mlotshwa et al. [30]). For Solanum
lycopersicum the Micro-Tom cultivar was used in this
study. For Petunia hybrida wild-type W138 and a
W138-line with the 7 bp footprint of a dTph1 insertion
in the PhTM8 start codon were used. All plants were
grown at constant temperature (25 °C) and long day
conditions (16 h light, 8 h dark). N. benthamiana and
Petunia seeds were first sown in Jiffy Pellets and grown
in a conviron growth cabinet. Later, they were planted in
pots and moved to a growth chamber.

RNA isolation and cDNA preparation
RNA isolation and reverse transcription
All sampled plant material was immediately frozen in li-
quid nitrogen and stored at − 80 °C. Total RNA was iso-
lated using TRIzol® following manufacturer’s instructions
(Invitrogen, Carlsbad, USA) and Dnase treated with
TURBO DNA-free (Ambion, Austin, USA). RNA was re-
verse transcribed to cDNA using the GoScript reverse
transcription system (Promega, Madison, USA). RNA
quality was determined using the spectrophotometer,
successful reverse transcription was tested by amplifica-
tion of the ACTIN gene by PCR.

RNA isolation for stem-loop qRT-PCR for microRNA
quantification
RNA was again isolated using TRIzol® but for RNA pre-
cipitation we used twice the volume of isopropanol and
precipitated for 30 min at − 80 °C. cDNA was prepared
using the AMV Reverse transcription kit (Promega, Wis-
consin, U.S.A.). Following [54], we designed a custom
stem-loop primer to specifically reverse transcribe micro-
RNA172 and microRNA156. Reactions were performed in
total RNA pools in the presence of an oligo-dT primer to
reverse transcribe poly-A-tailed mRNA’s using AMV re-
verse transcriptase (Promega, Madison, US).

Characterization of NbTM8 and NbSVP in Nicotiana
benthamiana
Cloning of NbTM8 and NbSVP, SOC1- and AP1-homologs
The full length sequence of NbTM8 was cloned from
cDNA derived from floral buds based on the sequence
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of NtTM8 (EB449747). A partial sequence of SVP in N.
benthamiana was present in the EST-database of Gen-
bank (EH369950). We used 3′RACE to clone the 3′-se-
quence of NbSVP. A forward primer was combined with
an oligodT to amplify the 3′region. For APETALA1
(AP1), an alignment of homologs from Nicotiana taba-
cum (NAP1–2, AF009127) and Nicotiana sylvestris
(NsMADS2, AF068726) was constructed. Forward and
reverse primers were selected to amplify a 231-bp
region of NbAP1. (SOC1) Based on SUPRESSOR OF
CONSTANS1-homologs from Nicotiana tabacum
(tobmads1, X76188) and Solanum lycopersicon
(BG599624), a 339-bp fragment of NbSOC1 was ampli-
fied following a similar strategy. New sequences were
added to GenBank.

qRT-PCR and developmental series
To examine the expression of selected genes and micro-
RNA’s (NbTM8, NbSVP, NbSOC1, NbAP1, miR156 and
miR172), qRT-PCR was used. Real-time PCR was per-
formed on a StepOne Plus apparatus (Applied Biosys-
tems, Forster City, US) using Fast SYBR Green Master
Mix (Applied Biosystems, Forster City, US). Primers
were designed using the Applied Biosystems Primer Ex-
press software. Quantification of mature microRNA
levels was performed using primers complementary to
the stem-loop primers in combination with microRNA
forward complementary primers. To quantify genes or
microRNA’s in EV, VIGS or overexpression lines, inflor-
escence tissue of plants before they started to flower was
used. All data presented here are three technical repli-
cates from two biological replicates and are normalized
against ACTIN expression. The developmental series
was started from seedlings with two fully expanded coty-
ledons. A subsequent stage was sampled every time a
new leaf had emerged. To measure expression in sep-
arate plant organs, whole organs of mature plants
were sampled at anthesis of the first flower. In the
developmental series and separate plant organs,
pooled plant material was collected to obtain enough
tissue for RNA isolation. Data were analyzed using
the delta CT-method.

In situ hybridization
Sense and Antisense probes were in vitro transcribed
using T7 RNA polymerase (New England Biolabs, Ips-
wich, AU) in the presence of digoxigenin-labeled UTP
(Roche, Basel, CH) from PCR amplified templates that
included a T7 promoter. Tissues were fixed in 4%
paraformaldehyde, paraffin embedded and sectioned
at 8 μm. Sections were mounted on Probe-On-Plus
slides (Fisher Scientific, Pittsburgh, US). Prehybridiza-
tion, hybridization and detection were essentially fol-
lowing Carr & Irish [55].

Virus induced gene silencing of NbTM8 and NbSVP
Gene-specific regions of NbTM8 and NbSVP were intro-
duced into the TRV2 vector [56]. The constructs were
transformed into Agrobacterium strain GV3101 and
used to infiltrate N. benthamiana. To quantify flowering
time, N. benthamiana seeds were sown in long day con-
ditions. A considerable number of plantlets (20–50) were
infiltrated at the youngest possible stage (three to four
leaf-stadium). After infiltration, plants were returned to
their growth chamber and covered with foil for 2 days to
keep them humid. Flowering time was counted as the
number of leaves before the first flower appeared. As a
control, plants were infiltrated with empty vector TRV2
and grown under the same conditions. Leaf and floral
material from NbTM8-VIGS, NbSVP-VIGS plants show-
ing phenotypes and empty vector control plants were
collected in liquid nitrogen to check for effective
downregulation.

Overexpression of NbTM8 and NbSVP
Full length sequences of NbTM8 and NbSVP from Ni-
cotiana benthamiana were cloned into a 35S overex-
pression vector (pcB301, Filip Rolland). overexpression
vectors were transformed into Agrobacterium strain
GV3101. Stable transformation of Nicotiana benthami-
ana followed a transformation protocol optimized for
tomato but using leaf-disks as explants [57]. Phenotypic
characterization was performed in the T0 generation in
comparison to T0 empty vector lines as strong
35S:NbTM8 lines were fully female sterile.

Yeast two-hybrid
Full length NbTM8 and NbSVP sequences were fused with
the GAL4 activation domain in the pGAD424-vector and
the GAL4 DNA-binding domain in the pGBT9 vector
(Clontech, Mountain View, CA). Each possible vector
combination was transformed in yeast strain Y187 as de-
scribed in [58]. Two colonies per transformation were
used for β-galactosidase liquid assays, and interaction was
detected by use of ortho-Nitrophenyl-β-galactoside
(ONPG) as a substrate [59]. Miller units as a quantifi-
cation of β-galactosidase activity was calculated using
the following formula: Miller units = (1000 × A420) /
(t × V × OD600) with A420 = absorbance at 420 nm,
OD600 = Optical density at 600 nm, t = number of
minutes and V = 0. 5 mL.

Co-IP
Full length NbTM8 and NbSVP were cloned in the HBT95
expression vector [60] in frame with a double
hemagglutinin (HA) or FLAG tag and subsequently
maxi-prepped. Afterwards they were transformed in Ara-
bidopsis protoplasts using PEG-Ca2 transformation and
co-immunoprecipitated as described in [61]. Proteins were
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captured by agarose beads with a FLAG-antibody and
co-immunoprecipitated proteins were visualized through
Western Blot using HA-HRP and FLAG-HRP antibodies.

Scanning electron microscopy
The plant material was fixed in FAA (70% ethanol:acetic
acid:40% formaldehyde, 90: 5: 5) and washed twice in
70% ethanol and dehydrated in a 1: 1 mixture of 70%
ethanol and dimethoxymethan (DMM) for 5 min and in
pure DMM for 20 min. After critical-point drying (CPD
030;BAL-TEC AG, Balzers, Liechtenstein), the dried ma-
terial was mounted on aluminum stubs using Leit-C and
coated with gold (SPI Module Sputter Coater; Spi
Supplies, West Chester, PA, USA) before observation
with a JEOL JSM-6360 SEM (Jeol Ltd., Tokyo, Japan).

PhTM8 characterization in Petunia hybrida
Identification of the phtm8 dTph1 insertion allele and
derived footprint allele
The phtm8 dTph1 insertion allele was identified by
BLAST-searching a dTph1 transposon flanking sequence
database [62], that has been considerably expanded in
recent years. The presence of the dTph1 insertion was
confirmed in planta in off-spring of the in silico identi-
fied insertion line, by PCR using a gene-specific primer
pair flanking the insertion site. Among the different pro-
genies, we identified several plants that were homozy-
gous mutant for a putative footprint allele. Sequencing
of the footprint allele showed a 7 bp footprint insertion
causing a frameshift mutation in the PhTM8 coding se-
quence. Progeny from homozygous WT and homozy-
gous footprint mutants were obtained by selfing, and
used for further phenotypic analysis.

Phenotyping of the Petunia phtm8 footprint mutant
Twenty-one W138 Petunia wild-types (WT) and 19
phtm8 footprint mutants were numbered and placed
randomly together in the growth chambers. Plants were
subsequently phenotyped for general anomalies and
vegetative characteristics. ‘Days to flowering’ was
counted from the day they were sown, till the day of full
anthesis of the first flower. ‘Number of leaves’ include all
true leaves (no cotyledons) before the first inflorescence.
Upon flowering, flower characteristics like number of se-
pals, number of petals together with other anomalies of
the first 20 flowers of each plant or until the end of the
experiment were counted. Non-paired two-tailed t-tests
were applied to determine if the means of the measured
characteristics were significantly different between the
control group and the footprint lines.

Cloning of PhTM8
Two PhTM8 primer-pairs were designed based on the pre-
dicted CDS of PhTM8 (received from M. VandenBussche).

In addition PhTM8 forward primers were combined
with polyT reverse primers. PCR was carried out on
cDNA from whole plant material of 6, 8, 12, 14, 16,
18 and 20 leaves stadia, in inflorescence stadium and
flowering stadium with annealing temperatures ran-
ging between 47 °C and 60° for 30–45 cycles. All
resulting amplicons of the proper length (around 579
bp) were cloned into the pGEM®-T Easy (Promega)
and subsequently sequenced, but non matched with
TM8. After our failed attempts to clone PhTM8, fol-
lowing datasets were blasted for PhTM8 expression:
Petunia transcriptome [63], Unigenes and ESTs at
the SOL Genomics Network (SGN) [50] and NCBI
Transcriptome Shotgun Assembly (TSA) for Petunia
species.

Characterization of TM8 in Solanum lycopersicum
Cloning of TM8
Full-length tomato TM8 was cloned from mature leaf
cDNA using primers based on the sequence (X60760.1)
[7]. After confirmation by sequencing, it was cloned into
pDONR21 by BP clonase reaction and subsequently
cloned into the pK2GW7 vector by LR clonase reaction
from Gateway Cloning [64]. For the RNAi-construct a
332 bp long part of tomato TM8, starting from bp 266
in the I-domain and ending in the 3′UTR, was selected.
The short TM8-fragment was blasted in the tomato gen-
ome to verify its specificity. No hits other than TM8
were found, proving that the selected sequence is highly
specific and suited for RNAi. The 332 bp sequence was
cloned into the pK7GWIWG2(I) vector. All destination
vectors were confirmed by sequencing. The constructs
were transformed into the LBA4404 Agrobacterium
strain and selected on spec/strep/rif plates.

Tomato transformations
The tomato transformation protocol was followed as in
[65]. Tomato cotyledons were cut in half and used as ex-
plants for Agro-infection. Transformed explants were
further grown on 2Z-media supplemented with kanamy-
cin (kan), allowing only successfully transformed ex-
plants to survive. Control lines were generated from
non-transformed callus and grown on 2Z-medium with-
out antibiotics. After shoot and root generation on
MSSV +IBA + kan medium, transformed plants were
planted in soil. All T0 and T1 plants were genotyped to
confirm the presence of the constructs using a forward
primer in the 35S promotor and a reverse primer in the
K-domain (Primer List). Semi-quantitative PCR con-
firmed much higher expression in OE lines compared to
ctl, and no (or much lower) expression could be de-
tected in silenced lines. Inflorescence with one open
flower were sampled for the RT-PCR.
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Phenotyping of tomato transformants
All T0 plants were observed for abnormalities in vegeta-
tive or reproductive structures. Seed was harvested
where possible and sown out again. T1 plants were sub-
jected to elaborate phenotyping. Forty control, 40 RNAi
and 36 OE individuals were numbered and randomly lo-
cated in the growth chamber. Plants were phenotyped in
the same way as Petunia. The first three flowers of each
plant were observed for number of petals, sepals, split
stamen cones or other abnormalities. Statistical signifi-
cance was determined by an unpaired two-tailed t-test.
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