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Abstract—Self modifying code is code that can modify its own
instructions during the execution of the program. It is extensively
used by malware writers to obfuscate their malicious code. Thus,
analysing self modifying code is nowadays a big challenge. In
this paper, we consider the LTL model-checking problem of self
modifying code. We model such programs using self-modifying
pushdown systems (SM-PDS), an extension of pushdown systems
that can modify its own set of transitions during execution.
We reduce the LTL model-checking problem to the emptiness
problem of self-modifying Büchi pushdown systems (SM-BPDS).
We implemented our techniques in a tool that we successfully
applied for the detection of several self-modifying malware. Our
tool was also able to detect several malwares that well-known
antiviruses such as BitDefender, Kinsoft, Avira, eScan, Kaspersky,
Qihoo-360, Baidu, Avast, and Symantec failed to detect.

I. INTRODUCTION

Binary code presents several complex aspects that cannot
be encountred in source code. One of these aspects is self-
modifying code, i.e., code that can modify its own instructions
during the execution of the program. Self-modifying code
makes reverse code engineering harder. Thus, it is extensively
used to protect software intellectual property. It is also heavily
used by malware writers in order to make their malwares hard
to analyse and detect by static analysers and anti-viruses. Thus,
it is crucial to be able to analyse self-modifying code.

There are several kinds of self-modifying code. In this work,
we consider self-modifying code caused by self-modifying
instructions. These kind of instructions treat code as data.
This allows them to read and write into code, leading to self-
modifying instructions. These self-modifying instructions are
usually mov instructions, since mov allows to access memory
and read and write into it.

Let us consider the example shown in Fig.1. For simplicity,
the addresses’ length is assumed to be 1 byte. In the right box,
we give, respectively, the binary code, the addresses of the
different instructions, and the corresponding assembly code,
obtained by translating syntactically the binary code at each
address. For example, 0c is the binary code of the jump jmp.
Thus, 0c 02 is translated to jmp 0x2 (jump to address 0x2).
The second line is translated to push 0x9, since ff is the
binary code of the instruction push. The third instruction mov
0x2 0xc will replace the first byte at address 0x2 by 0xc.
Thus, at address 0x2, ff 09 is replaced by 0c 09. This
means the instruction push 0x9 is replaced by the jump
instruction jmp 0x9 (jump to address 0x9), etc. Therefore,
this code is self-modifying: the mov instruction was able to
modify the instructions of the program via its ability to read
and write the memory. If we study this code without looking

at the semantics of the self-modifying instructions, we will
extract from it the Control Flow Graph CFG a that is in the
left of the figure, and we will reach the conclusion that the
call to the API function CopyFileA at address 0x9 cannot
be made. However, you can see that the correct CFG is the
one on the right hand side CFG b, where the call to the API
function CopyFileA at address 0x9 can be reached. Thus, it
is very important to be able to take into account the semantics
of the self-modifying instructions in binary code.

In this paper, we consider the LTL model-checking problem
of self-modifying code. To this aim, we use Self-Modifying
Pushdown Systems (SM-PDSs) [1] to model self-modifying
code. Indeed, SM-PDSs were shown in [1] to be an adequate
model for self-modifying code since they allow to mimic the
program’s stack while taking into account the self-modifying
semantics of the transitions. This is very important for binary
code analysis and malware detection, since malwares are
based on calls to API functions of the operating system.
Thus, antiviruses check the API calls to determine whether
a program is malicious or not. Therefore, to evade from these
antiviruses, malware writers try to hide the API calls they
make by replacing calls by push and jump instructions. Thus,
to be able to analyse such malwares, it is crucial to be able to
analyse the program’s stack. Hence the need to a model like
pushdown systems and self-modifying pushdown systems for
this purpose, since they allow to mimic the program’s stack.

Intuitively, a SM-PDS is a pushdown system (PDS) with
self-modifying rules, i.e., with rules that allow to modify the
current set of transitions during execution. This model was
introduced in [1] in order to represent self-modifying code.
In [1], the authors have proposed algrithms to compute finite
automata that accept the forward and backward reachability
sets of SM-PDSs. In this work, we tackle the problem of LTL
model-checking of SM-PDSs. Since SM-PDSs are equivalent
to PDSs [1], one possible approach for LTL model checking
of SM-PDS is to translate the SM-PDS to a standard PDS and
then run the LTL model checking algorithm on the equivalent
PDS [2], [3]. But translation from a SM-PDS to a standard
PDS is exponential. Thus, performing the LTL model checking
on the equivalent PDS is not efficient.

To overcome this limitation, we propose a direct LTL model
checking algorithm for SM-PDSs. Our algorithm is based on
reducing the LTL model checking problem to the emptiness
problem of Self Modifying Büchi Pushdown Systems (SM-
BPDS). Intuitively, we obtain this SM-BPDS by taking the
product of the SM-PDS with a Büchi automaton accepting an
LTL formula ϕ. Then, we solve the emptiness problem of an
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Fig. 1: An Example of a Self-modifying Code

SM-BPDS by computing its repeating heads. This computa-
tion is based on computing labelled pre∗ configurations by
applying a saturation procedure on labelled finite automata.

We implemented our algorithm in a tool. Our experiments
show that our direct techniques are much more efficient
than translating the SM-PDS to an equivalent PDS and then
applying the standard LTL model checking for PDSs [2], [3].
Moreover, we successfully applied our tool to the analysis of
892 self-modifying malwares. Our tool was also able to detect
several self-modifying malwares that well-known antiviruses
like BitDefender, Kinsoft, Avira, eScan, Kaspersky, Qihoo-
360, Baidu, Avast, and Symantec were not able to detect.

Related Work. Model checking and static analysis approaches
have been widely used to analyze binary programs, for in-
stance, in [4], [5], [6], [7], [8]. Temporal Logics were chosen
to describe malicious behaviors in [9], [7], [8], [10], [11].
However, these works cannot deal with self-modifying code.

POMMADE [8], [10] is a malware detector based on LTL
and CTL model-checking of PDSs. STAMAD [12], [13], [14]
is a malware detector based on PDSs and machine learning.
However, POMMADE and STAMAD cannot deal with self-
modifying code.

Cai et al. [15] use local reasoning and separation logic to de-
scribe self-modifying code and treat program code uniformly
as regular data structure. However, [15] requires programs to
be manually annotated with invariants. In [16], the authors
propose a formal semantics for self-modifying codes, and use
that to represent self-unpacking code. This work only deals
with packing and unpacking behaviours. Bonfante et al. [17]
provide an operational semantics for self-modifying programs
and show that they can be constructively rewritten to a non-
modifying program. However, all these specifications [17],
[15], [16] are too abstract to be used in practice.

In [18], the authors propose a new representation of self-
modifying code named State Enhanced-Control Flow Graph
(SE-CFG). SE-CFG extends standard control flow graphs with
a new data structure, keeping track of the possible states
programs can reach, and with edges that can be conditional
on the state of the target memory location. It is not easy to

analyse a binary program only using its SE-CFG, especially
that this representation does not allow to take into account the
stack of the program.

[19] propose abstract interpretation techniques to compute
an over-approximation of the set of reachable states of a
self-modifying program, where for each control point of the
program, an over-approximation of the memory state at this
control point is provided. [20] combine static and dynamic
analysis techniques to analyse self-modifying programs. Un-
like our approach, these techniques [19], [20] cannot handle
the program’s stack.

Unpacking binary code is also considered in [21], [22],
[23], [16]. These works do not consider self-modifying mov
instructions.

Outline. The rest of the paper is structured as follows:
Section 2 recalls the definition of Self Modifying pushdown
systems. LTL model checking and SM-BPDSs are defined in
Section 3. Section 4 solves the emptiness problem of SM-
BPDS. Finally, the experiments are reported in Section 5.

II. SELF MODIFYING PUSHDOWN SYSTEMS

A. Definition

We recall in this section the definition of Self-modifying
Pushdown Systems [1].

Definition 1. A Self-modifying Pushdown System (SM-PDS)
is a tuple P = (P,Γ,∆,∆c), where P is a finite set of control
points, Γ is a finite set of stack symbols, ∆ ⊆ (P ×Γ)× (P ×
Γ∗) is a finite set of transition rules, and ∆c ∈ P×∆×∆×P
is a finite set of modifying transition rules. If ((p, γ), (p′, w)) ∈
∆, we also write 〈p, γ〉 ↪→ 〈p′, w〉 ∈ ∆. If (p, r1, r2, p

′) ∈ ∆c,

we also write p
(r1,r2)
↪−−−−→ p′ ∈ ∆c. A Pushdown System (PDS)

is a SM-PDS where ∆c = ∅.

Intuitively, a Self-modifying Pushdown System is a Push-
down System that can dynamically modify its set of rules
during the execution time: rules ∆ are standard PDS transition
rules, while rules ∆c modify the current set of transition rules:
〈p, γ〉 ↪→ 〈p′, w〉 ∈ ∆ expresses that if the SM-PDS is in
control point p and has γ on top of its stack, then it can move

2



to control point p′, pop γ and push w onto the stack, while

p
(r1,r2)
↪−−−−→ p′ ∈ ∆c expresses that when the PDS is in control

point p, then it can move to control point p′, remove the rule
r1 from its current set of transition rules, and add the rule r2.

Formally, a configuration of a SM-PDS is a tuple c =
(〈p, w〉, θ) where p ∈ P is the control point, w ∈ Γ∗ is the
stack content, and θ ⊆ ∆ ∪∆c is the current set of transition
rules of the SM-PDS. θ is called the current phase of the
SM-PDS. When the SM-PDS is a PDS, i.e., when ∆c = ∅,
a configuration is a tuple c = (〈p, w〉,∆), since there is no
changing rule, so there is only one possible phase. In this case,
we can also write c = 〈p, w〉. Let C be the set of configurations
of a SM-PDS. A SM-PDS defines a transition relation ⇒P
between configurations as follows: Let c = (〈p, w〉, θ) be a
configuration, and let r be a rule in θ, then:

1) if r ∈ ∆c is of the form r = p
(r1,r2)
↪−−−−→ p′, such that

r1 ∈ θ, then (〈p, w〉, θ) ⇒P (〈p′, w〉, θ′), where θ′ =
(θ \ {r1}) ∪ {r2}. In other words, the transition rule r
updates the current set of transition rules θ by removing
r1 from it and adding r2 to it.

2) if r ∈ ∆ is of the form r = 〈p, γ〉 ↪→ 〈p′, w′〉 ∈ ∆,
then (〈p, γw〉, θ)⇒P (〈p′, w′w〉, θ). In other words, the
transition rule r moves the control point from p to p′,
pops γ from the stack and pushes w′ onto the stack.
This transition keeps the current set of transition rules
θ unchanged.

Let ⇒∗P be the transitive, reflexive closure of ⇒P and
⇒+
P be its transitive closure. An execution (a run) of P is

a sequence of configurations π = c0c1... s.t. ci ⇒P ci+1 for
every i ≥ 0. Given a configuration c, the set of immediate
predecessors (resp. successors) of c is preP(c) = {c′ ∈ C :
c′ ⇒P c} (resp. postP(c) = {c′ ∈ C : c ⇒P c′}).
These notations can be generalized straightforwardly to sets
of configurations. Let pre∗P (resp. post∗P ) denote the reflexive-
transitive closure of preP (resp. postP ). We remove the
subscript P when it is clear from the context.

We suppose w.l.o.g. that rules in ∆ are of the form 〈p, γ〉 ↪→
〈p′, w〉 such that |w| ≤ 2, and that the self-modifying rules

r = p
(r1,r2)
↪−−−−→ p′ in ∆c are such that r 6= r1. Note that this is

not a restriction, since for a given SM-PDS, one can compute
an equivalent SM-PDS that satisfies these conditions [1] .

B. SM-PDS vs. PDS

Let P = (P,Γ,∆,∆c) be a SM-PDS. It was shown in [1]
that:

1) P can be described by an equivalent pushdown system
(PDS). Indeed, since the number of phases is finite, we
can encode phases in the control point of the PDS. How-
ever, this translation is not efficient since the number of
control points of the equivalent PDS is |P |·2O(|∆|+|∆c|).

2) P can also be described by an equivalent Symbolic
pushdown system [24], where each SM-PDS rule is
represented by a single, symbolic transition, where the
different values of the phases are encoded in a symbolic

way using relations between phases. This translation is
not efficient neither since the size of the relations used
in the symbolic transitions is 2O(|∆|+|∆c|).

C. From Self-modifying Code to SM-PDS

It is shown in [1] how to describe a self-modifying binary
code using a SM-PDS. The basic idea is that the control
locations of the SM-PDS store the control points of the
binary program and the stack mimics the program’s stack.
Our translation relies on the disassembler Jakstab [25] to
disassemble binary code, construct the control flow graph
(CFG), determine indirect jumps, compute the possible values
of used variables, registers and the memory locations at each
control point of program. After getting the control flow graph
whose edges are equipped with disassembled instructions, we
translate the CFG into a SM-PDS as described in [1]. The
non self-modifying instructions of the program define the rules
∆ of the SM-PDS (which are standard PDS rules), and can
be obtained following the translation of [8] that models non
self-modifying instructions of the program by a PDS. Self-
modifying instructions are represented using self-modifying
transitions ∆c of the SM-PDS. For more details, we refer the
reader to [1].

III. LTL MODEL-CHECKING OF SM-PDSS

A. The linear-time temporal logic LTL

Let At be a finite set of atomic propositions. LTL formulas
are defined as follows (where A ∈ At):

ϕ := A | ¬ϕ | ϕ1 ∨ ϕ2| Xϕ | ϕ1Uϕ2

Formulae are interpreted on infinite words over 2At. Let
ω = ω0ω1... be an infinite word over 2At. We write ωi for the
suffix of ω starting at ωi. We denote ω |= ϕ to express that ω
satisfies a formula ϕ:

ω |= A ⇐⇒ A ∈ ω0

ω |= ¬ϕ ⇐⇒ ω 2 ϕ
ω |= ϕ1∨ϕ2 ⇐⇒ ω |= ϕ1 or ω |= ϕ2

ω |= Xϕ ⇐⇒ ω1 |= ϕ

ω |= ϕ1Uϕ2 ⇐⇒ ∃i ≥ 0, ωi |= ϕ2 and ∀0 ≤ j < i, ωj |= ϕ1

The temporal operators G (globally) and F (eventually) are
defined as follows: Fϕ = (A ∨ ¬A)Uϕ and Gϕ = ¬F¬ϕ.
Let W (ϕ) be the set of infinite words that satisfy an LTL
formula ϕ. It is well known that W (ϕ) can be accepted by
Büchi automata:

Definition 2. A Büchi automaton B is a quintuple
(Q,Γ, η, q0, F ) where Q is a finite set of states, Γ is a finite
input alphabet, η ⊆ (Q×Γ×Q) is a set of transitions, q0 ∈ Q
is the initial state and F ⊆ Q is the set of accepting states.
A run of B on a word γ0γ1... ∈ Γω is a sequence of states
q0q1q2... s.t. ∀i ≥ 0, (qi, γi, qi+1) ∈ η. An infinite word ω is
accepted by B if B has a run on ω that starts at q0 and visits
accepting states from F infinitely often.

Theorem. [26] Given an LTL formula ϕ, one can effectively
construct a Büchi automaton Bϕ which accepts W (ϕ).
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B. Self Modifying Büchi Pushdown Systems

Definition 3. A Self Modifying Büchi Pushdown System (SM-
BPDS) is a tuple BP = (P,Γ,∆,∆c, G) where P =
(P,Γ,∆,∆c) is a SM-PDS, G ⊆ P is a set of accepting
control locations. A run π of the SM-BPDS BP is a run
(execution) of the SM-PDS P . π is accepting iff it infinitely
often visits configurations having control locations in G.

Let⇒BP be the relation⇒P (P is the SM-PDS underlying
the SM-BPDS). Let c and c′ be two configurations of the SM-
BPDS BP . The relation⇒r

BP is defined as follows: c⇒r
BP c

′

iff there exists a configuration (〈g, u〉, θ), g ∈ G s.t. c ⇒∗P
(〈g, u〉, θ) ⇒+

P c′. We remove the subscript BP when it is
clear from the context.

A head of SM-BPDS is a tuple (〈p, γ〉, θ) where p ∈ P ,
γ ∈ Γ and θ ⊆ ∆∪∆c. A head ((p, γ), θ) is repeating if there
exists v ∈ Γ∗ such that (〈p, γ〉, θ) ⇒r

BP (〈p, γv〉, θ). The set
of repeating heads of SM-BPDS is called RepBP .

C. From LTL Model-Checking of SM-PDSs to the emptiness
problem of SM-BPDSs

Let P = (P,Γ,∆,∆c) be a self modifying pushdown sys-
tem. Let At be a set of atomic propositions. Let ν : P → 2At

be a labelling function. Let π = (〈p0, w0〉, θ0)(〈p1, w1〉, θ1)...
be an execution of the SM-PDS P . Let ϕ be an LTL formula
over the set of atomic propositions At. We say that

π |=ν ϕ iff ν(p0)ν(p1) · · · |= ϕ

Let (〈p, w〉, θ) be a configuration of P . We say that
(〈p, w〉, θ) |=ν ϕ iff P has a path π starting at (〈p, w〉, θ)
such that π |=ν ϕ.

Our goal in this paper is to perform LTL model-checking
for self-modifying pushdown systems. Since SM-PDSs can be
translated to standard (symbolic) pushdown systems, one way
to solve this LTL model-checking problem is to compute the
(symbolic) pushdown system that is equivalent to the SM-PDS
(see section II-B), and then apply the standard LTL model-
checking algorithms on standard PDSs [24]. However, this
approach is not efficient (as will be witnessed later in the
experiments). Thus, we need a direct approach that performs
LTL model-checking on the SM-PDS, without translating it
to an equivalent PDS. Let then Bϕ = (Q, 2At, η, q0, F ) be a
Büchi automaton that accepts W (ϕ). We compute the SM-
BPDS BPϕ = (P × Q,Γ,∆′,∆′c, G) by performing a kind
of product between the SM-PDS P and the Büchi automaton
Bϕ as follows:

1) if r = 〈p, γ〉 ↪→ 〈p′, w〉 ∈ ∆ and (q, ν(p), q′) ∈ η, then
〈(p, q), γ〉 ↪→ 〈(p′, q′), w〉 ∈ ∆′. Let prod(r) be the set
of rules of ∆′ obtained from the rule r, i.e., rules of ∆′

of the form 〈(p, q), γ〉 ↪→ 〈(p′, q′), w〉.
2) if a rule r = p

(r1,r2)
↪−−−−→ p′ ∈ ∆c and (q, ν(p), q′) ∈

η, then {(p, q)
(r′1,r

′
2)

↪−−−−→ (p′, q′), r′1 ∈ prod(r1), r′2 ∈
prod(r2)} ⊆ ∆′c. Let prod(r) be the set of rules of
∆′ obtained from the rule r, i.e., rules of ∆′c of the

form (p, q)
(r′1,r

′
2)

↪−−−−→ (p′, q′), where r′1 ∈ prod(r1), and
r′2 ∈ prod(r2).

3) G = P × F .
We can show that:

Theorem 1. Let (〈p, w〉, θ) be a configuration of the SM-
PDS P . (〈p, w〉, θ) |=ν ϕ iff BPϕ has an accepting run from
(〈(p, q0), w〉, prod(θ)) where prod(θ) is the set of rules of
∆ ∪∆c obtained from the rules of θ as described above.

Thus, LTL model-checking for SM-PDSs can be reduced
to checking whether an SM-BPDS has an accepting run. The
rest of the paper is devoted to this problem.

IV. THE EMPTINESS PROBLEM OF SM-BPDSS

From now on, we fix an SM-BPDS BP = (P,Γ,∆,∆c, G).
We can show that BP has an accepting run starting from
a configuration c if and only if from c, it can reach a
configuration with a repeating head:

Proposition 1. An SM-BPDS BP has an accepting run
starting from a configuration c if and only if there exists a
repeating head ((p, γ), θ) such that c ⇒∗BP (〈p, γw〉, θ) for
some w ∈ Γ∗.

Thus, since there exists an efficient algorithm to compute
the pre∗ of SM-PDSs [1], the emptiness problem of an SM-
BPDS can be reduced to computing its repeating heads.

A. The Head Reachability Graph G
Our goal is to compute the set of repeating heads RepBP ,

i.e., the set of heads (〈p, γ〉, θ) such that there exists v ∈ Γ∗,
(〈p, γ〉, θ)⇒r (〈p, γv〉, θ). I.e., (〈p, γ〉, θ)⇒∗ (〈p, γv〉, θ) s.t.
this path goes through an accepting location in G. To this
aim, we will compute a finite graph G whose nodes are the
heads of BP of the form ((p, γ), θ), where p ∈ P , γ ∈ Γ
and θ ⊆ ∆ ∪ ∆c; and whose edges encode the reachability
relation betweeen these heads. More precisely, given two heads
((p, γ), θ) and ((p′, γ′), θ′), ((p, γ), θ)

b−→ ((p′, γ′), θ′) is an
edge of the graph G means that the configuration (〈p, γ〉, θ) can
reach a configuration having (〈p′, γ′〉, θ′) as head, i.e., it means
that there exists v ∈ Γ∗ s.t. (〈p, γ〉, θ) ⇒∗ (〈p′, γ′v〉, θ′).
Moreover, we need to keep the information whether this path
visits an accepting location in G or not. This information is
recorded in the label of the edge b: b = 1 means that the
path visits an accepting location in G, i.e. that (〈p, γ〉, θ)⇒r

(〈p′, γ′v〉, θ′). Otherwise, b = 0. Therefore, if the graph G
contains a loop from a head ((p, γ), θ) to itself such that this
loop goes through an edge labelled by 1, then ((p, γ), θ) is
a repeating head. Thus, computing RepBP can be reduced to
computing the graph G and finding 1-labelled loops in this
graph.

More precisely, we define the head reachability graph G as
follows:

Definition 4. The head reachability graph G is a tuple (P ×
Γ × 2∆∪∆c , {0, 1}, δ) such that ((p, γ), θ)

b−→ ((p′, γ′), θ′) is
an edge of δ iff:

4



1) there exists a transition rc : p
(r1,r2)
↪−−−−→ p′ ∈ θ ∩ ∆c,

γ = γ′, θ′ = θ \ {r1} ∪ {r2}, and b = 1 iff p ∈ G;
2) there exists a transition 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ θ∩∆, θ = θ′

and b = 1 iff p ∈ G;
3) there exists a transition 〈p, γ〉 ↪→ 〈p′′, γ1γ

′〉 ∈ θ ∩ ∆,
for γ1 ∈ Γ, p′′ ∈ P , s.t. (〈p′′, γ1〉, θ) ⇒∗BP (〈p′, ε〉, θ′),
and b = 1 iff p ∈ G or (〈p′′, γ1〉, θ)⇒r

BP (〈p′, ε〉, θ′)

We can show that:

Theorem 2. Let BP = (P,Γ,∆,∆c, G) be a self-modifying
Büchi pushdown system, and let G be its corresponding head
reachability graph. A head ((p, γ), θ) of BP is repeating iff
G has a loop on the node ((p, γ), θ) that goes through a 1-
labeled edge.

B. Labelled configurations and labelled BP-automata
To compute G, we need to be able to compute predecessors

of configurations of the form (〈p′, ε〉, θ′), and to determine
whether these predecessors were backward-reachable using
some control points in G (item 3 in Definition 4). To solve
this question, we will label configurations (〈p′′, w〉, θ) s.t.
(〈p′′, w〉, θ) ⇒∗ (〈p′, ε〉, θ′) by 1 if this path went through
an accepting location in G, i.e., if (〈p′′, w〉, θ)⇒r (〈p′, ε〉, θ′),
and by 0 if not. To this aim, we define a labelled configuration
as a tuple [(〈p, w〉, θ), b], s.t. (〈p, w〉, θ) is a configuration and
b ∈ {0, 1}.

Multi-automata were introduced in [2], [3] to finitely repre-
sent regular infinite sets of configurations of a PDS. Since
a labelled configuration c = [(〈p, w〉, θ), b] of a SM-PDS
involves a PDS configuration 〈p, w〉, together with the current
set of transition rules (phase) θ, and a boolean b, in order
to take into account the phases θ, and these new 0/1-labels
in configurations, we extend multi-automata to labelled BP-
automata as follows:

Definition 5. Let BP = (P,Γ,∆,∆c, G) be a SM-BPDS. A
labelled BP-automaton is a tuple A = (Q,Γ, T, I, F ) where
Γ is the automaton alphabet, Q is a finite set of states, I ⊆
P × 2∆∪∆c ⊆ Q is the set of initial states, T ⊂ Q ×

(
(Γ ∪

{ε})× {0, 1}
)
×Q is the set of transitions, F ⊆ Q is the set

of final states.

If
(
q, [γ, b], q′

)
∈ T , we write q

[γ,b]−−−→T q
′. We ex-

tend this notation in the obvious way to sequences of
symbols: (1) ∀q ∈ Q, q

[ε,0]−−−→T q, and (2) ∀q, q′ ∈
Q,∀b ∈ {0, 1},∀w ∈ Γ∗ for w = γ0...γn+1, q

[w,b]−−−→T q
′

iff ∃q0, ..., qn ∈ Q, b0, ..., bn+1 ∈ {0, 1}, b = b0 ∨ b1 ∨
... ∨ bn+1 and q [γ0,b0]−−−−−→T q0

[γ1,b1]−−−−−→T q1 · · · qn
[γn+1,bn+1]−−−−−−−−→T q

′.

If q
[w,b]−−−→T q′ holds, we say that q

[w,b]−−−→T q′ and
q

[γ0,b0]−−−−−→T q0
[γ1,b1]−−−−−→T q1 · · · qn

[γn+1,bn+1]−−−−−−−−→T q
′ is a path of A.

A labelled configuration [(〈p, w〉, θ), b] is accepted
by the automaton A iff there exists a path
(p, θ)

[γ0,b0]−−−−−→T q1
[γ1,b1]−−−−−→T q2 · · · qn

[γn,bn]−−−−−→T qn+1 in A
such that w = γ0γ1 · · · γn, b = b0 ∨ b1 ∨ ... ∨ bn, (p, θ) ∈ I ,
and qn+1 ∈ F . Let L(A) be the set of labelled configurations
accepted by A.

C. Computing pre∗
(
(〈p′, ε〉, θ′)

)
Given a configuration of the form (〈p′, ε〉, θ′), our goal is

to compute a labelled BP-automaton Apre∗
(
(〈p′, ε〉, θ′)

)
that

accepts labelled configurations of the form [c, b] where c is a
configuration and b ∈ {0, 1} such that c ⇒∗ (〈p′, ε〉, θ′) (i.e.,
c ∈ pre∗

(
(〈p′, ε〉, θ′)

)
) and b = 1 iff this path went through

final control points, i.e., c⇒r (〈p′, ε〉, θ′). Otherwise, b = 0.
Let p ∈ P , we define B(p) = 1 if p ∈ G and B(p) = 0
otherwise. Apre∗

(
(〈p′, ε〉, θ′)

)
= (Q,Γ, T, I, F ) is computed

as follows: Initially, Q = I = F = {(p′, θ′)} and T = ∅. We
add to T transitions as follows:

α1: If r = 〈p, γ〉 ↪→ 〈p1, w〉 ∈ ∆. If there exists in T a path
(p1, θ)

[w,b]−−−→T q (in case |w| = 0, we have w = ε) with
r ∈ θ. Then, add (p, θ) to I , and

(
(p, θ), [γ,B(p)∨b], q

)
to T .

α2: if r = p
(r1,r2)
↪−−−−→ p1 ∈ ∆c and there exists in T a

transition (p1, θ)
[γ,b]−−−→T q with r ∈ θ, where γ ∈ Γ.

Then add (p, θ′) to I , and
(
(p, θ′), [γ,B(p) ∨ b], q

)
to

T , for θ′ such that θ = (θ′ \ {r1}) ∪ {r2}.
The procedure above terminates since there is a finite

number of states and phases. Note that by construction,
F = {(p′, θ′)}, and, since initially Q = {(p′, θ′)}, states of
Apre∗

(
(〈p′, ε〉, θ′)

)
are all of the form (p, θ) for p ∈ P and

θ ⊆ ∆ ∪∆c.
Let us explain the intuition behind rule (α1). Let r = 〈p, γ〉 ↪→
〈p1, w〉 ∈ ∆. Let c = (〈p1, ww

′〉, θ) and c′ = (〈p, γw′〉, θ).
Then, if c⇒∗ (〈p′, ε〉, θ′), then necessarily, c′ ⇒∗ (〈p′, ε〉, θ′).
Moreover, c′ ⇒r (〈p′, ε〉, θ′) iff either c ⇒r (〈p′, ε〉, θ′) or
p ∈ G (i.e. B(p) = 1). Thus, we would like that if the
automaton Apre∗

(
(〈p′, ε〉, θ′)

)
accepts the labelled configu-

ration [c, b] (where b = 1 means c ⇒r (〈p′, ε〉, θ′)), then it
should also accept the labelled configuration [c′, b ∨ B(p)]
(b ∨ B(p) = 1 means c′ ⇒r (〈p′, ε〉, θ′)). Thus, if the
automaton Apre∗

(
(〈p′, ε〉, θ′)

)
contains a path of the form

π = (p1, θ)
[w,b1]−−−−→T q

[w′,b2]−−−−→T qf where qf ∈ F that accepts
the labelled configuration [c, b], then the automaton should also
accept the labelled configuration [c′, b∨B(p)]. This configura-

tion is accepted by the run (p, θ)
[γ,B(p)∨b1]−−−−−−−−→T q

[w′,b2]−−−−−→T qf
added by rule (α1).

Rule (α2) deals with modifying rules: Let r = p
(r1,r2)
↪−−−−→

p1 ∈ ∆c. Let c = (〈p1, γw
′〉, θ) and c′ = (〈p, γw′〉, θ′′) s.t.

θ = θ′′\{r1}∪{r2}. Then, if c⇒∗ (〈p′, ε〉, θ′), then necessar-
ily, c′ ⇒∗ (〈p′, ε〉, θ′). Moreover, c′ ⇒r (〈p′, ε〉, θ′) iff either
c ⇒r (〈p′, ε〉, θ′) or p ∈ G (i.e. B(p) = 1). Thus, we need
to impose that if the automaton Apre∗

(
(〈p′, ε〉, θ′)

)
contains a

path of the form (p1, θ)
[γ,b1]−−−→T q

[w′,b2]−−−−→T qf (where qf ∈ F )
that accepts the labelled configuration [c, b], b = b1 ∨ b2
(b = 1 means c ⇒r (〈p′, ε〉, θ′)), then necessarily, the
automaton Apre∗

(
(〈p′, ε〉, θ′)

)
should also accept the labelled

configuration [c′, b ∨B(p)]. This configuration is accepted by

the run (p, θ′′)
[γ,B(p)∨b1]−−−−−−−→T q

[w′,b2]−−−−→T qf added by rule (α2).
We can show that:
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Lemma 1. Let p, p′′ ∈ P and θ, θ′′ ⊆ ∆ ∪ ∆c. Let
w ∈ Γ∗ and b ∈ {0, 1}. If a path (p, θ)

[w,b]−−−→T (p′′, θ′′)
is in Apre∗

(
(〈p′, ε〉, θ′)

)
, then (〈p, w〉, θ) ⇒∗ (〈p′′, ε〉, θ′′).

Moreover, if b = 1, then (〈p, w〉, θ)⇒r (〈p′′, ε〉, θ′′).

Lemma 2. If there is a labelled configuration [(〈p, w〉, θ), b]
such that (〈p, w〉, θ) ⇒∗ (〈p′, ε〉, θ′), then there is a
path (p, θ)

[w,b]−−−→T (p′, θ′) in Apre∗
(
(〈p′, ε〉, θ′)

)
. Moreover,

if (〈p, w〉, θ)⇒r (〈p′, ε〉, θ′), then b = 1.

From these two lemmas, we get:

Theorem 3. Let [c, b] be a labelled configuration. Then [c, b] is
in L(Apre∗

(
(〈p′, ε〉, θ′)

)
iff c ∈ pre∗

(
(〈p′, ε〉, θ′)

)
. Moreover,

c⇒r (〈p′, ε〉, θ′) iff b = 1.

D. Computing the Head Reachability Graph G

Based on the definition of the Head Reachability Graph G,
and on Theorem 3, we can compute G as follows. Initially, G
has no edges.

α′1: if rc : p
(r1,r2)
↪−−−−→ p′ ∈ ∆c, then for every phase θ

such that rc ∈ θ and every γ ∈ Γ, we add the edge
((p, γ), θ)

B(p)−−−→ ((p′, γ), θ0) to the graph G, where θ0 =
θ \ {r1} ∪ {r2}.

α′2: if r : 〈p, γ〉 ↪→ 〈p0, γ0〉 ∈ ∆, then for every phase

θ such that r ∈ θ, we add the edge ((p, γ), θ)
B(p)−−−→

((p0, γ0), θ) to the graph G.
α′3: if r : 〈p, γ〉 ↪→ 〈p0, γ0γ

′〉 ∈ ∆, then for every
phase θ such that r ∈ θ, we add to the graph G
the edge ((p, γ), θ)

B(p)−−−→ ((p0, γ0), θ). Moreover, for
every control point p′ ∈ P and phase θ′ such that
Apre∗

(
(〈p′, ε〉, θ′)

)
contains a transition of the form

t = (p0, θ)
[γ0,b]−−−−→T (p′, θ′), we add to the graph G the

edge ((p, γ), θ)
b∨B(p)−−−−→ ((p′, γ′), θ′).

Items α′1 and α′2 are obvious. They respectively correspond
to item 1 and item 2 of Definition 4 (since B(p) = 1 iff p ∈
G). Item α′3 is based on Lemma 1 and on item 3 of Definition
4. Indeed, it follows from Lemma 1 that Apre∗

(
(〈p′, ε〉, θ′)

)
contains a transition of the form (p0, θ)

[γ0,b]−−−−→T (p′, θ′) im-
plies that (〈p0, γ0〉, θ) ⇒∗ (〈p′, ε〉, θ′), and if b = 1, then
(〈p0, γ0〉, θ) ⇒r (〈p′, ε〉, θ′). Thus, in this case, the edge

((p, γ), θ)
b∨B(p)−−−−→ ((p′, γ′), θ′) is added to G (item 3 of

Definition 4) since 〈p, γ〉 ↪→ 〈p0, γ0γ
′〉 ∈ ∆.

Remark 1. As described above, computing the graph G is
based on determining whether (〈p0, γ0〉, θ) ⇒r (〈p′, ε〉, θ′),
for p′, p0 ∈ P , γ0 ∈ Γ, and θ, θ′ phases. In this section,
we showed how to answer this question using a backward ap-
proach based on computing the labelled pre∗ of configurations
of the form (〈p′, ε〉, θ′). We can also apply a forward approach
based on computing the labelled post∗ of configurations of
the form (〈p0, γ0〉, θ). Computing the labelled post∗ can be
done using labelled BP-automata in the same spirit as above
by extending the “standard” post∗ saturation computation of

SM-PDSs presented in [1] in order to take into account the
0/1-labels as done above for the labelled pre∗.

V. EXPERIMENTS

A. Our approach vs. standard LTL for PDSs

We implemented our approach in a tool and we compared its
performance against the approaches that consist in translating
the SM-PDS to an equivalent standard (or symbolic) PDS, and
then applying the standard LTL model checking algorithms
implemented in the PDS model-checker tool Moped [24]. All
our experiments were run on Ubuntu 16.04 with a 2.7 GHz
CPU, 2GB of memory.

|∆| : |∆c| |δ| SM-PDS PDS Result Total Symbolic PDSResult1 Total1
5 : 2 15 0.07s 0.09s 0.01s 0 .10s 0.08s 0.00s 0.08s
5 : 3 8 0.06s 0.08s 0.01s 0.09s 0.09s 0.00s 0.09s
11 : 4 8 0.16s 0.13s 0.05s 0.18s 0.10s 0.00s 0.10s
5 : 3 10 0.06s 0.15s 0.01s 0.16s 0.09s 0.00s 0.09s

110 : 4 8 0.34s 186.10s 0.79s 186.99s 0.35s 0.00s 0.35s
255 : 8 8 0.39s 281.02s 0.94s 281.96s 4.82s 0.05s 4.87s
255 : 8 10 0.42s 281.02s 0.97s 281.99s 4.82s 0.06s 4.88s
110 : 4 15 0.28s 186.10s 1.05s 187.15s 0.35s 0.06s 0.41s
255 : 8 15 0.46s 281.02s 1.92s 282.94s 4.82s 0.08s 4.90s
110 : 4 20 0.37s 186.10s 1.05s 187.15s 0.35s 0.06s 0.41s
255 : 8 20 0.55s 281.02s 1.97s 282.99s 4.82s 0.17s 4.99s
255 : 8 25 0.59s 281.02s 1.23s 282.99s 4.82s 0.24s 5.36s
2059 : 7 8 0.86s 19525.01s 20.71s 19545.72s 20.70s error -
2059 : 9 8 1.49s 19784.7s 79.12s 19863.32 128.12s error -
2059 : 11 8 3.73s 30011.67s 168.15s 30179.82s 261.07s error -
2059 : 11 28 6.88s 30011.67s 169.55s 30180.22s 261.07s error -
3050 : 10 8 5.21s 39101.57s killed - 438.27s error -
3090 : 10 8 5.86s 40083.07s killed - 438.69s error -
3050 : 10 20 7.24s 39101.57s killed - 438.27s error -
3090 : 10 30 8.38s 40083.07s killed - 438.69s error -
3090 : 10 25 8.89s 40083.07s killed - 438.69s error -
4050 : 10 8 9.21s 81408.91s killed - 699.19s error -
4050 : 10 28 11.64s 81408.91s killed - 699.19s error -
4058 : 11 8 9.83s 93843.37s killed - 802.07s error -
4058 : 11 25 13.59s 93843.37s killed - 802.07s error -
5050 : 11 8 10.34s 173943.37s killed - 921.16s error -
5090 : 11 8 10.52s 179993.54s killed - 929.32s error -
5090 : 11 10 12.89s 179993.54s killed - 929.32s error -
6090 : 11 8 13.49s 190293.64s killed - 1002.73s error -
6090 : 11 10 15.81s 190293.64s killed - 1002.73s error -
6090 : 11 40 32.39s 190293.64s killed - 1002.73s error -
7090 : 11 25 39.86s 198932.32s killed - 1092.28s error -
7090 : 11 30 43.24s 198932.32s killed - 1092.28s error -
9090 : 11 8 29.98s 199987.98s killed - 1128.19s error -
9090 : 11 20 45.29s 199987.98s killed - 1128.19s error -
10050 : 12 8 48.53s 2134587.14s killed - 1469.28s error -
10050 : 12 25 59.69s 2134587.14s killed - 1469.28s error -
10050 : 12 30 61.42s 2134587.14s kille d - 1469.28s error -
10150 : 12 35 64.17s 2134633.28s killed - 1469.28s error -
10150 : 14 8 58.34s 2181975.64s killed - 2849.96s error -
10150 : 14 40 82.72s 2181975.64s killed - 2849.96s error -
10150 : 12 40 76.61s 2134633.28s killed - 1469.28s error -
10150 : 16 45 89.83s 2211008.82s killed - 3665.59s error -
10150 : 12 60 97.56s 2134633.28s killed - 1469.28s error -
10150 : 12 65 105.89s 2134633.28s killed - 1469.28s error -
10150 : 16 65 134.45s 2211008.82s killed - 3665.59s error -
10180 : 16 65 175.29s 2134643.52s killed - 3689.83s error -
10180 : 16 78 214.36s 2134643.52s killed - 3689.83s error -

TABLE I: Our approach vs. standard LTL for PDSs

To perform the comparision, we randomly generate several
SM-PDSs and LTL formulas of different sizes. The results
(CPU Execution time) are shown in Table I. Column |∆| :
|∆c| is the size of SM-PDS. Column |δ| gives the size of
the transitions of the Büchi automaton generated from the
LTL formula (using the tool LTL2BA[27]). Column SM-PDS
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gives the cost of our direct algorithm presented in this paper.
Column PDS shows the cost it takes to get the equivalent PDS
from the SM-PDS. Column Result reports the cost it takes to
run the LTL PDS model-checker Moped [24] for the PDS we
got. Column Total is the total cost it takes to translate the
SM-PDS into a PDS and then apply the standard LTL model
checking algorithm of Moped (Total=PDS+Result). Column
Symbolic PDS reports the cost it takes to get the equivalent
Symbolic PDS from the SM-PDS. Column Result1 is the cost
to run the Symbolic PDS LTL model-checker Moped. Column
Total1 is the total cost it takes to translate the SM-PDS
into a symbolic PDS and then apply the standard LTL model
checking algorithm of Moped. You can see that our direct
algorithm (Column SM-PDS) is much more efficient than
translating the SM-PDS to an equivalent (symbolic) PDS, and
then run the standard LTL model-checker Moped. Translating
the SM-PDS to a standard PDS may take more than
20 days, whereas our direct algorithm takes only a few
seconds. Moreover, since the obtained standard (symbolic)
PDS is huge, Moped failed to handle several cases (the time
limit that we set for Moped is 20 minutes), whereas our tool
was able to deal with all the cases in only a few seconds.

B. Malicious Behavior Detection on Self-Modifying Code

1) Specifying Malicious Behaviors using LTL.: As de-
scribed in [10], several malicious behaviors can be described
by LTL formulas. We give in what follows three examples of
such malicious behaviors and show how they can be described
by LTL formulas:

Registry Key Injecting: In order to get started at boot
time, many malwares add themselves into the registry key
listing. This behavior is typically implemented by first calling
the API function GetModuleFileNameA to retrieve the path
of the malware’s executable file. Then, the API function
RegSetValueExA is called to add the file path into the registry
key listing. This malicious behavior can be described in LTL
as follows:

φrk = F
(
call GetModuleF ileNameA

∧F( call RegSetV alueExA)
)

This formula expresses that if a call to the API function
GetModuleFileNameA is followed by a call to the API func-
tion RegSetValueExA, then probably a malware is trying to
add itself into the registry key listing.

Data-Stealing: Stealing data from the host is a popular ma-
licious behavior that intend to steal any valuable information
including passwords, software codes, bank information, etc.
To do this, the malware needs to scan the disk to find the
interesting file that he wants to steal. After finding the file, the
malware needs to locate it. To this aim, the malware first calls
the API function GetModuleHandleA to get a base address
to search for a location of the file. Then the malware starts
looking for the interesting file by calling the API function
FindFirstFileA. Then the API functions CreateFileMappingA

and MapViewOfFile are called to access the file. Finally,
the specific file can be copied by calling the API function
CopyFileA. Thus, this data-stealing malicious behavior can
be described by the following LTL formula as follows:

φds = F(call GetModuleHandleA ∧ F(call F indF irstF ileA

∧F (call CreateF ileMappingA ∧ F (call MapV iewofF ile

∧F call CopyF ileA))))

Spy-Worm: A spy worm is a malware that can record data
and send it using the Socket API functions. For example,
Keylogger is a spy worm that can record the keyboard states
by calling the API functions GetAsyKeyState and GetKeyState
and send that to the specific server by calling the socket
function sendto. Another spy worm can also spy on the I/O
device rather than the keyboard. For this, it can use the API
function GetRawInputData to obtain input from the specified
device, and then send this input by calling the socket functions
send or sendto. Thus, this malicious behavior can be described
by the following LTL formula:

φsw = F
(
(call GetAsyncKeyState ∨ call GetRawInputData)

∧F(call sendto ∨ call send)
)

Appending virus: An appending virus is a virus that inserts
a copy of its code at the end of the target file. To achieve
this, since the real OFFSET of the virus’ variables depends
on the size of the infected file, the virus has to first compute
its real absolute address in the memory. To perform this, the
virus has to call the sequence of instructions: l1: call f ; l2:
....; f : pop eax;. The instruction call f will push the return
address l2 onto the stack. Then, the pop instruction in f will
put the value of this address into the register eax. Thus, the
virus can get its real absolute address from the register eax.
This malicious behavior can be described by the following
LTL formula:

φav =
∨

F
(
call ∧ X(top-of-stack = a) ∧G¬

(
ret

∧(top-of-stack = a)
))

where the
∨

is taken over all possible return addresses a, and
top-of-stack=a is a predicate that indicates that the top of the
stack is a. The subformula call ∧ X(top-of-stack = a) means
that there exists a procedure call having a as return address.
Indeed, when a procedure call is made, the program pushes its
corresponding return address a to the stack. Thus, at the next
step, a will be on the top of the stack. Therefore, the formula
above expresses that there exists a procedure call having a as
return address, such that there is no ret instruction which will
return to a.

Note that this formula uses predicates that indicate that the
top of the stack is a. Our techniques work for this case as well:
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Example Size Result cost Example Size Result cost Example Size Result cost
Tanatos.b 12315 Yes 16.261s Netsky.c 45 Yes 0.002s Win32.Happy 23 Yes 0.042s
Netsky.a 45 Yes 0.047s Mydoom.c 155 Yes 0.014s MyDo om-N 16980 Yes 30.231s

Mydoom.y 26902 Yes 12.462s Mydoom.j 22355 Yes 11.262s klez-N 6281 Yes 3.252s
klez.c 30 Yes 0.039s Mydoom.v 5965 Yes 3.971s Netsky.b 45 Yes 0.057s

Repah.b 221 Yes 2.428s Gibe.b 5358 Yes 4.229s Magistr.b 4670 Yes 3.699s
Netsky.d 45 Yes 0.083s Ardurk.d 1913 Yes 0.482s klez.f 27 Yes 0.054s
Kelino.l 495 Yes 0.326s Kipis.t 20378 Yes 25.345s klez.d 31 Yes 0.085s
Kelino.g 470 Yes 0.672s Plage.b 395 Yes 0.291s Urbe.a 123 Yes 0.376s

klez.e 27 Yes 0.094s Magistr.b 4670 Yes 3.987s Magistr.a.poly 36989 Yes 49.863s
Mydoom.M@mm 5965 Yes 5.633s MyDoom.54464 5935 Yes 5.939s MyDoom.N!worm 5970 Yes 6.152s
Win32.Runouce 51678 Yes 92.692s Win32.Chur.A 51895 Yes 98.161s Win32.CNHacker.C 51095 Yes 94.952s

Win32.Mydoom!O 215 Yes 0.481s Mydoom.o@MM!zip 257 Yes 0.298s W.Mydoom.kZ2L 228 Yes 0.729s
Mydoom-EG [Trj] 230 Yes 0.242s Email.Worm.W32!c 220 Yes 0.249s W32.Mydoom.L 235 Yes 0.288s
Worm.Mydoom-5 228 Yes 0.307s Mydoom.CJDZ-5239 225 Yes 0.392s Mydoom.DN.worm 220 Yes 0.299s
Win32.Mydoom.R 230 Yes 0.322s Win32 .Mydoom.dlnpqi 235 Yes 0.296s Mydoom.o@MM!zip 235 Yes 0.403s

Sramota.avf 240 Yes 0.383s BehavesLike.Mydoom 238 Yes 0.278s Win32.Mydoom.288 248 Yes 0.410s
Mydoom.ACQ 19210 Yes 39.662s Mydoom.ba 19423 Yes 38.269s Mydoom.ftde 19495 Yes 39.583s

Win32.Yanz 2250 Yes 4.357s Yanzi.QTQX-0894 2120 Yes 4.109s Win32.Yanz.a 2410 Yes 4.465s
Win32.Skybag 4180 Yes 6.891s Skybag.A 4310 Yes 6.205s Netsky.ah@MM 4480 Yes 6.991s

Skybag.b 4955 Yes 6.892s Worm.Skybag-1 4820 Yes 7.119s Win32.Agent.R 4490 Yes 7.898s
Skybag [Wrm] 4985 Yes 7.482s Skybag.Dvgb 4830 Yes 7.564s Netsky.CI.worm 4550 Yes 7.180s

Agent.xpro 533 Yes 0.352s Vilsel.lhb 15036 Yes 4.972s Generic.2026199 433 Yes 3.489s
Vilsel.lhb 15036 Yes 26.962s Generic.DF 5358 Yes 7.821s LdPinch.aoq 7695 Yes 6.290s

Jorik 837 Yes 4.159s Bugbear-B 9278 Yes 17.737s Tanatos.O 9284 Yes 21.481s
Gen.2 1510 Yes 5.632s Gibe.b 5358 Yes 9.615s Generic26.AXCN 837 Yes 3.792s

Androm 95 Yes 0.028s Ardurk.d 1913 Yes 3.679s Generic.128 61 30183 Yes 72.264s
LdPinch.by 970 Yes 4.092s Generic.2026199 433 Yes 2.402s LdPinch.arr 1250 Yes 1.848s

Generic.12861 30183 Yes 88.294s Generic.18017273 267 Yes 0.192s LdPinch.mg 5957 Yes 9.297s
Script.489524 522 Yes 1.458s Generic.DF 5358 Yes 8.291s Zafi 433 Yes 1.028s

GenericKD4047614 3495 Yes 4.646s Win32.Agent.es 3500 Yes 6.083s W32.HfsAutoB. 3398 Yes 5.092s
Trojan.Sivis-1 5351 Yes 7.029s Win32.Siggen.28 5440 Yes 6.998s Trojan/Cosmu.isk. 5345 Yes 6.273s

Trojan.17482-4 381 Yes 1.495s Delphi.Gen 375 Yes 1.948s Trojan.b5ac. 370 Yes 2.089s
LDPinch.400 1783 Yes 4.893s PSW.LdPinch.plt 1808 Yes 5.088s PSW.Pinch.1 1905 Yes 5.757s

LdPinch.BX.DLL 2010 Yes 6.965s LdPinch.fmye 1845 Yes 6.194s LdPinch.Win32.5558 2015 Yes 6.907s
TrojanSpy.Lydra.a 3450 Yes 8.289s Trojan.StartPage 2985 Yes 5.982s PSWTroj.LdPinch.au 2985 Yes 6.198s

TrojanSpy.Zbot 610 Yes 1.610s LDPinch.10639 605 Yes 1.185s SillyProxy.AM 590 Yes 1.882s
LdPinch.mj!c 590 Yes 4.5345s LdPinch.H.gen!Eldorado 605 Yes 3.955s Generic!BT 615 Yes 2.085s
LdPnch-Fam 195 Yes 1.440s Troj.LdPinch.er 205 Yes 2.529s LdPinch.Gen.3 210 Yes 1.482s

Win32.Malware.wsc 150 Yes 2.843s malicious.7aa9fd 185 Yes 2.189s WS.LDPinch.400 195 Yes 1.898s
calculation.exe 9952 No 18.352s cisvc.exe 4105 No 3.631s simple.exe 52 No 0.001s
shutdown.exe 2529 No 0.397s loop.exe 529 No 9.249s cmd.exe 1324 No 13.466s
notepad.exe 10529 No 24.583s java.exe 800 No 15.852s java.exe 21324 No 42.373s

sort.exe 8529 No 29.789s bibDesk.exe 32800 No 50.279s interface.exe 1005 No 8.462s
ipv4.exe 968 No 4.186s TextWrangler.exe 14675 No 45.221s sogou.exe 45219 No 55.259s
game.exe 34325 No 82.424s cycle.tex 9014 No 42.555s calender.exe 892 No 35.039s
SdBot.zk 3430 Yes 23.242s Virus.Gen 661 Yes 9.437s AutoRun.PR 240 Yes 4.181s

Adon.1703 37 Yes 0.358s Adon.1559 37 Yes 0.255s Spam.Tedroo.AB 487 Yes 0.924s
Akez 273 Yes 0.136s Alcaul.d 845 Yes 0.165s Alaul.c 355 Yes 0.109s

Virus.Win32.klk 5235 Yes 15.863s Virus.Win32.Agent 5340 Yes 15.968s Hoax.Gen 5455 Yes 13.569s
eHeur.Virus02 420 Yes 4.985s Akez.11255 440 Yes 3.985s Akez.Win32.1 455 Yes 4.008s
W95/Kuang 435 Yes 2.985s Radar01.Gen 465 Yes 4.005s Akez.Win32.5 490 Yes 3.958s
Haharin.A 210 Yes 1.462s fsAutoB.F026 245 Yes 1.698s Haharin.dr 235 Yes 1.558s
Tanatos.b 12315 Yes 16.261s Netsky.c 45 Yes 0.002s Win32.Happy 23 Yes 0.042s
Netsky.a 45 Yes 0.047s Mydoom.c 155 Yes 0.014s MyDoom-N 16980 Yes 30.231s

Mydoom.y 26902 Yes 12.462s Mydoom.j 22355 Yes 11.262s klez-N 6281 Yes 3.252s
klez.c 30 Yes 0.039s Mydoom.v 5965 Yes 3.971s Netsky.b 45 Yes 0.057s

Repah.b 221 Yes 2.428s Gibe.b 5358 Yes 4.229s Magistr.b 4670 Yes 3.699s
Netsky.d 45 Yes 0.083s Ardurk.d 1913 Yes 0.482s klez.f 27 Yes 0.054s
Kelino.l 495 Yes 0.326s Kipis.t 20378 Yes 25.345s klez.d 31 Yes 0.085s
Kelino.g 470 Yes 0.672s Plage.b 395 Yes 0.291s Urbe.a 123 Yes 0.376s

klez.e 27 Yes 0.094s Magistr.b 4670 Yes 3.987s Magistr.a.poly 36989 Yes 49.863s
Mydoom.M@mm 5965 Yes 5.633s MyDoom.54464 5935 Yes 5.939s MyDoom.N!worm 5970 Yes 6.152s
Win32.Runouce 51678 Yes 92.692s Win32.Chur.A 51895 Yes 98.161s Win32.CNHacker.C 51095 Yes 94.952s

Win32.Mydoom!O 215 Yes 0.481s Mydoom.o@MM!zip 257 Yes 0.298s W.Mydoom.kZ2L 228 Yes 0.729s
Mydoom-EG [Trj] 230 Yes 0.242s Email.Worm.W32!c 220 Yes 0.249s W32.Mydoom.L 235 Yes 0.288s
Worm.Mydoom-5 228 Yes 0.307s Mydoom.CJDZ-5239 225 Yes 0.392s Mydoom.DN.worm 220 Yes 0.299s

TABLE II: Partial Experimental Results
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Example Size LTL Multiple pre∗ Example Size LTL Multiple pre∗ Example Size LTL Multiple pre∗

Tanatos.b 12315 16.261s 46.635s Netsky.c 45 0.002s 0.092s Win32.Happy 23 0.042s 0.075s
Netsky.a 45 0.047s 0.085s Mydoom.c 155 0.014s 0.206s MyDoom-N 16980 30.231s 98.418s

Mydoom.y 26902 12.462s 102.559s Mydoom.j 22355 11.262s 111.617s klez-N 6281 3.252s 78.419s
klez.c 30 0.039s 0.088s Mydoom.v 5965 3.971s 83.988s Netsky.b 45 0.057s 0.183s

Repah.b 221 2.428s 8.852s Gibe.b 5358 4.229s 17.239s Magistr.b 4670 3.699s 93.818s
Netsky.d 45 0.083s 0.123s Ardurk.d 1913 0.482s 3.212s klez.f 27 0.054s 4.518s
Kelino.l 495 0.326s 5.468s Kipis.t 20378 23.345s 48.689s klez.d 31 0.085s 0.291s
Kelino.g 470 0.672s 3.446s Plage.b 395 0.291s 3.138s Urbe.a 123 0.376s 2.981s

klez.e 27 0.094s 0.482s Magistr.b 4670 3.987s 53.235s Magistr.a.poly 36989 49.863s 159.195s
Adon.1703 37 0.358s 0.884s Adon.1559 37 0.255s 4.088s Spam.Tedroo.AB 487 0.924s 4.894s

Akez 273 0.136s 1.863s Alcaul.d 845 0.165s 0.392s Alaul.c 355 0.109s 5.757s
Haharin.A 210 1.462s 4.318s fsAutoB.F026 245 1.698s 4.503s Haharin.dr 235 1.558s 4.312s

LdPinch.BX.DLL 2010 6.965s 8.128s LdPinch.fmye 1845 6.194s 9.232s LdPinch.Win32.5558 2015 6.907s 8.981s
LdPinch-15 580 1.008s 3.957s LdPinch.e 578 1.185s 3.392s Win32/Toga!rfn 590 2.023s 3.978s
Tanatos.b 12315 16.261s 46.635s Netsky.c 45 0.002s 0.092s Win32.Happy 23 0.042s 0.075s
Netsky.a 45 0.047s 0.085s Mydoom.c 155 0.014s 0.206s MyDoom-N 16980 30.231s 98.418s

Mydoom.y 26902 12.462s 102.559s Mydoom.j 22355 11.262s 111.617s klez-N 6281 3.252s 78.419s
klez.c 30 0.039s 0.088s Mydoom.v 5965 3.971s 83.988s Netsky.b 45 0.057s 0.183s

Repah.b 221 2.428s 8.852s Gibe.b 5358 4.229s 17.239s Magistr.b 4670 3.699s 93.818s
Netsky.d 45 0.083s 0.123s Ardurk.d 1913 0.482s 3.212s klez.f 27 0.054s 4.518s
Kelino.l 495 0.326s 5.468s Kipis.t 20378 23.345s 48.689s klez.d 31 0.085s 0.291s
Kelino.g 470 0.672s 3.446s Plage.b 395 0.291s 3.138s Urbe.a 123 0.376s 2.981s

klez.e 27 0.094s 0.482s Magistr.b 4670 3.987s 53.235s Magistr.a.poly 36989 49.863s 159.195s
Mydoom-EG[Trj] 230 0.242s 6.172s Email.W32!c 220 0.249s 5.946s W32.Mydoom.L 235 0.288s 6.452s

Mydoom.5 228 0.307s 8.163s Mydoom.cjdz5239 225 0.392s 9.968s Mydoom.DN.worm 220 0.299s 8.928s
Mydoom.R 230 0.322s 9.086s Win32.Mydoom 235 0.296s 7.985s Mydoom.o@MM!zip 235 0.403s 10.323s

Mydoom.M@mm 5965 5.633s 108.129s MyDoom.54464 5935 5.939s 94.026s MyDoom.N 5970 6.152s 86.468s
Sramota.avf 240 0.383s 2.691s Mydoom 238 0.278 2.749s Win32.Mydoom.288 248 0.410s 2.983s

Win32.Runouce 51678 92.692s 248.146s Win32.Chur.A 51895 98.161s 298.047s Win32.CNHacker 51095 94.952s 245.452s
Win32.Skybag 4180 6.891s 13.739s Skybag.A 4310 6.205s 15.452s Netsky.ah@MM 4480 6.991s 16.018s

Adon.1703 37 0.358s 0.884s Adon.1559 37 0.255s 4.088s Spam.Tedroo.AB 487 0.924s 4.894s
Akez 273 0.136s 1.863s Alcaul.d 845 0.165s 0.392s Alaul.c 355 0.109s 5.757s

Haharin.A 210 1.462s 4.318s fsAutoB.F026 245 1.698s 4.503s Haharin.dr 235 1.558s 4.312s
LdPinch.BX.DLL 2010 6.965s 8.128s LdPinch.fmye 1845 6.194s 9.232s LdPinch..5558 2015 6.907s 8.981s

LdPinch-15 580 1.008s 3.957s LdPinch.e 578 1.185s 3.392s Win32/Toga!rfn 590 2.023s 3.978s
LdPinch.by 970 4.092s 11.327s Generic.2026199 433 2.402s 9.614s LdPinch.arr 1250 1.848s 9.986s

LdPnch-Fam 195 1.440s 4.097s Troj.LdPinch.er 205 2.529s 6.154s LdPinch.Gen.3 210 1.482s 4.973s
Androm 95 0.028s 0.192s Ardurk.d 1913 3.679s 5.588s Generic.12861 30183 72.264s 224.809s

Jorik 837 4.159s 11.733s Bugbear-B 9278 17.737s 52.549s Tanatos.O 9284 21.481s 79.773s

TABLE III: Multiple pre∗ v.s. our direct LTL model-checking algorithm

it suffices to encode the top of the stack in the control points
of the SM-PDS. Our implementation works for this case as
well and can handle appending viruses.

2) Applying our tool for malware detection.: We applied
our tool to detect several malwares. We use the unpack tool
unpacker [28] to handle packers like UPX, and we use Jakstab
[25] as disassembler. We consider 160 malwares from the
malware library VirusShare [29], 184 malwares from the
malware library MalShare [30], 288 email-worms from VX
heaven [31] and 260 new malwares generated by NGVCK,
one of the best malware generators. We also choose 19
benign samples from Windows XP system. We consider self-
modifying versions of these programs. In these versions, the
malicious behaviors are unreachable if the semantics of the
self-modifying instructions are not taken into account, i.e., if
the self-modifying instructions are considered as “standard”
instructions that do not modify the code, then the malicious
behaviors cannot be reached. To check this, we model such
programs in two ways:

1) First, we take into account the self-modifying instruc-
tions and model these programs using SM-PDSs as
described in Section II-C. Then, we check whether
these SM-PDSs satisfy at least one of the malicious
LTL formulas presented above. If yes, the program is
declared as malicious, if not, it is declared as benign.
Our tool was able to detect all the 892 self-modifying

malwares as malicious, and to determine that benign
programs are benign. We report in Table II some of
the results we obtained. Column Size is the number of
control locations, Column Result gives the result of our
algorithm: Yes means malicious and No means benign;
and Column cost gives the cost to apply our LTL model-
checker to check one of the LTL properties described
above.

2) Second, we abstract away the self-modifying instruc-
tions and proceed as if these instructions were not self-
modifying. In this case, we translate the binary codes to
standard pushdown systems as described in [8]. By using
PDSs as models, none of the malwares that we consider
was detected as malicious, whereas, as reported in Table
II, using self-modifying PDSs as models, and applying
our LTL model-checking algorithm allowed to detect all
the 892 malwares that we considered.

Remark 2. Note that checking the formulas φrk, φds, and φsw
could be done using multiple pre∗ queries on SM-PDSs using
the pre∗ algorithm of [1]. However, this would be less efficient
than performing our direct LTL model-checking algorithm, as
shown in Table III where Column Size gives the number of
control locations, Column LTL gives the time of applying our
LTL model-checking algorithm; and Column Multiple pre∗

gives the cost of applying multiple pre∗ on SM-PDSs to check
the properties φrk, φds, and φsw. It can be seen that applying
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our tool McAfee Norman BitDefender Kinsoft Avira eScan Kaspersky Qihoo360 Baidu Avast Symantec
100% 24.8% 19.5% 31.2% 9.7% 34.1% 21.9% 53.1% 51.7% 1.4% 68.3% 82.4%

TABLE IV: Detection rate: Our tool vs. well known antiviruses

our direct LTL model checking algortihm is more efficient.
Furthermore, the appending virus formula φav cannot be
solved using multiple pre∗ queries. Our direct LTL model-
checking algorithm is needed in this case. Note that some of
the malwares we considered in our experiments are appending
viruses. Thus, our algorithm and our implementation are
crucial to be able to detect these malwares.

3) Comparision with well-known antiviruses.: We compare
our tool against well-known and widely used antiviruses. Since
known antiviruses update their signature database as soon as
a new malware is known, in order to have a fair comparision
with these antiviruses, we need to consider new malwares. We
use the sophisticated malware generator NGVCK available at
VX Heavens [31] to generate 205 malwares. We obfuscate
these malwares with self-modifying code, and we fed them to
our tool and to well known antiviruses such as BitDefender,
Kinsoft, Avira, eScan, Kaspersky, Qihoo-360, Baidu, Avast,
and Symantec. Our tool was able to detect all these programs
as malicious, whereas none of the well-known antiviruses was
able to detect all these malwares. Table IV reports the detection
rates of our tool and the well-known anti-viruses.
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