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LTL Model Checking of Self Modifying Code

Self modifying code is code that can modify its own instructions during the execution of the program. It is extensively used by malware writers to obfuscate their malicious code. Thus, analysing self modifying code is nowadays a big challenge. In this paper, we consider the LTL model-checking problem of self modifying code. We model such programs using self-modifying pushdown systems (SM-PDS), an extension of pushdown systems that can modify its own set of transitions during execution. We reduce the LTL model-checking problem to the emptiness problem of self-modifying B üchi pushdown systems (SM-BPDS). We implemented our techniques in a tool that we successfully applied for the detection of several self-modifying malware. Our tool was also able to detect several malwares that well-known antiviruses such as BitDefender, Kinsoft, Avira, eScan, Kaspersky, Qihoo-360, Baidu, Avast, and Symantec failed to detect.

I. INTRODUCTION

Binary code presents several complex aspects that cannot be encountred in source code. One of these aspects is selfmodifying code, i.e., code that can modify its own instructions during the execution of the program. Self-modifying code makes reverse code engineering harder. Thus, it is extensively used to protect software intellectual property. It is also heavily used by malware writers in order to make their malwares hard to analyse and detect by static analysers and anti-viruses. Thus, it is crucial to be able to analyse self-modifying code.

There are several kinds of self-modifying code. In this work, we consider self-modifying code caused by self-modifying instructions. These kind of instructions treat code as data. This allows them to read and write into code, leading to selfmodifying instructions. These self-modifying instructions are usually mov instructions, since mov allows to access memory and read and write into it. Let us consider the example shown in Fig. 1. For simplicity, the addresses' length is assumed to be 1 byte. In the right box, we give, respectively, the binary code, the addresses of the different instructions, and the corresponding assembly code, obtained by translating syntactically the binary code at each address. For example, 0c is the binary code of the jump jmp. Thus, 0c 02 is translated to jmp 0x2 (jump to address 0x2). The second line is translated to push 0x9, since ff is the binary code of the instruction push. The third instruction mov 0x2 0xc will replace the first byte at address 0x2 by 0xc. Thus, at address 0x2, ff 09 is replaced by 0c 09. This means the instruction push 0x9 is replaced by the jump instruction jmp 0x9 (jump to address 0x9), etc. Therefore, this code is self-modifying: the mov instruction was able to modify the instructions of the program via its ability to read and write the memory. If we study this code without looking at the semantics of the self-modifying instructions, we will extract from it the Control Flow Graph CFG a that is in the left of the figure, and we will reach the conclusion that the call to the API function CopyFileA at address 0x9 cannot be made. However, you can see that the correct CFG is the one on the right hand side CFG b, where the call to the API function CopyFileA at address 0x9 can be reached. Thus, it is very important to be able to take into account the semantics of the self-modifying instructions in binary code.

In this paper, we consider the LTL model-checking problem of self-modifying code. To this aim, we use Self-Modifying Pushdown Systems (SM-PDSs) [START_REF] Touili | Reachability analysis of self modifying code[END_REF] to model self-modifying code. Indeed, SM-PDSs were shown in [START_REF] Touili | Reachability analysis of self modifying code[END_REF] to be an adequate model for self-modifying code since they allow to mimic the program's stack while taking into account the self-modifying semantics of the transitions. This is very important for binary code analysis and malware detection, since malwares are based on calls to API functions of the operating system. Thus, antiviruses check the API calls to determine whether a program is malicious or not. Therefore, to evade from these antiviruses, malware writers try to hide the API calls they make by replacing calls by push and jump instructions. Thus, to be able to analyse such malwares, it is crucial to be able to analyse the program's stack. Hence the need to a model like pushdown systems and self-modifying pushdown systems for this purpose, since they allow to mimic the program's stack.

Intuitively, a SM-PDS is a pushdown system (PDS) with self-modifying rules, i.e., with rules that allow to modify the current set of transitions during execution. This model was introduced in [START_REF] Touili | Reachability analysis of self modifying code[END_REF] in order to represent self-modifying code. In [START_REF] Touili | Reachability analysis of self modifying code[END_REF], the authors have proposed algrithms to compute finite automata that accept the forward and backward reachability sets of SM-PDSs. In this work, we tackle the problem of LTL model-checking of SM-PDSs. Since SM-PDSs are equivalent to PDSs [START_REF] Touili | Reachability analysis of self modifying code[END_REF], one possible approach for LTL model checking of SM-PDS is to translate the SM-PDS to a standard PDS and then run the LTL model checking algorithm on the equivalent PDS [START_REF] Bouajjani | Reachability Analysis of Pushdown Automata: Application to Model Checking[END_REF], [START_REF] Esparza | Efficient algorithms for model checking pushdown systems[END_REF]. But translation from a SM-PDS to a standard PDS is exponential. Thus, performing the LTL model checking on the equivalent PDS is not efficient.

To overcome this limitation, we propose a direct LTL model checking algorithm for SM-PDSs. Our algorithm is based on reducing the LTL model checking problem to the emptiness problem of Self Modifying Büchi Pushdown Systems (SM-BPDS). Intuitively, we obtain this SM-BPDS by taking the product of the SM-PDS with a Büchi automaton accepting an LTL formula ϕ. Then, we solve the emptiness problem of an Fig. 1: An Example of a Self-modifying Code SM-BPDS by computing its repeating heads. This computation is based on computing labelled pre * configurations by applying a saturation procedure on labelled finite automata. We implemented our algorithm in a tool. Our experiments show that our direct techniques are much more efficient than translating the SM-PDS to an equivalent PDS and then applying the standard LTL model checking for PDSs [START_REF] Bouajjani | Reachability Analysis of Pushdown Automata: Application to Model Checking[END_REF], [START_REF] Esparza | Efficient algorithms for model checking pushdown systems[END_REF]. Moreover, we successfully applied our tool to the analysis of 892 self-modifying malwares. Our tool was also able to detect several self-modifying malwares that well-known antiviruses like BitDefender, Kinsoft, Avira, eScan, Kaspersky, Qihoo-360, Baidu, Avast, and Symantec were not able to detect. Related Work. Model checking and static analysis approaches have been widely used to analyze binary programs, for instance, in [START_REF] Bergeron | Static detection of malicious code in executable programs[END_REF], [START_REF] Balakrishnan | Model checking x86 executables with codesurfer/x86 and WPDS++[END_REF], [START_REF] Singh | Static verification of worm and virus behavior in binary executables using model checking[END_REF], [START_REF] Kinder | Detecting malicious code by model checking[END_REF], [START_REF] Song | Efficient malware detection using modelchecking[END_REF]. Temporal Logics were chosen to describe malicious behaviors in [START_REF] Beaucamps | Behavior abstraction in malware analysis[END_REF], [START_REF] Kinder | Detecting malicious code by model checking[END_REF], [START_REF] Song | Efficient malware detection using modelchecking[END_REF], [START_REF] Song | Ltl model-checking for malware detection[END_REF], [START_REF] Nguyen | CARET model checking for malware detection[END_REF]. However, these works cannot deal with self-modifying code.

POMMADE [START_REF] Song | Efficient malware detection using modelchecking[END_REF], [START_REF] Song | Ltl model-checking for malware detection[END_REF] is a malware detector based on LTL and CTL model-checking of PDSs. STAMAD [START_REF] Dam | Learning malware using generalized graph kernels[END_REF], [START_REF]Precise extraction of malicious behaviors[END_REF], [START_REF]Malware detection based on graph classification[END_REF] is a malware detector based on PDSs and machine learning. However, POMMADE and STAMAD cannot deal with selfmodifying code.

Cai et al. [START_REF] Cai | Certified self-modifying code[END_REF] use local reasoning and separation logic to describe self-modifying code and treat program code uniformly as regular data structure. However, [START_REF] Cai | Certified self-modifying code[END_REF] requires programs to be manually annotated with invariants. In [START_REF] Debray | On the semantics of selfunpacking malware code[END_REF], the authors propose a formal semantics for self-modifying codes, and use that to represent self-unpacking code. This work only deals with packing and unpacking behaviours. Bonfante et al. [START_REF] Bonfante | A computability perspective on self-modifying programs[END_REF] provide an operational semantics for self-modifying programs and show that they can be constructively rewritten to a nonmodifying program. However, all these specifications [START_REF] Bonfante | A computability perspective on self-modifying programs[END_REF], [START_REF] Cai | Certified self-modifying code[END_REF], [START_REF] Debray | On the semantics of selfunpacking malware code[END_REF] are too abstract to be used in practice.

In [START_REF] Bertrand | A model for self-modifying code[END_REF], the authors propose a new representation of selfmodifying code named State Enhanced-Control Flow Graph (SE-CFG). SE-CFG extends standard control flow graphs with a new data structure, keeping track of the possible states programs can reach, and with edges that can be conditional on the state of the target memory location. It is not easy to analyse a binary program only using its SE-CFG, especially that this representation does not allow to take into account the stack of the program. [START_REF] Blazy | Verified abstract interpretation techniques for disassembling low-level self-modifying code[END_REF] propose abstract interpretation techniques to compute an over-approximation of the set of reachable states of a self-modifying program, where for each control point of the program, an over-approximation of the memory state at this control point is provided. [START_REF] Roundy | Hybrid analysis and control of malware[END_REF] combine static and dynamic analysis techniques to analyse self-modifying programs. Unlike our approach, these techniques [START_REF] Blazy | Verified abstract interpretation techniques for disassembling low-level self-modifying code[END_REF], [START_REF] Roundy | Hybrid analysis and control of malware[END_REF] cannot handle the program's stack.

Unpacking binary code is also considered in [START_REF] Coogan | Automatic static unpacking of malware binaries[END_REF], [START_REF] Gyung | Renovo: A hidden code extractor for packed executables[END_REF], [START_REF] Royal | Polyunpack: Automating the hidden-code extraction of unpack-executing malware[END_REF], [START_REF] Debray | On the semantics of selfunpacking malware code[END_REF]. These works do not consider self-modifying mov instructions.

Outline. The rest of the paper is structured as follows: Section 2 recalls the definition of Self Modifying pushdown systems. LTL model checking and SM-BPDSs are defined in Section 3. Section 4 solves the emptiness problem of SM-BPDS. Finally, the experiments are reported in Section 5.

II. SELF MODIFYING PUSHDOWN SYSTEMS A. Definition

We recall in this section the definition of Self-modifying Pushdown Systems [START_REF] Touili | Reachability analysis of self modifying code[END_REF]. Definition 1. A Self-modifying Pushdown System (SM-PDS) is a tuple P = (P, Γ, ∆, ∆ c ), where P is a finite set of control points, Γ is a finite set of stack symbols, ∆ ⊆ (P × Γ) × (P × Γ * ) is a finite set of transition rules, and ∆ c ∈ P ×∆×∆×P is a finite set of modifying transition rules. If ((p, γ), (p , w)) ∈ ∆, we also write p, γ → p , w ∈ ∆. If (p, r 1 , r 2 , p ) ∈ ∆ c , we also write p

(r1,r2) ----→ p ∈ ∆ c . A Pushdown System (PDS) is a SM-PDS where ∆ c = ∅.
Intuitively, a Self-modifying Pushdown System is a Pushdown System that can dynamically modify its set of rules during the execution time: rules ∆ are standard PDS transition rules, while rules ∆ c modify the current set of transition rules: p, γ → p , w ∈ ∆ expresses that if the SM-PDS is in control point p and has γ on top of its stack, then it can move to control point p , pop γ and push w onto the stack, while p (r1,r2) ----→ p ∈ ∆ c expresses that when the PDS is in control point p, then it can move to control point p , remove the rule r 1 from its current set of transition rules, and add the rule r 2 .

Formally, a configuration of a SM-PDS is a tuple c = ( p, w , θ) where p ∈ P is the control point, w ∈ Γ * is the stack content, and θ ⊆ ∆ ∪ ∆ c is the current set of transition rules of the SM-PDS. θ is called the current phase of the SM-PDS. When the SM-PDS is a PDS, i.e., when ∆ c = ∅, a configuration is a tuple c = ( p, w , ∆), since there is no changing rule, so there is only one possible phase. In this case, we can also write c = p, w . Let C be the set of configurations of a SM-PDS. A SM-PDS defines a transition relation ⇒ P between configurations as follows: Let c = ( p, w , θ) be a configuration, and let r be a rule in θ, then:

1) if r ∈ ∆ c is of the form r = p (r1,r2)
----→ p , such that r 1 ∈ θ, then ( p, w , θ) ⇒ P ( p , w , θ ), where θ = (θ \ {r 1 }) ∪ {r 2 }. In other words, the transition rule r updates the current set of transition rules θ by removing r 1 from it and adding r 2 to it. 2) if r ∈ ∆ is of the form r = p, γ → p , w ∈ ∆, then ( p, γw , θ) ⇒ P ( p , w w , θ). In other words, the transition rule r moves the control point from p to p , pops γ from the stack and pushes w onto the stack. This transition keeps the current set of transition rules θ unchanged. Let ⇒ * P be the transitive, reflexive closure of ⇒ P and ⇒ + P be its transitive closure. An execution (a run) of P is a sequence of configurations π = c 0 c 1 ... s.t. c i ⇒ P c i+1 for every i ≥ 0. Given a configuration c, the set of immediate predecessors (resp. successors) of c is pre P (c) = {c ∈ C : c ⇒ P c} (resp. post P (c) = {c ∈ C : c ⇒ P c }). These notations can be generalized straightforwardly to sets of configurations. Let pre * P (resp. post * P ) denote the reflexivetransitive closure of pre P (resp. post P ). We remove the subscript P when it is clear from the context. We suppose w.l.o.g. that rules in ∆ are of the form p, γ → p , w such that |w| ≤ 2, and that the self-modifying rules r = p (r1,r2) ----→ p in ∆ c are such that r = r 1 . Note that this is not a restriction, since for a given SM-PDS, one can compute an equivalent SM-PDS that satisfies these conditions [START_REF] Touili | Reachability analysis of self modifying code[END_REF] .

B. SM-PDS vs. PDS

Let P = (P, Γ, ∆, ∆ c ) be a SM-PDS. It was shown in [START_REF] Touili | Reachability analysis of self modifying code[END_REF] that:

1) P can be described by an equivalent pushdown system (PDS). Indeed, since the number of phases is finite, we can encode phases in the control point of the PDS. However, this translation is not efficient since the number of control points of the equivalent PDS is |P |•2 O(|∆|+|∆c|) . 2) P can also be described by an equivalent Symbolic pushdown system [START_REF] Schwoon | Model-checking pushdown systems[END_REF], where each SM-PDS rule is represented by a single, symbolic transition, where the different values of the phases are encoded in a symbolic way using relations between phases. This translation is not efficient neither since the size of the relations used in the symbolic transitions is 2 O(|∆|+|∆c|) .

C. From Self-modifying Code to SM-PDS It is shown in [START_REF] Touili | Reachability analysis of self modifying code[END_REF] how to describe a self-modifying binary code using a SM-PDS. The basic idea is that the control locations of the SM-PDS store the control points of the binary program and the stack mimics the program's stack. Our translation relies on the disassembler Jakstab [START_REF] Kinder | Jakstab: A static analysis platform for binaries[END_REF] to disassemble binary code, construct the control flow graph (CFG), determine indirect jumps, compute the possible values of used variables, registers and the memory locations at each control point of program. After getting the control flow graph whose edges are equipped with disassembled instructions, we translate the CFG into a SM-PDS as described in [START_REF] Touili | Reachability analysis of self modifying code[END_REF]. The non self-modifying instructions of the program define the rules ∆ of the SM-PDS (which are standard PDS rules), and can be obtained following the translation of [START_REF] Song | Efficient malware detection using modelchecking[END_REF] that models non self-modifying instructions of the program by a PDS. Selfmodifying instructions are represented using self-modifying transitions ∆ c of the SM-PDS. For more details, we refer the reader to [START_REF] Touili | Reachability analysis of self modifying code[END_REF].

III. LTL MODEL-CHECKING OF SM-PDSS

A. The linear-time temporal logic LTL

Let At be a finite set of atomic propositions. LTL formulas are defined as follows (where A ∈ At):

ϕ := A | ¬ϕ | ϕ 1 ∨ ϕ 2 | Xϕ | ϕ 1 U ϕ 2
Formulae are interpreted on infinite words over 2 At . Let ω = ω 0 ω 1 ... be an infinite word over 2 At . We write ω i for the suffix of ω starting at ω i . We denote ω |= ϕ to express that ω satisfies a formula ϕ:

ω |= A ⇐⇒ A ∈ ω 0 ω |= ¬ϕ ⇐⇒ ω ϕ ω |= ϕ 1 ∨ϕ 2 ⇐⇒ ω |= ϕ 1 or ω |= ϕ 2 ω |= Xϕ ⇐⇒ ω 1 |= ϕ ω |= ϕ 1 U ϕ 2 ⇐⇒ ∃i ≥ 0, ω i |= ϕ 2 and ∀0 ≤ j < i, ω j |= ϕ 1
The temporal operators G (globally) and F (eventually) are defined as follows: F ϕ = (A ∨ ¬A)U ϕ and Gϕ = ¬F ¬ϕ. Let W (ϕ) be the set of infinite words that satisfy an LTL formula ϕ. It is well known that W (ϕ) can be accepted by Büchi automata:

Definition 2. A Büchi automaton B is a quintuple (Q, Γ, η, q 0 , F ) where Q is a finite set of states, Γ is a finite input alphabet, η ⊆ (Q×Γ×Q) is a set of transitions, q 0 ∈ Q is the initial state and F ⊆ Q is the set of accepting states.
A run of B on a word γ 0 γ 1 ... ∈ Γ ω is a sequence of states q 0 q 1 q 2 ... s.t. ∀i ≥ 0, (q i , γ i , q i+1 ) ∈ η. An infinite word ω is accepted by B if B has a run on ω that starts at q 0 and visits accepting states from F infinitely often.

Theorem. [START_REF] Vardi | Reasoning about infinite computations[END_REF] Given an LTL formula ϕ, one can effectively construct a Büchi automaton B ϕ which accepts W (ϕ).

B. Self Modifying Büchi Pushdown Systems

Definition 3. A Self Modifying Büchi Pushdown System (SM-BPDS) is a tuple BP = (P, Γ, ∆, ∆ c , G) where P = (P, Γ, ∆, ∆ c ) is a SM-PDS, G ⊆ P is a set of accepting control locations. A run π of the SM-BPDS BP is a run (execution) of the SM-PDS P. π is accepting iff it infinitely often visits configurations having control locations in G.

Let ⇒ BP be the relation ⇒ P (P is the SM-PDS underlying the SM-BPDS). Let c and c be two configurations of the SM-BPDS BP. The relation ⇒ r BP is defined as follows: c ⇒ r BP c iff there exists a configuration ( g, u , θ), g ∈ G s.t. c ⇒ * P ( g, u , θ) ⇒ + P c . We remove the subscript BP when it is clear from the context.

A head of SM-BPDS is a tuple ( p, γ , θ) where

p ∈ P , γ ∈ Γ and θ ⊆ ∆ ∪ ∆ c . A head ((p, γ), θ) is repeating if there exists v ∈ Γ * such that ( p, γ , θ) ⇒ r BP ( p, γv , θ). The set of repeating heads of SM-BPDS is called Rep BP .
C. From LTL Model-Checking of SM-PDSs to the emptiness problem of SM-BPDSs Let P = (P, Γ, ∆, ∆ c ) be a self modifying pushdown system. Let At be a set of atomic propositions. Let ν : P → 2 At be a labelling function. Let π = ( p 0 , w 0 , θ 0 )( p 1 , w 1 , θ 1 )... be an execution of the SM-PDS P. Let ϕ be an LTL formula over the set of atomic propositions At. We say that

π |= ν ϕ iff ν(p 0 )ν(p 1 ) • • • |= ϕ
Let ( p, w , θ) be a configuration of P. We say that ( p, w , θ) |= ν ϕ iff P has a path π starting at ( p, w , θ) such that π |= ν ϕ.

Our goal in this paper is to perform LTL model-checking for self-modifying pushdown systems. Since SM-PDSs can be translated to standard (symbolic) pushdown systems, one way to solve this LTL model-checking problem is to compute the (symbolic) pushdown system that is equivalent to the SM-PDS (see section II-B), and then apply the standard LTL modelchecking algorithms on standard PDSs [START_REF] Schwoon | Model-checking pushdown systems[END_REF]. However, this approach is not efficient (as will be witnessed later in the experiments). Thus, we need a direct approach that performs LTL model-checking on the SM-PDS, without translating it to an equivalent PDS. Let then B ϕ = (Q, 2 At , η, q 0 , F ) be a Büchi automaton that accepts W (ϕ). We compute the SM-BPDS BP ϕ = (P × Q, Γ, ∆ , ∆ c , G) by performing a kind of product between the SM-PDS P and the Büchi automaton B ϕ as follows:

1) if r = p, γ → p , w ∈ ∆ and (q, ν(p), q ) ∈ η, then (p, q), γ → (p , q ), w ∈ ∆ . Let prod(r) be the set of rules of ∆ obtained from the rule r, i.e., rules of ∆ of the form (p, q), γ → (p , q ), w .

2) if a rule r = p

(r1,r2) ----→ p ∈ ∆ c and (q, ν(p), q ) ∈ η, then {(p, q) (r 1 ,r 2 )
----→ (p , q ), r 1 ∈ prod(r 1 ), r 2 ∈ prod(r 2 )} ⊆ ∆ c . Let prod(r) be the set of rules of ∆ obtained from the rule r, i.e., rules of ∆ c of the form (p, q) (r 1 ,r 2 ) ----→ (p , q ), where r 1 ∈ prod(r 1 ), and r 2 ∈ prod(r 2 ).

3) G = P × F . We can show that: Theorem 1. Let ( p, w , θ) be a configuration of the SM-PDS P. ( p, w , θ) |= ν ϕ iff BP ϕ has an accepting run from ( (p, q 0 ), w , prod(θ)) where prod(θ) is the set of rules of ∆ ∪ ∆ c obtained from the rules of θ as described above.

Thus, LTL model-checking for SM-PDSs can be reduced to checking whether an SM-BPDS has an accepting run. The rest of the paper is devoted to this problem.

IV. THE EMPTINESS PROBLEM OF SM-BPDSS

From now on, we fix an SM-BPDS BP = (P, Γ, ∆, ∆ c , G). We can show that BP has an accepting run starting from a configuration c if and only if from c, it can reach a configuration with a repeating head: Proposition 1. An SM-BPDS BP has an accepting run starting from a configuration c if and only if there exists a repeating head ((p, γ), θ) such that c ⇒ * BP ( p, γw , θ) for some w ∈ Γ * . Thus, since there exists an efficient algorithm to compute the pre * of SM-PDSs [START_REF] Touili | Reachability analysis of self modifying code[END_REF], the emptiness problem of an SM-BPDS can be reduced to computing its repeating heads.

A. The Head Reachability Graph G

Our goal is to compute the set of repeating heads Rep BP , i.e., the set of heads ( p, γ , θ) such that there exists v ∈ Γ * , ( p, γ , θ) ⇒ r ( p, γv , θ). I.e., ( p, γ , θ) ⇒ * ( p, γv , θ) s.t. this path goes through an accepting location in G. To this aim, we will compute a finite graph G whose nodes are the heads of BP of the form ((p, γ), θ), where p ∈ P , γ ∈ Γ and θ ⊆ ∆ ∪ ∆ c ; and whose edges encode the reachability relation betweeen these heads. More precisely, given two heads ((p, γ), θ) and ((p , γ ), θ ), ((p, γ), θ) b -→ ((p , γ ), θ ) is an edge of the graph G means that the configuration ( p, γ , θ) can reach a configuration having ( p , γ , θ ) as head, i.e., it means that there exists v ∈ Γ * s.t. ( p, γ , θ) ⇒ * ( p , γ v , θ ). Moreover, we need to keep the information whether this path visits an accepting location in G or not. This information is recorded in the label of the edge b: b = 1 means that the path visits an accepting location in G, i.e. that ( p, γ , θ) ⇒ r ( p , γ v , θ ). Otherwise, b = 0. Therefore, if the graph G contains a loop from a head ((p, γ), θ) to itself such that this loop goes through an edge labelled by 1, then ((p, γ), θ) is a repeating head. Thus, computing Rep BP can be reduced to computing the graph G and finding 1-labelled loops in this graph.

More precisely, we define the head reachability graph G as follows:

Definition 4. The head reachability graph G is a tuple (P × Γ × 2 ∆∪∆c , {0, 1}, δ) such that ((p, γ), θ) b - → ((p , γ ), θ ) is an edge of δ iff:
1) there exists a transition r c : p

(r1,r2) ----→ p ∈ θ ∩ ∆ c , γ = γ , θ = θ \ {r 1 } ∪ {r 2 }, and b = 1 iff p ∈ G; 2) there exists a transition p, γ → p , γ ∈ θ∩∆, θ = θ and b = 1 iff p ∈ G; 3) there exists a transition p, γ → p , γ 1 γ ∈ θ ∩ ∆, for γ 1 ∈ Γ, p ∈ P , s.t. ( p , γ 1 , θ) ⇒ * BP ( p , , θ ), and b = 1 iff p ∈ G or ( p , γ 1 , θ) ⇒ r
BP ( p , , θ ) We can show that: Theorem 2. Let BP = (P, Γ, ∆, ∆ c , G) be a self-modifying Büchi pushdown system, and let G be its corresponding head reachability graph. A head ((p, γ), θ) of BP is repeating iff G has a loop on the node ((p, γ), θ) that goes through a 1labeled edge.

B. Labelled configurations and labelled BP-automata

To compute G, we need to be able to compute predecessors of configurations of the form ( p , , θ ), and to determine whether these predecessors were backward-reachable using some control points in G (item 3 in Definition 4). To solve this question, we will label configurations ( p , w , θ) s. Multi-automata were introduced in [START_REF] Bouajjani | Reachability Analysis of Pushdown Automata: Application to Model Checking[END_REF], [START_REF] Esparza | Efficient algorithms for model checking pushdown systems[END_REF] to finitely represent regular infinite sets of configurations of a PDS. Since a labelled configuration c = [( p, w , θ), b] of a SM-PDS involves a PDS configuration p, w , together with the current set of transition rules (phase) θ, and a boolean b, in order to take into account the phases θ, and these new 0/1-labels in configurations, we extend multi-automata to labelled BPautomata as follows: Definition 5. Let BP = (P, Γ, ∆, ∆ c , G) be a SM-BPDS. A labelled BP-automaton is a tuple A = (Q, Γ, T, I, F ) where Γ is the automaton alphabet, Q is a finite set of states,

I ⊆ P × 2 ∆∪∆c ⊆ Q is the set of initial states, T ⊂ Q × (Γ ∪ { }) × {0, 1} × Q is the set of transitions, F ⊆ Q is the set of final states. If q, [γ, b], q ∈ T , we write q [γ,b]
---→ T q . We extend this notation in the obvious way to sequences of symbols: (1) ∀q ∈ Q, q

[ ,0] ---→ T q, and (2) ∀q, q ∈ Q, ∀b ∈ {0, 1}, ∀w ∈ Γ * for w = γ 0 ...γ n+1 , q [w,b] ---→ T q iff ∃q 0 , ..., q n ∈ Q, b 0 , ..., b n+1 ∈ {0, 1}, b = b 0 ∨ b 1 ∨ ... ∨ b n+1 and q [γ0,b0] -----→ T q 0 [γ1,b1] -----→ T q 1 • • • q n [γn+1,bn+1] --------→ T q . If q [w,b]
---→ T q holds, we say that q 

[w,b] ---→ T q and q [γ0,b0] -----→ T q 0 [γ1,b1] -----→ T q 1 • • • q n [γn+1,bn+1] --------→ T q is a path of A. A labelled configuration [( p, w , θ), b] is accepted by the automaton A iff there exists a path (p, θ) [γ0,b0] -----→ T q 1 [γ1,b1] -----→ T q 2 • • • q n [γn,bn] -----→ T q n+1 in A such that w = γ 0 γ 1 • • • γ n , b = b 0 ∨ b 1 ∨ ... ∨ b n , (p,
= (p 1 , θ) [w,b1] ----→ T q [w ,b2]
----→ T q f where q f ∈ F that accepts the labelled configuration [c, b], then the automaton should also accept the labelled configuration [c , b∨B(p)]. This configuration is accepted by the run (p, θ)

[γ,B(p)∨b1] --------→ T q [w ,b2]
-----→ T q f added by rule (α 1 ).

Rule (α 2 ) deals with modifying rules

: Let r = p (r1,r2) ----→ p 1 ∈ ∆ c . Let c = ( p 1 , γw , θ) and c = ( p, γw , θ ) s.t. θ = θ \{r 1 } ∪ {r 2 }. Then, if c ⇒ * ( p , , θ ), then necessar- ily, c ⇒ * ( p , , θ ). Moreover, c ⇒ r ( p , , θ ) iff either c ⇒ r ( p , , θ ) or p ∈ G (i.e. B(p) = 1
). Thus, we need to impose that if the automaton A pre * ( p , , θ ) contains a path of the form (p 1 , θ) -------→ T q [w ,b2] ----→ T q f added by rule (α 2 ). We can show that:

[γ,b1] ---→ T q [w ,b2] ----→ T q f (where q f ∈ F ) that accepts the labelled configuration [c, b], b = b 1 ∨ b 2 (b = 1 means c ⇒ r ( p , , θ )),
Lemma 1. Let p, p ∈ P and θ, θ ⊆ ∆ ∪ ∆ c . Let w ∈ Γ * and b ∈ {0, 1}. If a path (p, θ) [w,b] ---→ T (p , θ ) is in A pre * ( p , , θ ) , then ( p, w , θ) ⇒ * ( p , , θ ). Moreover, if b = 1, then ( p, w , θ) ⇒ r ( p , , θ ). Lemma 2. If there is a labelled configuration [( p, w , θ), b] such that ( p, w , θ) ⇒ * ( p , , θ ), then there is a path (p, θ) [w,b] ---→ T (p , θ ) in A pre * ( p , , θ ) . Moreover, if ( p, w , θ) ⇒ r ( p , , θ ), then b = 1.
From these two lemmas, we get:

Theorem 3. Let [c, b] be a labelled configuration. Then [c, b] is in L(A pre * ( p , , θ ) iff c ∈ pre * ( p , , θ ) . Moreover, c ⇒ r ( p , , θ ) iff b = 1.

D. Computing the Head Reachability Graph G

Based on the definition of the Head Reachability Graph G, and on Theorem 3, we can compute G as follows. Initially, G has no edges.

α 1 : if r c : p (r1,r2)
----→ p ∈ ∆ c , then for every phase θ such that r c ∈ θ and every γ ∈ Γ, we add the edge ((p, γ), θ)

B(p)
---→ ((p , γ), θ 0 ) to the graph G, where θ 0 = θ \ {r 1 } ∪ {r 2 }. α 2 : if r : p, γ → p 0 , γ 0 ∈ ∆, then for every phase θ such that r ∈ θ, we add the edge ((p, γ), θ)

B(p) ---→ ((p 0 , γ 0 ), θ) to the graph G. α 3 : if r : p, γ → p 0 , γ 0 γ
∈ ∆, then for every phase θ such that r ∈ θ, we add to the graph G the edge ((p, γ), θ)

B(p)

---→ ((p 0 , γ 0 ), θ). Moreover, for every control point p ∈ P and phase θ such that A pre * ( p , , θ ) contains a transition of the form t = (p 0 , θ) ----→ T (p , θ ) implies that ( p 0 , γ 0 , θ) ⇒ * ( p , , θ ), and if b = 1, then ( p 0 , γ 0 , θ) ⇒ r ( p , , θ ). Thus, in this case, the edge

((p, γ), θ) b∨B(p) ----→ ((p , γ ), θ ) is added to G (item 3 of Definition 4) since p, γ → p 0 , γ 0 γ ∈ ∆.
Remark 1. As described above, computing the graph G is based on determining whether ( p 0 , γ 0 , θ) ⇒ r ( p , , θ ), for p , p 0 ∈ P , γ 0 ∈ Γ, and θ, θ phases. In this section, we showed how to answer this question using a backward approach based on computing the labelled pre * of configurations of the form ( p , , θ ). We can also apply a forward approach based on computing the labelled post * of configurations of the form ( p 0 , γ 0 , θ). Computing the labelled post * can be done using labelled BP-automata in the same spirit as above by extending the "standard" post * saturation computation of SM-PDSs presented in [START_REF] Touili | Reachability analysis of self modifying code[END_REF] in order to take into account the 0/1-labels as done above for the labelled pre * .

V. EXPERIMENTS

A. Our approach vs. standard LTL for PDSs

We implemented our approach in a tool and we compared its performance against the approaches that consist in translating the SM-PDS to an equivalent standard (or symbolic) PDS, and then applying the standard LTL model checking algorithms implemented in the PDS model-checker tool Moped [START_REF] Schwoon | Model-checking pushdown systems[END_REF]. All our experiments were run on Ubuntu 16.04 with a 2.7 GHz CPU, 2GB of memory. PDS is huge, Moped failed to handle several cases (the time limit that we set for Moped is 20 minutes), whereas our tool was able to deal with all the cases in only a few seconds.

B. Malicious Behavior Detection on Self-Modifying Code 1) Specifying Malicious Behaviors using LTL.: As described in [START_REF] Song | Ltl model-checking for malware detection[END_REF], several malicious behaviors can be described by LTL formulas. We give in what follows three examples of such malicious behaviors and show how they can be described by LTL formulas:

Registry Key Injecting: In order to get started at boot time, many malwares add themselves into the registry key listing. This behavior is typically implemented by first calling the API function GetModuleFileNameA to retrieve the path of the malware's executable file. Then, the API function RegSetValueExA is called to add the file path into the registry key listing. This malicious behavior can be described in LTL as follows:

φ rk = F call GetM oduleF ileN ameA ∧F( call RegSetV alueExA)
This formula expresses that if a call to the API function GetModuleFileNameA is followed by a call to the API function RegSetValueExA, then probably a malware is trying to add itself into the registry key listing.

Data-Stealing: Stealing data from the host is a popular malicious behavior that intend to steal any valuable information including passwords, software codes, bank information, etc. To do this, the malware needs to scan the disk to find the interesting file that he wants to steal. After finding the file, the malware needs to locate it. To this aim, the malware first calls the API function GetModuleHandleA to get a base address to search for a location of the file. Then the malware starts looking for the interesting file by calling the API function FindFirstFileA. Then the API functions CreateFileMappingA and MapViewOfFile are called to access the file. Finally, the specific file can be copied by calling the API function CopyFileA. Thus, this data-stealing malicious behavior can be described by the following LTL formula as follows:

φ ds = F(call GetM oduleHandleA ∧ F(call F indF irstF ileA ∧F (call CreateF ileM appingA ∧ F (call M apV iewof F ile ∧F call CopyF ileA))))
Spy-Worm: A spy worm is a malware that can record data and send it using the Socket API functions. For example, Keylogger is a spy worm that can record the keyboard states by calling the API functions GetAsyKeyState and GetKeyState and send that to the specific server by calling the socket function sendto. Another spy worm can also spy on the I/O device rather than the keyboard. For this, it can use the API function GetRawInputData to obtain input from the specified device, and then send this input by calling the socket functions send or sendto. Thus, this malicious behavior can be described by the following LTL formula:

φ sw = F (call GetAsyncKeyState ∨ call GetRawInputData) ∧F(call sendto ∨ call send)
Appending virus: An appending virus is a virus that inserts a copy of its code at the end of the target file. To achieve this, since the real OFFSET of the virus' variables depends on the size of the infected file, the virus has to first compute its real absolute address in the memory. To perform this, the virus has to call the sequence of instructions: l 1 : call f ; l 2 : ....; f : pop eax;. The instruction call f will push the return address l 2 onto the stack. Then, the pop instruction in f will put the value of this address into the register eax. Thus, the virus can get its real absolute address from the register eax. This malicious behavior can be described by the following LTL formula:

φ av = F call ∧ X(top-of-stack = a) ∧ G¬ ret ∧(top-of-stack = a)
where the is taken over all possible return addresses a, and top-of-stack=a is a predicate that indicates that the top of the stack is a. The subformula call ∧ X(top-of-stack = a) means that there exists a procedure call having a as return address. Indeed, when a procedure call is made, the program pushes its corresponding return address a to the stack. Thus, at the next step, a will be on the top of the stack. Therefore, the formula above expresses that there exists a procedure call having a as return address, such that there is no ret instruction which will return to a. Note that this formula uses predicates that indicate that the top of the stack is a. Our techniques work for this case as well: 2) Applying our tool for malware detection.: We applied our tool to detect several malwares. We use the unpack tool unpacker [START_REF] Tool | Automated unpacking: A behaviour based approach[END_REF] to handle packers like UPX, and we use Jakstab [START_REF] Kinder | Jakstab: A static analysis platform for binaries[END_REF] as disassembler. We consider 160 malwares from the malware library VirusShare [START_REF] Virusshare | vxshare[END_REF], 184 malwares from the malware library MalShare [START_REF] Cutler | malshare[END_REF], 288 email-worms from VX heaven [START_REF] Heaven | [END_REF] and 260 new malwares generated by NGVCK, one of the best malware generators. We also choose 19 benign samples from Windows XP system. We consider selfmodifying versions of these programs. In these versions, the malicious behaviors are unreachable if the semantics of the self-modifying instructions are not taken into account, i.e., if the self-modifying instructions are considered as "standard" instructions that do not modify the code, then the malicious behaviors cannot be reached. To check this, we model such programs in two ways:

1) First, we take into account the self-modifying instructions and model these programs using SM-PDSs as described in Section II-C. Then, we check whether these SM-PDSs satisfy at least one of the malicious LTL formulas presented above. If yes, the program is declared as malicious, if not, it is declared as benign.

Our tool was able to detect all the 892 self-modifying malwares as malicious, and to determine that benign programs are benign. We report in Table II some of the results we obtained. Column Size is the number of control locations, Column Result gives the result of our algorithm: Yes means malicious and No means benign; and Column cost gives the cost to apply our LTL modelchecker to check one of the LTL properties described above. 2) Second, we abstract away the self-modifying instructions and proceed as if these instructions were not selfmodifying. In this case, we translate the binary codes to standard pushdown systems as described in [START_REF] Song | Efficient malware detection using modelchecking[END_REF]. By using PDSs as models, none of the malwares that we consider was detected as malicious, whereas, as reported in Table II, using self-modifying PDSs as models, and applying our LTL model-checking algorithm allowed to detect all the 892 malwares that we considered. Remark 2. Note that checking the formulas φ rk , φ ds , and φ sw could be done using multiple pre * queries on SM-PDSs using the pre * algorithm of [START_REF] Touili | Reachability analysis of self modifying code[END_REF]. However, this would be less efficient than performing our direct LTL model-checking algorithm, as shown in Table III Furthermore, the appending virus formula φ av cannot be solved using multiple pre * queries. Our direct LTL modelchecking algorithm is needed in this case. Note that some of the malwares we considered in our experiments are appending viruses. Thus, our algorithm and our implementation are crucial to be able to detect these malwares.

3) Comparision with well-known antiviruses.: We compare our tool against well-known and widely used antiviruses. Since known antiviruses update their signature database as soon as a new malware is known, in order to have a fair comparision with these antiviruses, we need to consider new malwares. We use the sophisticated malware generator NGVCK available at VX Heavens [START_REF] Heaven | [END_REF] to generate 205 malwares. We obfuscate these malwares with self-modifying code, and we fed them to our tool and to well known antiviruses such as BitDefender, Kinsoft, Avira, eScan, Kaspersky, Qihoo-360, Baidu, Avast, and Symantec. Our tool was able to detect all these programs as malicious, whereas none of the well-known antiviruses was able to detect all these malwares. Table IV reports the detection rates of our tool and the well-known anti-viruses.

  t. ( p , w , θ) ⇒ * ( p , , θ ) by 1 if this path went through an accepting location in G, i.e., if ( p , w , θ) ⇒ r ( p , , θ ), and by 0 if not. To this aim, we define a labelled configuration as a tuple [( p, w , θ), b], s.t. ( p, w , θ) is a configuration and b ∈ {0, 1}.

  θ) ∈ I, and q n+1 ∈ F . Let L(A) be the set of labelled configurations accepted by A.C. Computing pre * ( p , , θ ) Given a configuration of the form ( p , , θ ), our goal is to compute a labelled BP-automaton A pre * ( p , , θ ) that accepts labelled configurations of the form [c, b] where c is a configuration and b ∈ {0, 1} such that c ⇒ * ( p , , θ ) (i.e., c ∈ pre * ( p , , θ ) ) and b = 1 iff this path went through final control points, i.e., c ⇒ r ( p , , θ ). Otherwise, b = 0. Let p ∈ P , we defineB(p) = 1 if p ∈ G and B(p) = 0 otherwise. A pre * ( p , , θ ) = (Q, Γ, T, I, F ) is computed as follows: Initially, Q = I = F = {(p , θ )} and T = ∅.We add to T transitions as follows:α 1 : If r = p, γ → p 1 , w ∈ ∆. If there exists in T a path (p 1 , θ) [w,b]---→ T q (in case |w| = 0, we have w = ) with r ∈ θ. Then, add (p, θ) to I, and (p, θ), [γ, B(p)∨b], q to T .α 2 : if r = p (r1,r2) ----→ p 1 ∈ ∆ c andthere exists in T a transition (p 1 , θ) [γ,b] ---→ T q with r ∈ θ, where γ ∈ Γ. Then add (p, θ ) to I, and (p, θ ), [γ, B(p) ∨ b], q to T , for θ such that θ = (θ \ {r 1 }) ∪ {r 2 }. The procedure above terminates since there is a finite number of states and phases. Note that by construction, F = {(p , θ )}, and, since initially Q = {(p , θ )}, states of A pre * ( p , , θ ) are all of the form (p, θ) for p ∈ P and θ ⊆ ∆ ∪ ∆ c . Let us explain the intuition behind rule (α 1 ). Let r = p, γ → p 1 , w ∈ ∆. Let c = ( p 1 , ww , θ) and c = ( p, γw , θ). Then, if c ⇒ * ( p , , θ ), then necessarily, c ⇒ * ( p , , θ ). Moreover, c ⇒ r ( p , , θ ) iff either c ⇒ r ( p , , θ ) or p ∈ G (i.e. B(p) = 1). Thus, we would like that if the automaton A pre * ( p , , θ ) accepts the labelled configuration [c, b] (where b = 1 means c ⇒ r ( p , , θ )), then it should also accept the labelled configuration [c , b ∨ B(p)] (b ∨ B(p) = 1 means c ⇒ r ( p , , θ )). Thus, if the automaton A pre * ( p , , θ ) contains a path of the form π

  then necessarily, the automaton A pre * ( p , , θ ) should also accept the labelled configuration [c , b ∨ B(p)]. This configuration is accepted by the run (p, θ ) [γ,B(p)∨b1]

[

  γ0,b] ----→ T (p , θ ), we add to the graph G the edge ((p, γ), θ) b∨B(p) ----→ ((p , γ ), θ ). Items α 1 and α 2 are obvious. They respectively correspond to item 1 and item 2 of Definition 4 (since B(p) = 1 iff p ∈ G). Item α 3 is based on Lemma 1 and on item 3 of Definition 4. Indeed, it follows from Lemma 1 that A pre * ( p , , θ ) contains a transition of the form (p 0 , θ) [γ0,b]

  Column PDS shows the cost it takes to get the equivalent PDS from the SM-PDS. Column Result reports the cost it takes to run the LTL PDS model-checker Moped[START_REF] Schwoon | Model-checking pushdown systems[END_REF] for the PDS we got. Column Total is the total cost it takes to translate the SM-PDS into a PDS and then apply the standard LTL model checking algorithm of Moped (Total=PDS+Result). Column Symbolic PDS reports the cost it takes to get the equivalent Symbolic PDS from the SM-PDS. Column Result 1 is the cost to run the Symbolic PDS LTL model-checker Moped. Column T otal 1 is the total cost it takes to translate the SM-PDS into a symbolic PDS and then apply the standard LTL model checking algorithm of Moped. You can see that our direct algorithm (Column SM-PDS) is much more efficient than translating the SM-PDS to an equivalent (symbolic) PDS, and then run the standard LTL model-checker Moped. Translating the SM-PDS to a standard PDS may take more than 20 days, whereas our direct algorithm takes only a few seconds. Moreover, since the obtained standard (symbolic)

	|∆| : |∆c| |δ| SM-PDS 5 : 2 15 0.07s 5 : 3 8 0.06s 11 : 4 8 0.16s 5 : 3 10 0.06s 110 : 4 8 0.34s 255 : 8 8 0.39s 255 : 8 10 0.42s 110 : 4 15 0.28s 255 : 8 15 0.46s 110 : 4 20 0.37s 255 : 8 20 0.55s 4.99s gives the cost of our direct algorithm presented in this paper. PDS Result Total Symbolic PDS Result1 T otal1 0.09s 0.01s 0 .10s 0.08s 0.00s 0.08s 0.08s 0.01s 0.09s 0.09s 0.00s 0.09s 0.13s 0.05s 0.18s 0.10s 0.00s 0.10s 0.15s 0.01s 0.16s 0.09s 0.00s 0.09s 186.10s 0.79s 186.99s 0.35s 0.00s 0.35s 281.02s 0.94s 281.96s 4.82s 0.05s 4.87s 281.02s 0.97s 281.99s 4.82s 0.06s 4.88s 186.10s 1.05s 187.15s 0.35s 0.06s 0.41s 281.02s 1.92s 282.94s 4.82s 0.08s 4.90s 186.10s 1.05s 187.15s 0.35s 0.06s 0.41s 281.02s 1.97s 282.99s 4.82s 0.17s

TABLE II :

 II Partial Experimental Results

	Example	Size	LTL	Multiple pre *	Example	Size	LTL	Multiple pre *	Example	Size	LTL	Multiple pre *
	Tanatos.b	12315	16.261s	46.635s	Netsky.c	45	0.002s	0.092s	Win32.Happy	23	0.042s	0.075s
	Netsky.a	45	0.047s	0.085s	Mydoom.c	155	0.014s	0.206s	MyDoom-N	16980	30.231s	98.418s
	Mydoom.y	26902	12.462s	102.559s	Mydoom.j	22355	11.262s	111.617s	klez-N	6281	3.252s	78.419s
	klez.c	30	0.039s	0.088s	Mydoom.v	5965	3.971s	83.988s	Netsky.b	45	0.057s	0.183s
	Repah.b	221	2.428s	8.852s	Gibe.b	5358	4.229s	17.239s	Magistr.b	4670	3.699s	93.818s
	Netsky.d	45	0.083s	0.123s	Ardurk.d	1913	0.482s	3.212s	klez.f	27	0.054s	4.518s
	Kelino.l	495	0.326s	5.468s	Kipis.t	20378	23.345s	48.689s	klez.d	31	0.085s	0.291s
	Kelino.g	470	0.672s	3.446s	Plage.b	395	0.291s	3.138s	Urbe.a	123	0.376s	2.981s
	klez.e	27	0.094s	0.482s	Magistr.b	4670	3.987s	53.235s	Magistr.a.poly	36989	49.863s	159.195s
	Adon.1703	37	0.358s	0.884s	Adon.1559	37	0.255s	4.088s	Spam.Tedroo.AB	487	0.924s	4.894s
	Akez	273	0.136s	1.863s	Alcaul.d	845	0.165s	0.392s	Alaul.c	355	0.109s	5.757s
	Haharin.A	210	1.462s	4.318s	fsAutoB.F026	245	1.698s	4.503s	Haharin.dr	235	1.558s	4.312s
	LdPinch.BX.DLL	2010	6.965s	8.128s	LdPinch.fmye	1845	6.194s	9.232s	LdPinch.Win32.5558	2015	6.907s	8.981s
	LdPinch-15	580	1.008s	3.957s	LdPinch.e	578	1.185s	3.392s	Win32/Toga!rfn	590	2.023s	3.978s
	Tanatos.b	12315	16.261s	46.635s	Netsky.c	45	0.002s	0.092s	Win32.Happy	23	0.042s	0.075s
	Netsky.a	45	0.047s	0.085s	Mydoom.c	155	0.014s	0.206s	MyDoom-N	16980	30.231s	98.418s
	Mydoom.y	26902	12.462s	102.559s	Mydoom.j	22355	11.262s	111.617s	klez-N	6281	3.252s	78.419s
	klez.c	30	0.039s	0.088s	Mydoom.v	5965	3.971s	83.988s	Netsky.b	45	0.057s	0.183s
	Repah.b	221	2.428s	8.852s	Gibe.b	5358	4.229s	17.239s	Magistr.b	4670	3.699s	93.818s
	Netsky.d	45	0.083s	0.123s	Ardurk.d	1913	0.482s	3.212s	klez.f	27	0.054s	4.518s
	Kelino.l	495	0.326s	5.468s	Kipis.t	20378	23.345s	48.689s	klez.d	31	0.085s	0.291s
	Kelino.g	470	0.672s	3.446s	Plage.b	395	0.291s	3.138s	Urbe.a	123	0.376s	2.981s
	klez.e	27	0.094s	0.482s	Magistr.b	4670	3.987s	53.235s	Magistr.a.poly	36989	49.863s	159.195s
	Mydoom-EG[Trj]	230	0.242s	6.172s	Email.W32!c	220	0.249s	5.946s	W32.Mydoom.L	235	0.288s	6.452s
	Mydoom.5	228	0.307s	8.163s	Mydoom.cjdz5239	225	0.392s	9.968s	Mydoom.DN.worm	220	0.299s	8.928s
	Mydoom.R	230	0.322s	9.086s	Win32.Mydoom	235	0.296s	7.985s	Mydoom.o@MM!zip	235	0.403s	10.323s
	Mydoom.M@mm	5965	5.633s	108.129s	MyDoom.54464	5935	5.939s	94.026s	MyDoom.N	5970	6.152s	86.468s
	Sramota.avf	240	0.383s	2.691s	Mydoom	238	0.278	2.749s	Win32.Mydoom.288	248	0.410s	2.983s
	Win32.Runouce	51678	92.692s	248.146s	Win32.Chur.A	51895	98.161s	298.047s	Win32.CNHacker	51095	94.952s	245.452s
	Win32.Skybag	4180	6.891s	13.739s	Skybag.A	4310	6.205s	15.452s	Netsky.ah@MM	4480	6.991s	16.018s
	Adon.1703	37	0.358s	0.884s	Adon.1559	37	0.255s	4.088s	Spam.Tedroo.AB	487	0.924s	4.894s
	Akez	273	0.136s	1.863s	Alcaul.d	845	0.165s	0.392s	Alaul.c	355	0.109s	5.757s
	Haharin.A	210	1.462s	4.318s	fsAutoB.F026	245	1.698s	4.503s	Haharin.dr	235	1.558s	4.312s
	LdPinch.BX.DLL	2010	6.965s	8.128s	LdPinch.fmye	1845	6.194s	9.232s	LdPinch..5558	2015	6.907s	8.981s
	LdPinch-15	580	1.008s	3.957s	LdPinch.e	578	1.185s	3.392s	Win32/Toga!rfn	590	2.023s	3.978s
	LdPinch.by	970	4.092s	11.327s	Generic.2026199	433	2.402s	9.614s	LdPinch.arr	1250	1.848s	9.986s
	LdPnch-Fam	195	1.440s	4.097s	Troj.LdPinch.er	205	2.529s	6.154s	LdPinch.Gen.3	210	1.482s	4.973s
	Androm	95	0.028s	0.192s	Ardurk.d	1913	3.679s	5.588s	Generic.12861	30183	72.264s	224.809s
	Jorik	837	4.159s	11.733s	Bugbear-B	9278	17.737s	52.549s	Tanatos.O	9284	21.481s	79.773s

TABLE III :

 III Multiple pre * v.s. our direct LTL model-checking algorithm it suffices to encode the top of the stack in the control points of the SM-PDS. Our implementation works for this case as well and can handle appending viruses.

  where Column Size gives the number of control locations, Column LTL gives the time of applying our LTL model-checking algorithm; and Column Multiple pre * gives the cost of applying multiple pre * on SM-PDSs to check the properties φ rk , φ ds , and φ sw . It can be seen that applying

	our tool	McAfee Norman BitDefender Kinsoft	Avira	eScan	Kaspersky	Qihoo360 Baidu	Avast	Symantec
	100%	24.8%	19.5%	31.2%	9.7%	34.1%	21.9%	53.1%	51.7%	1.4%	68.3%	82.4%

TABLE IV :

 IV Detection rate: Our tool vs. well known antiviruses our direct LTL model checking algortihm is more efficient.

: 8 25 0.59s 281.02s