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ABSTRACT
One of the main challenges in malware detection is the discovery
of malicious behaviors. This task requires a huge amount of engi-
neering and manual study of the code. To avoid this tedious manual
task, we propose in this paper a tool, called STAMAD, that, given
a training set of known malwares and benign programs, (1) either
automatically extracts malicious behaviors using Information Re-
trieval techniques, or (2) applies machine learning techniques to
automatically learn malwares. Then, in both cases, STAMAD can
classify a new given unseen program as malicious or benign.
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1 INTRODUCTION
The number of malwares is increasing very fast, thus, malware
detection is a big challenge. The well-known techniques for mal-
ware detection are based on signature (sequence of bytes) matching.
However, this technique can easily be evaded by standard obfusca-
tion techniques. Another technique for malware detection is code
emulation where the behaviors of the malware are dynamically
observed while running the program on an emulated environment.
This technique is not robust since it is hard to get the malicious
behaviors in a short period, as they may require a delay or only
show up after user interaction. To sidestep the limitations of these
techniques, we need to use static analysis approaches that check
the behaviors (not the syntax) of a program without executing it.
To this aim, we propose in this work to use extended API call
graphs to represent malicious behaviors, where an extended API
call graph is a directed graph whose nodes are API functions, and
whose nodes and edges are annotated. An edge (f , f ′) expresses
that there is a call to the API function f followed by a call to the
API function f ′. The annotation ī  j̄ on the edge (f , f ′) means
that the i-th parameter of function f and the j-th parameter of the
function f ′ have a data dependence relation. It means that, in the
program, either these two parameters depend on the same value
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or one parameter depends on the other. A node f with the annota-
tion ī = {c} means that the i-th parameter of function f gets the
value c . This graph specifies the execution order of the API function
calls as well as the links between the API functions’ parameters.
Indeed, API (which stands for Application Programming Interface)
is a collection of functions supported by the operating system that
allow users to interact with the system. These API functions are
mediators between programs and their running environment (user
data, network access...) that are mostly used to access or modify the
system by malware authors. According to a statistic study [2], over
5TB of different samples of malwares, there are 527,992 samples
that did import at least one API, compared to 21,043 samples with
no import. Thus, API functions and their usages in the program
are crucial to specify malicious behaviors. Figure 1(c) shows the
extended API call graph of the assembly code in Figure 1(a). It ex-
presses a self replication behavior in which the malware infects
the system by copying itself to a new location. This is achieved by
first calling the API function GetModuleFileName with 0 as first
parameter andm as second parameter (Parameters to a function
in assembly are passed by pushing them onto the stack before a
call to the function is made. The code in the called function later
retrieves these parameters from the stack.). This will store the file
path into the memory addressm. Then, CopyFile is called withm
as first parameter. This allows to infect other files. To represent
this behavior, [12, 16, 18, 23] use the API call graph in Figure 1(a)
to express that calling GetModuleFileName is followed by a call to
CopyFile. However, a program that contains this behavior is mali-
cious only if the API function CopyFile copies the file returned by
GetModuleFileName. If CopyFile copies another file, the behavior
is not malicious. Thus, the above representation may lead to false
alarms. To avoid this, we need to make the representation more
precise and add the information that the returned parameter of
GetModuleFileName should be the input argument of CopyFile.
Therefore, we propose to use the Extended API call graph in Fig-
ure 1(c), where the edge labeled by 2̄ 1̄ means that the second
parameter of GetModuleFileName (which is its output) is given as
first argument of CopyFile. We also need to ensure that GetMod-
uleFileName is called with 0 as first parameter. Thus, we label the
node GetModuleFileName with 1̄ = {0} to express that the first
parameter of this call should be 0. Thus, we propose in this work
to use Extended API call graphs to represent malicious behaviors.
On the other hand, one of the most challenging tasks in malware
detection is the discovery of malicious behaviors. This task requires
a huge amount of engineering and manual study of the code. To
avoid this manual step,we propose in this work to use learning
and information retrieval: Given a training set of known malwares
and benign programs, we apply a training phase, and we use the
knowledge got from this training to analyse a new program and de-
cide whether it is malicious or benign. We propose two approaches:
our first approach allows to automatically extract the malicious
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Figure 1: A piece of assembly code (a) of the behavior self
replication, its API call graph (b) and its data dependence
graph (c).

behaviors from the training set by applying Information Retrieval
techniques [12]. These automatically extracted malicious behaviors
are then used for malware detection. The second approach that we
propose applies machine learning techniques to detect malwares
without extracting the malicious behaviors [13]. We use extended
API call graphs to represent programs and malicious behaviors in
our both approaches. We implement our techniques in a tool for
PC malware detection called STAMAD. In this paper, we present
this tool.

Related Work BitScope [6] and Panorama [15], are two malware
detectors. These tools are not robust since they are based on dy-
namic analysis, and thus, they may not trigger the malicious be-
haviors. In PyEA [7], the authors implement a malware detection
technique based on control flow graphmatching. This technique can
easily be evaded by standard obfuscation techniques since one can
easily change the control flow graph of a malware without changing
its malicious behaviors. PoMMaDe [20] is a model-checking based
tool for malware detection. However, currently, PoMMaDe can only
detect 7 malicious behaviors (due to the fact that malicious behav-
iors are extracted by hand and given as input to PoMMaDe). Unlike
PoMMaDe, our tool derives the malicious behaviors automatically,
and does not need the help of the user for this.

2 BACKGROUND
Given a training set of known malwares and benign programs, STA-
MAD can (1) either automatically extract malicious behaviors using
Information Retrieval techniques, or (2) apply machine learning
techniques to automatically learn malwares. Then, in both cases,
STAMAD can classify a new given unseen program as malicious
or benign. We give in this section the main ideas behind these two
approaches that are implemented in STAMAD.

2.1 Extraction of Malicious Behaviors
STAMAD implements the techniques described in [11, 12]: Given a
set of extended API call graphs that correspond to malwares and a
set of extended API call graphs corresponding to benign programs,
we want to extract in a completely automatic way a malicious ex-
tended API graph that corresponds to the malicious behaviors of
the malwares. This malicious extended API graph should repre-
sent the parts of the extended API call graphs of the malwares
that correspond to the malicious behaviors. The best subgraphs
that should be extracted are those able to distinguish the malicious
extended API call graphs from the benign ones. Thus, our goal is to
isolate the few relevant subgraphs from the nonrelevant ones. This
problem can be seen as an Information Retrieval problem, where

the goal is to retrieve relevant items and reject nonrelevant ones.
The Information Retrieval community has been working on this
problem for a long time. Over the past three decades, it has accu-
mulated a large amount of experience on how to efficiently retrieve
information. Thus, it would be interesting to adapt the knowledge
and experience of the Information Retrieval (IR) community to our
malicious behavior extraction problem. One of the most popular
techniques that was shown to be very efficient in the IR community
is the TFIDF scheme that computes the relevance of each item in
the collection using the TFIDF weight that is computed from the
occurrences of terms in a document and their appearances in other
documents. We showed in [11, 12] how to adapt this technique
that was mainly applied for text and image retrieval for malicious
extended API graph extraction. For that, we associate to each node
and each edge in the extended API call graphs of the programs of
the collection a weight. Higher weight implies higher relevance.
Then, we compute the malicious extended API graphs by taking
edges and nodes that have the highest weights. Then, we use our au-
tomatically extracted malicious behavior specification for malware
detection using a kind of product between graphs.

More precisely, let G be a set of extended API call graphs. Let
i be a term (either a node, i.e., an API function and its parameter
evaluation, or an edge) and j be an extended API call graph. Then,
the weight of i in j is given by:

wд(i, j) = F
(
tf(i, j)

)
× idf(i) (1)

here tf(i, j) is the number of occurrences of the term i in the graph j ,
i.e., term frequency, and idf(i) = log( N

df(i) ), is the inverse document
frequency, where N is the total number of graphs and df(i) is the
number of graphs containing the term i . The idf factor ensures that
a common term (an API function node or an edge) which appears
in a lot of graphs is not relevant (for example the API functions
strlen, strcpy, strcat, etc. appear frequently in all the extended API
call graphs but are not concerned with malicious behaviors).

F is a function that applies the optimizations that are made in
the IR community in order to normalize graph sizes and to ensure
that high tf for a relevant term in an extended API call graph does
not place that graph ahead of other graphs which have multiple
relevant terms but with lower tf values.

Then, the relevance of a term i in G is measured by its relevance
in each graph in this set:

W (i,G) =
1
K

|G |∑
j=1

wд(i, j) (2)

where K is a normalising coefficient.
Then, the malicious extended API call graph is computed by consid-
ering the nodes and edges which are highly relevant (have a high
relevance) for the setM of malwares and not highly relevant (have
a low relevance) for the set B of benwares . More details about our
approach can be found in [11, 12].

2.2 Learning Malicious behaviors
In our second approach, we apply machine learning techniques on
extended API call graphs to learn malicious behaviors, and detect
malwares. Support Vector Machine (SVM) [8, 19] is one of the most
successful techniques in machine learning. It has been applied to
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several fields in pattern recognition including text analysis and
bioinformatics. In STAMAD, we apply Support Vector Machine
based learning techniques for malware detection. The choice of
Support Vector Machine is motivated by the fact that they are very
suitable for nonvectorial data (graphs in our setting), whereas the
other well-known learning techniques like artificial neural network,
k-nearest neighbor, decision trees, etc. can only be applied to vec-
torial data. This SVM method is highly dependent on the choice of
kernels. A kernel is a function which returns similarity between
data [22]. In STAMAD, we use a variant of the random walk graph
kernel that measures graph similarity as the number of common
paths of increasing lengths [21]. More details about our learning
approach can be found in [10, 13].

3 STAMAD DESCRIPTION
STAMAD is a static PC malware detector. It takes as input a set
of malwares and a set of benwares and can either (1) extract a
malicious API graph representing the malicious behaviors of the
malwares in the set (using the techniques described in Section 2.1);
or (2) learn to classify malwares without extracting the malicious
behaviors (using the techniques described in Section 2.2). These
phases are called the training phases. Then, given a new program,
STAMAD checks whether it is malicious or not. STAMAD consists
of the following modules:

Module 1: Extended API Call Graph
Computation
This module extracts an extended API call graph from a binary
code. It relies on Jakstab [17] and IDA Pro [14]: Jakstab performs
static analysis of the binary program and provides its corresponding
assembly program and control flow graph. However, it does not
allow to extract information of API functions and indirect calls to
API functions in the program. Hence, IDA Pro is used to get these
informations of API functions with an assembly code.

First, this module takes as input a binary code and uses PEfile1
to check whether the binary code is packed or not. If so, this code
is unpacked by the corresponding unpacker, e.g., UPX2. Then, it
is fed to Jakstab [17] and IDA Pro [14]. Otherwise, this binary
code is directly passed to Jakstab [17] and IDA Pro [14]. To be
able to compute the edge annotations that describe the relations
between the API function arguments, we compute a pushdown
system (PDS) from the output of Jakstab and IDA Pro. Indeed, PDSs
allow to keep track of the program’s stack, and thus, of API function
arguments since in assembly, parameter passing is done via the
stack. The algorithm that we use to derive a PDS from a binary code
is described in [11]. Then, we apply on this PDS the static analysis
saturation procedure of [11] that allows to derive the relations
between the API function’s parameters, and hence, to compute the
extended API call graph as described in [11]. We use Moped [3]
to compute the reachable configurations of PDSs. We specify the
parameters for each API function using the MSDN library [4] which
gives the description of API functions. The structure of this module
is described in Figure 2.

1https://github.com/erocarrera/pefile
2https://upx.github.io/

Module 2 : Extraction of Malicious Behaviors.
This module consists of two phases: the extraction of malicious
behaviors phase and the malicious behavior detection phase. In the
extraction phase, it takes as input a set of malwares and a set of
benwares. After applying the Extended API Call Graph Module, to
extract their corresponding extended API call graphs, these graphs
are fed to the Malicious Graph Computation component to compute
the malicious extended API graph. This component implements the
TFIDF weighting term scheme to compute the malicious behaviors
as described in [11, 12]. It outputs a malicious API graph repre-
senting the malicious behaviors. This phase will be called "training
phase".
In the detection phase, this module takes as input a new binary
program and applies the Extended API Call Graph Module to ex-
tract its corresponding extended API call graph. Then, it checks
whether this graph contains any malicious behavior from the mali-
cious graph (the output of the “training phase”) or not by applying
a kind of product between the two graphs. If this graph contains
any malicious behavior, the output is “Malicious!”. Otherwise, the
output is “Benign!”. The structure of this module is described in
Figure 3 .

Module 3: Learning Malicious Behaviors.
This module implements the learning techniques as described in
Section 2.2. It consists of two phases: the learning phase and the
detection phase. In the learning phase, it takes as input a set of
malwares and a set of benwares. It first applies the Extended API
Call Graph Module to compute their corresponding extended API
call graphs. Then, these extended API call graphs are fed to the SVM
training component, i.e., LIBSVM [9], to compute a SVM training
model.
In the detection phase, this module takes as input a binary code,
applies the Extended API Call Graph Module to compute its cor-
responding extended API call graph. Then, it uses the LIBSVM
classifier with the training model (the output of the first phase) to
classify the program either “Malicious!” or “Benign!”. The structure
of this module is described in Figure 4.

4 EXPERIMENTS
To evaluate our tool, we use a dataset of 2249 benign programs and
4035 malwares collected from Vx Heaven [1] and from VirusShare
[5].
Extraction ofmalicious behaviors. To evaluate the performance
of Module 2, we first applied our tool to automatically extract an
extended malicious API graph from a set of 2124 malwares and
1009 benign programs. The obtained extended malicious API graph
is then used for malware detection on a test set of 1911 malwares
and 1240 benign programs. We obtained encouraging results: a
detection rate of 95.66% with 0 false alarms.
Learning malware. To evaluate the performance of module 3,
we randomly split the dataset into two partitions, a training and a
testing partition. For the training partition, the quantity ofmalwares
and benign programs is balanced with 1009 samples for each, this
will allow us to compute the SVM classifier. The test set consisting
of 3026 malwares and 1240 benign programs, is used to evaluate the
classifier. Using the training set, we compute the training model.

https://github.com/erocarrera/pefile
https://upx.github.io/
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Then, we apply this training model to classify malwares on the test
set and obtain a detection rate of 96.73%, with 0.73% of false alarms.
Comparison with other antiviruses. We compare the perfor-
mance of our tool with different existing antiviruses including
Avira, Kaspersky, Avast, Qihoo-360, McAfee, AVG, BitDefender,
ESET-NOD32, F-Secure, Symantec and Panda. Since known an-
tiviruses update their signature database as soon as a new malware
is known, in order to have a fair comparision with these antiviruses,
we need to consider new malwares. For this, we use three gener-
ators to create new malwares: NGVCK, RCWG and VCL32. The
latter are able to create sophisticated malwares with morphing code
and other features to avoid being detected by antiviruses. In total,
we generate 180 new malwares by RCWG, VCL32 and NGVCK
generators. As described in Table 1, using our tool, we are able to
detect 100% of these new malwares while none of the well-known
antiviruses can detect all of them [12, 13] .

Antivirus Detection Rates Antivirus Detection Rates
Module 2 100%
Module 3 100% Panda 19%
Avira 16% Kaspersky 81%
Avast 87% Qihoo-360 96%
McAfee 96% AVG 82%

BitDefender 87% ESET-NOD32 87%
F-Secure 87% Symantec 14%

Table 1: This table shows a comparison of our method
against well-known antiviruses. Our tool achieves a detec-
tion rate of 100%.

5 EXAMPLES OF MALICIOUS BEHAVIORS
In this section, we present some the malicious behaviors that are
extracted by STAMAD.

Stealing clipboard data. This malicious behavior gets the text
data from the current clipboard and stores them into a file. It is
shown in the graph of Figure 5. The graph describes the following
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GetClipboardData

1̄ = {1}

lstrcpyn

WriteFile

0̄ 2̄

1̄ 2̄

n1 : push 1
n2 : call GetClipboardData
n3 : mov ebp, eax
n4 : push ebp
n5 : push lpStrinд
n6 : call lstrcpyn
....

n7 : push lpStrinд
....

n8 : call WriteFile

Figure 5: The automatically extracted malicious graph of
Stealing clipboard data malicious behavior, and one of its
implementation in assembly code.

malicious behavior: The malicious program first calls the API func-
tion GetClipboardData with 1 as first parameter (1̄) to retrieve the
text data from the clipboard. Then, it copies this data to a string by
calling the API function lstrcpyn with the output parameter (0̄) of
the function GetClipboardData as second parameter (2̄). Finally, it
writes this string into a file by calling the API function WriteFile
with the first parameter (1̄) of the previous function (lstrcpyn) as
second parameter (2̄). This behavior is implemented by the assem-
bly code on the right-hand side. In this code, the first parameter
of GetClipboardData is pushed into the stack at n1. The output of
GetClipboardData is stored in eax , then it is pushed into the stack
at n4 as the second parameter of the function lstrcpyn. The output
of this function is stored in its first parameter (lpStrinд) which is
pushed into the stack at n5. Finally, this output is pushed into the
stack at n7 as the second parameter of WriteFile.

Executing the program and keeping it alive. This malicious be-
havior executes the current program whenever it is terminated.
It is shown in the graph of Figure 6. The graph describes the fol-

GetCommandLine

WinExec

2̄ = {1}

0̄ = 1̄
n1 : call GetCommandLine
n2 : push 1
n3 : push eax
n4 : call WinExec

Figure 6: Executing the program and keeping it alive. The
automatically extracted malicious extended API call graph
on the left-hand side and its implementation on the right-
hand side.

lowing malicious behavior: The malicious program first calls the
API function GetCommandLine to get the executing command of
the current process. Then, it calls the API function WinExec with
the output of the previous function call as first parameter and 1
as second parameter to run this command in a new process. This
behavior is implemented by the assembly code on the right-hand
side.

Infecting files in the system. This malicious behavior searches for
executable files in the system and replaces them by the malicious
program. It is shown in the graph of Figure 7. The graph describes

FindFirstFile

MoveFile

CopyFile

3̄ = {0}

FindNextFile

2̄ 1̄

1̄ 2̄

n1 : push FindFileData
n2 : push “.exe“
n3 : call FindFirstFile
n4 : push eax
n5 : mov edi, FindFileData
n6 : lea eax, [edi + 2Ch]
n7 : push NewFileName
n8 : push eax
n9 : call MoveFile
n10 : push 0
n11 : lea eax, [edi + 2Ch]
n12 : push eax
n13 : mov eax, ExistinдFile
n14 : push eax
n15 : call CopyFile
n16 : pop eax
n17 : push edi
n18 : push eax
n19 : call FindNextFile

Figure 7: Infecting files in the system. The automatically ex-
tractedmalicious extended API call graph on the right-hand
side and its implementation on the left-hand side.

the following malicious behavior: The malicious program first calls
the pair of API functions FindFirstFile at the start node and Find-
NextFile at the final node to search executables, i. e., ”.exe”, in a
specific folder. If it finds one executable in this folder, it changes
the name of this executable by calling the API function MoveFile
with the second parameter of FindFirstFile as first parameter and
replaces this executable with itself by calling the API function Copy-
File with the first parameter of MoveFile as second parameter and 0
as third parameter. This behavior is implemented by the assembly
code on the right-hand side.

Getting the information of the running processes. This behav-
ior captures information of the running processes in the system
and sends these data via the network. It is shown in the graph
of Figure 8. The graph describes the following malicious behav-
ior: The malicious program first calls the API function CreateTool-
help32Snapshot with 2 as first parameter to capture all processes
running in the system. Then, the API function Process32First with
the output of the previous call as first parameter is called to re-
trieve information of these processes. It captures the location of
the executable of each process in a text buffer by calling the API
function lstrcat with the second parameter of Process32First as
second parameter. Finally, it sends this buffer via the network by
calling the API function send with the first parameter of lstrcat as
second parameter. Its implementation is shown on the right-hand
side.
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