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Abstract. In this paper, hexahedral piezoelectric solid-idimgte element formulations, with
linear and quadratic interpolation, denoted by SPBB and SHB20E, respectively, are
proposed for the modeling of piezoelectric sandwstiuctures. Compared to conventional
solid and shell elements, the solid—shell conceypeals to be very attractive, due to a number
of well-established advantages and computationeadlméties. More specifically, the present
study is devoted to the modeling and analysis oftilayer structures that incorporate
piezoelectric materials in the form of layers orncpas. The interest in this solid—shell
approach is shown through a set of selective apesentative benchmark problems. These
include numerical tests applied to various configions of beam, plate and shell structures,
both in static and vibration analysis. The resyledded by the proposed formulations are
compared with those given by state-of-the-art peéertiric elements available in ABAQUS;
in particular, the C3D20E quadratic hexahedraltdirdlement with piezoelectric degrees of
freedom.

Keywords: Finite elements, Solid—shell, Piezoelectric dff&andwich structures, Vibration
analysis.

1. Introduction

With the ever growing technological developmentsag combination of key properties of
materials is being advantageously used in manyneeghng fields. Examples of these are the
multilayer structures that combine elastic, visastt and piezoelectric layers, which are
increasingly used in civil engineering, automotarel aerospace as well as in bioengineering.
Shape control and vibration damping are some ofrta@r applications of these materials.

Over the past few decades, considerable attenaisrbhen devoted to thin structures that
combine piezoelectric material layers or patchas, td their many potential applications. The



resulting smart materials and structures are usshdays in vibration controllf3], shape
control [-6], noise and acoustic control/-L0 as well as health monitoring of civil
infrastructures 11-13. Predicting the behavior of such materials andcstires is therefore
crucial for their proper implementation. To thisddethe numerical simulation, e.g. by means
of the finite element method, represents a verywenient and powerful approach, especially
due to its very reasonable cost and its flexihilynce the early work of Allik and Hughes
[14], several tools have been proposed in the liteeata model piezoelectric structures.
Reviews on mechanical models and finite elememhédations, which can be found iag-
18], reveal that a large variety of 2D and 3D pieeogic finite elements have actually been
developed.

Han and Leel9] and Hwang and ParlR(] extended the Classical Laminate Plate Theory
(CLPT) presented ir2[l] to the analysis of composite plates with piezokie actuators using
2D finite elements based on Kirchhoff's assumptigdher contributors, such a&2-24 and
[25-28, used First-order Shear Deformation Theory (FSDANd Higher-order Shear
Deformation Theory (HSDT), respectively. To enritle kinematics, Kapuria et ak9-37
introduced in the above works the well-known zig#aepry. Interesting contributions to the
field were also made by Boudaoud et &3] Belouettar et al. 3 and Azrar et al. 34,
among others. Moreover, the Carrera Unified Fortuta(CUF) models for piezoelectric
plates were proposed in Ballhause et2#] ps well as in Robaldo et aB€]. In these works,
both equivalent single layer (ESL) and layer-wit®V] assumptions were considered and
many tests were successfully conducted in staticdgnamic on laminated plates embedding
piezoelectric layers. Several other contributioasdal on this approach can also be found in
[37-47). All of these formulations are capable of effitig modeling beam and plate
structures comprising piezoelectric materials. Haavein real-life applications, it is quite
common that relatively thin components coexist witiick structures, such as very thin
piezoelectric patch sensors used for the monitoahgivil infrastructures. Therefore, the
accurate and efficient modeling of such structuras motivated the development of new
finite element technologies, among which the saliel concept. In this context also, several
finite element models of this type have been predan the literature (see, e.@2, f2-449).

In particular, Sze et al4p, 43] proposed hybrid finite element modeling of sneirtictures.

In their work, the variation of electric potentimhs assumed to be linear along the thickness.
Their formulation was subsequently extended by ghehal. 6] to the refined hybrid
element. Alternatively, Klinkel and Wagner4 45 assumed in their contributions a
guadratic distribution for the electric potentialr@ss the thickness. The geometric non-
linearities were taken into account, but applicatd their model was restricted to structures
combining elastic and piezoelectric layers. Tan ¥nelQuoc P] also successfully modeled
piezoelectric beam and plate structures undercsaatll vibration conditions. More recently,
Kulikov and Plotnikova47, 48] developed solid—shell finite elements, which lédte most of
those developed in the literature, namely havin@Da geometry, while allowing a 3D
constitutive law to be considered.

Despite the availability of the above-discussed aodh the literature, it appears that so
far, commercial finite element software packagesshsas ABAQUS and ANSYS, only



propose solid piezoelectric finite element techgms. The latter are known to be quite
expensive in terms of CPU time in the modeling loh tstructures, which significantly
reduces their efficiency. It must be noted, howetleat several studies in the literature, such
as §9-51), have proposed piezoelectric shell elements bizate been implemented using
ABAQUS User Element (UEL) subroutine.

The current contribution proposes extension of $B8PS and SHB20 linear and
guadratic solid—shell elements, respectively preskm [(52-54 and B9, to the modeling of
structures that contain piezoelectric materiale paper is organized as follows. In Section 2,
the coupled electromechanical constitutive equatame presented as well as the discretized
problem to be solved by the finite element metHaekction 3 details the formulation of the
SHB8PSE and SHB20E piezoelectric solid—shell elésjemhich are based on linear and
guadratic interpolation, respectively. To assesspigrformance of the proposed piezoelectric
solid—shell elements and for validation purposessed of selective and representative
benchmark tests are conducted in Section 4, botstatic and vibration analysis. Finally,
Section 5 summarizes the main contributions aloitly $ome concluding remarks.

2. Constitutive equations and discretization of the poblem

2.1. Coupled electromechanical constitutive equations

Piezoelectric materials have the capability of getweg electricity when subjected to
mechanical loading (sensors). Conversely, they #&awve the ability to deform under
electrical charging (actuators). These properties @gescribed by the following coupled
electromechanical equations:

o=Clt-€[E
{ (1)

D=ele+KLlE
wheres ande represent, respectively, the vector form of thesst and strain tensor®, and
E denote the electric displacement and electrid figctor, respectively; whil€ , e and k
stand for the elastic, piezoelectric and dielegigomittivity matrix, respectively.
The discretized form¢e} and{E} for the strain tensor and the electric field veatoe
related, respectively, to the discretized displeein{u} and to the discretized electric

potential{q)} , using the discrete gradient operatE)E‘} and[Bq , as follows:

{g} =B {u}

(€} =-[8"](a @)



In the current contribution, the discrete gradieperators| B | and|[B?] are obtained by

finite element discretization for each of the pregd piezoelectric solid—shell formulations
SHB8PSE and SHB20E, as will be detailed in Se@ion

2.2. Discretized problem

The variational principle pertaining to piezoelectmaterials, which provides the
governing equations for the associated boundanyeviatoblem, is described by the Hamilton
principle [14]. In this weak form of equations of motion, thegkangian and the virtual work
are appropriately adapted to include the electramaitributions, in addition to the more
classical mechanical fields

_J‘Vpu mudv—jva@sdv+jv f, [Ou dv+'[S f Lduds+f [du

:—J'VDDSEdv+J'VqV B5¢dv+J'SqS [Bpds+q,[Bp ©)

where p is the material densityg,, g and ¢, denote volume, surface and point charge,

respectively; whilef,, f, and f  represent volume, surface and point force, regyt

The finite element discretization of the boundasiue problem governed by E®3)(
generally leads to the following system of dis@ed equations:

(M= (U} +[K > {u}+[k g ={F)
[k*J{u}+[K *{ g ={Q}

where all matrices and vectors involved in E.gre explicitly defined in Tablé.

(4)

3. Formulation of linear and quadratic piezoelectric ®lid—shell finite elements

The proposed hexahedral piezoelectric solid—sivetefelements SHB8PSE and SHB20E
are extensions of the linear and quadratic solietgtements SHBS8PS and SHB20, which
were developed irbR, 53] and B5], respectively, based on purely mechanical mogdelirne
starting point for these piezoelectric extensianghe addition of one piezoelectric degree of
freedom to each node of their mechanical finitangliet counterparts. The outline of these
formulations is given in the following sections.

3.1. Kinematics and interpolation

The piezoelectric solid—shell elements SHBSPSE ShtB20E denote an eight-node
hexahedral element and a twenty-node one, respéctivhese elements have at each of their
nodes three displacement degrees of freedom asasetine electric degree of freedom.
Similar to their mechanical counterparts SHB8PS &Hd20, a special direction is chosen,



designated as the “thickness”, normal to the meanepof these elements. Also, an in-plane
reduced-integration rule is adopted, withn , integration points for the SHB8PSE element

and4xn  for the SHB20E (see, e.g., Fig.in the particular case af,, =5).

int

For the SHB8BPSE and SHB20E elements, the spat@dowtes X, are related to the

nodal coordinates, using linear and quadratic shape functions, reésdyg, as follows:

x =% N, (&1.0) ()

wherei represents the spatial directions and ranges fram3; while | stands for the node
number, which ranges from 1 to 8, for the SHB8P&#nent, and from 1 to 20 for the

SHB20E. Likewise, the displacement fielil and potential fieldg are related to the nodal

displacementsl, and nodal potentialgy, respectively, using the shape functions

{ui = uiI Nu| (f)”!() (6)

(oszwl (f)’]!()

Note that in Egs.5) and ) above, the convention of implied summation over tepeated
index | has been adopted.

3.2. Discrete gradient operators

For both elements SHBBPSE and SHB20E, the correéspgmliscrete gradient operators
[B“] and[Bw] can be derived in the following compact form:

b +h, ., 0 0
0 b; + ha,z?’; 0 T T
0 0 bl +h g L
B = b’ +h yT b’ +h yT Oa, ’ , B7= b; +ha,27; (7)
2 a,2d a 1 a ¥a T T
wengl 0 Henyl B
0 b +h, e B +h, ) |

where bjT, h,, and y] are detailed in AppendiA. More details can also be found in

a,]
referencesq2-59. Note again that, in Eq7) and in what follows, the convention of implied
summation over the repeated index is adopted, witha ranging from 1 to 4, for the
SHB8PSE element, and from 1 to 16 for the SHB20E.

Similar to the purely mechanics-based solid—shieinent SHB20 (see, e.g5q), the
benchmark tests performed with the piezoelectriadsshell counterpart SHB20E did not
reveal any particular locking and, accordingly, specific enhanced assumed strain



techniques have been applied to this quadraticl-ssitiell element. By contrast, the original
formulation of the linear solid—shell version SHEHP has been shown to suffer both from
spurious hourglass modes and locking phenomenaefiie, to circumvent these numerical
pathologies, projection of its discrete gradiengrapor and stabilization of its stiffness matrix
are undertaken following the assumed strain methdote that the projection of the

displacement-related discrete gradient oper&bris performed in the same way as for the

SHB8PS element (se&J), which leads to a similar form for the stiffnessatrix K™
Hence, in the current work, special attention igdpa the impact of the assumed-strain

projection on the expressions of the piezoeleeinid dielectric matricelK "’ and K# .

3.3. Assumed-strain projection and stabilization of the SHBSPSE

Let us first underline that in Eq7) vectorsh originally defined by Hallquist's form are
replaced by the following mean form proposed byh&tmn and Belytschk&§):

~ 1 .
h :vejve N i (f!’]!()dv (8)

Then, using the Hu—Washizu mixed variational ppieiin conjunction with the assumed
strain method proposed by Belytschko and Binderbdh fhe discrete gradient operatéf’

is projected onto a new operatﬁi‘ in order to eliminate various types of locking.eTlatter

operator is additively decomposed into two paresaded byIEAB;'2 and 534, as follows:

[eXL 00 %, 0 o
0 b+, O 0 Y
A 0 0 o + 77 = 0O 0 77
|:BIZ:| = ~T ST ~: T 1 ’ |:B34} = : (9)
b, +Y, b +X, 0 0 0 0
b} +Z7], 0 ] + X, 0 0 0
L 0 b3T+ZlT2 E’;'*'YAsz_ _O 0 O_
where
~ /4 . ~ /4 . ~ /4 .
xﬁy = Z havxya , Yﬁy - Z hﬂvyyﬂ ’ Zﬁy = Z hﬂvzya (10)
a=p3 a=f a=f
The stiffness matrix is finally derived as follows:
K uue :K Uul2 +K Uusab (11)

where



Kuulz = J.VeBliZT I:G: [Bulzdv
uu SuT Tu Tu T Su Tu T Tu (12)
K Sab:J‘VeBlZ |:G:l:B34dV-I_J>VeB 34 [G:[B 12dV+jveB 34 [G:[B 3pv

The stabilization stiffness matrik 'y, is computed in a co-rotational coordinate framee T

adopted orthogonal co-rotational coordinate systedefined by the rotation matriR that
maps a vector in the global coordinate systemdathrotational one. The components of the

first two column vectors of matriR}, denoteda,, anda,, , respectively, are given by

a, =X, a8, =AK, i=1,2,3
with A=(-111-1- 115 )1 (13)
N=(-1-111-1- 1,10

Then, the second column vectay is modified in order to make it orthogonal &@. To this
end, a correction vecta, is added toa, such that:
_a &,

a ([a,+a)=0 = a.-= aiT@lal

(14)

The third base vectog, is finally obtained by the cross-produat =&, [I(a, +a.), which
gives the components of the rotation matrix aftanmalization by

=% g o®HBtA g8 i=1,2,% 15
Sy I e B Y )

For the derivation of the piezoelectric and digiecmatrices K" and K%, a similar
procedure is followed. As above, the potentialtegladiscrete gradient operat@“’ is

projected ontoE“’, which is then additively decomposed into two padenoted b)éfz and

B%,, as follows:

b + X, X7,
BS,=|bl+Y, | ; B%=|YL (16)
bl +2Z7, Z]

Accordingly, the piezoelectric matrix is computedfallows:
K u(pe =K u(]]12 +K U(pStab (17)

with



K LWlZ = J‘VeB lZIJ.ZT EBT I:B?Zdv

Ko = [ BY [0 BYdv+ [, By (8 (Blav+[ Byl e (B o)
while the dielectric matrix is given by
K# =K #,+K %, (19)
with
K®, = —jveé T KB,dv
(20)

KWStab = _J.VerzT [k [B§4dV—IVeB§I [k Bwlde_J.VeBwsl [k [B"’&plv

Note that the stabilization matrice§ ", and K%, , related to the piezoelectric and

dielectric matrices, are computed in the same tatiomal coordinate frame as that used
previously for the computation of the stabilizatsirffness matrix. More details can be found
in AppendixB.

Moreover, it must be noted that the material priperof the piezoelectric components,
which are defined by the elastic, piezoelectric dradlectric permittivity matricesC , e and
K, are expressed in a local physical material frafence, to express these matrices in the
global coordinate system, an inverse transformasounsed, which is defined by a rotation
matrix, denotedz. More details on these coordinate system transfboms and on the
derivation of the associated matrix componentgyaren in AppendixC.

4. Numerical tests and validation

To evaluate the performance of the proposed piezted solid—shell formulations, a
selection of representative benchmark tests is wded in static and vibration analysis, for
multilayer beam, plate and shell structures. Fbofalhe simulations, the mesh nomenclature

adopted for hexahedral elements is as follofy; x N, xN,) elements, whereN, denotes
the number of elements in the length directid, is the number of elements in the width

direction, and N, is the number of elements in the thickness dimectNote that, for the

proposed solid-shell elements SHB8PSE and SHB2ME&, imtegration points along the
thickness direction are sufficient for the follogincomputations, as the corresponding
benchmark tests do not involve material nonlinesgitHowever, it must be noted that, when
nonlinear material behavior models enter into ptagre through-thickness integration points
are required (for instance, five through-thicknegegration points are recommended when
elasto-plastic constitutive models are used, sge,referenceq3)).



4.1. Static benchmarks

In the case of static analysis, the system of dismd equationsif reduces to

K" K*"l|U| |F
- ke llol
A set of five benchmark tests taken from the lema is investigated in the following
sections. The first and third tests are devotdaetim structures (bimorph and sandwich beam
in extension and shear deformation mechanismsecésply). The second and fourth tests
are dedicated to plate structures (investigatioshafar locking in thin piezoelectric sensors

and shape control of plate with piezoelectric peschiespectively). Finally, the fifth test deals
with a piezoelectric sandwich shell structure.

4.1.1. Bimorph pointer

This benchmark test consists of a cantilever beamposed of two layers polarized in two
opposite directions (z and —z here). This test been considered in many works in the
literature, among which Tzou and YBg], Sze et al. 43] and Klinkel and Wagner4f]. A
voltage of Ap=1V is applied on the exterior faces. The geometmeetisions and boundary

conditions are reported in Fig.

The material parameters are reported in Tdhlevhere the results obtained with the
proposed piezoelectric solid—shell elements SHBSR&KESHB20E are compared with those
given by their counterparts from ABAQUS, which hate same geometry and the same
number of degrees of freedom, namely the three+ibioeal linear and quadratic elements
C3D8E and C3D20E, respectively. These simulatieulte are additionally compared to the
reference solution given by the following analytifttamula:

3e,A
U(0=— GGElhf”xz (22)

It appears from Table that the proposed piezoelectric solid—shell elam®HBSPSE
provides a more accurate result than the standask-dimensional ABAQUS element
C3DS8E, while requiring much less degrees of freedadmto the quadratic versions of these
elements, the accuracy of the proposed piezoalesiid—shell element SHB20E is
comparable to that of the three-dimensional ABAQ&I&ment C3D20E, while using twice
less elements. It is also noteworthy that despeehigher number of elements required for the
C3D8E (40 times more elements than the SHB8P SEedult still exhibits an error of nearly
26% with respect to the reference solution.

In the previous configuration of regular meshes, higher performance of the proposed
solid—shell elements has been clearly shown. Itiqodatr, fewer elements are generally
required with the proposed solid—shell formulatiemsachieve convergence, as compared to
their ABAQUS counterparts, which allows reducing tomputational effort. This superiority



in terms of higher convergence rate is even moigeav in presence of distorted meshes. To
illustrate this, we consider again the previougp&ectric bimorph, which is discretized now
with distorted meshes as shown in F3g.Two different discretizations are considered for
each element, and we investigate the sensitivitthefresults to the corresponding distorted
meshes. The normalized tip displacement is ploitedrig. 4 for different values of the
distortion parameter =2e/a, wherea is the in-plane element size arddefines the twist
with respect to the regular mesh. For the same rdissinetization of 10x1x2 elements, the
results reported in Figl-b show that the relative error for the C3D20E elemeareases to
50% at a distortion parameter of=3, when it is only 8% for the SHB20E at the same
distortion. Also, with mesh refinement, the relatierror decreases to about 5% for the
C3D20E element, while it tends to zero for the SBIB2element. Regarding the linear
elements, Fig4-areveals that the relative error for the C3D8E apirexceeds 20%, at a
distortion parameter of = 3, for both of the distorted meshes considered. Hewealthough
the SHB8PSE exhibits more sensitivity to mesh disto than its quadratic counterpart
SHB20E, its accuracy is still much better than tbthe C3D8E element. This example
clearly shows the interest of using solid—shellitéinelement technology to model
piezoelectric structures, which is even more ewuidepresence of distorted meshes.

4.1.2. Shear locking in thin piezoelectric sensors

The aim of this benchmark test is to highlight @teear locking phenomenon, which
particularly affects linear solid finite elemem#en employed to model thin structures. This
test has been proposed by Kdgl and Bucale®h pnd it is used to assess the effectiveness of
the various treatments adopted to prevent suchriggghenomena. For this purpose, a square

plate of side 1000 mm and thicknegsis considered. The plate is clamped at one sidasan
bent by applying a line force at the opposite edgeshown in Fig5. This steel plate is
covered by a PZT piezoelectric sensor, which haglth of 200 mm and a thickness. The
material properties are reported in TaBleFor different configurations of thicknesses, we
determine the tip displacemedt® at point C (see Fids). The reference solution is obtained
with a refined mesh using the ABAQUS quadratic eletrtC3D20E.

The results in terms of normalized tip displacemmeattpoint C are reported in Talfldor
different plate thicknesses and geometric ratiogppears that with the SHB8PSE solid—shell

element, the relative error is comprised betweéfbl(a, =10 mm; a /a,=0.01) and 4.5%
(a,=1mm; a/a,=0.001). By contrast, using the same mesh of 20x4x1 texkah

elements, the C3D8E element exhibits very poorltesiue to its high sensitivity to locking
effects. Moreover, the C3D8E shows high sensititatthe element aspect ratio, as it provides
results that are 1000 times underestimatedafefl mm, to almost 2 times overestimated, for

a,=100 mn. Therefore, to achieve better results with the BBRlement, much more refined
meshes would be required, thereby significantlyaasing the CPU time.
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This benchmark test also demonstrates the effewtsge of the assumed-strain projection
technique applied to the piezoelectric solid—sledéiment SHBSPSE to prevent various
locking phenomena.

4.1.3. Extension and shear piezoelectric actuation mechanisms

In this third benchmark test, we consider two agufations of cantilever sandwich beams,
as illustrated in Fig6, which are actuatable in extension (a) and in isliga respectively.
These tests represent excellent benchmark problemtheir selectivity, and have become
popular, as commonly studied in a number of litmetworks, including those of Zhang and
Sun B0, 61] and Benjeddou et al6p].

The materials are polarized in thkalirection for the extension mechanism, and inxhe
direction for the shear mechanism. In order to b#medbeam, voltages are applied to the
upper and lower surfaces of the piezoelectric Byeducing electric bending forces. Thus,
for the shear actuation mechanism, a voltagA@f£ 20V is applied to the piezoelectric core,

while for the extension actuation mechanism, vasagf Ag=+10V are applied to the

surface of the actuators. The corresponding mataaperties are all reported in TaldeThe
numerical results obtained with the proposed SHEBRSd SHB20E piezoelectric solid—
shell elements are compared, on the one hand, thae taken from the literaturéd-62
and, on the other hand, with those given by sthtbeart ABAQUS elements that have
equivalent geometry and kinematics, namely the @&R8d C3D20E piezoelectric solid
elements.

Two cases with regard to the piezoelectric layesrayement are considered. The first case
corresponds to the situation when the piezoelelgyiers cover the entire length of the beam;
while in the second case, the position of the @otuzaries in the 10-90 mm range. We start
by analyzing the first case, and the correspondingulation results are reported in Fig.
Note that, in this first case and for the sheanattn mechanism, there is no rigid foam and,
instead, the piezoelectric actuator covers theesbre layer. It appears from Figthat the
results obtained with the proposed SHB8PSE and ®HBg2lements are in excellent
agreement with those given by ABAQUS elements, evBiystematically requiring a fewer
number of elements to achieve convergence. Howdher,literature results, which are
obtained by 2D modeling, seem to overestimatertiressverse deflection in the case when the
beam is actuated by piezoelectric expansion (p&+).

In the second case, where the actuator positioresran the 10-90 mm range, the
deflection at the free edge is investigated foheaasition of the piezoelectric patches. Here
again, the simulation results are compared witlsehtaken from the literature (Benjeddou et
al. [62] and Piefort 3], where only shear mechanism results are avajladewnell as with
those given by the ABAQUS linear and quadratic pé&ectric solid elements C3D8E and
C3D20E. From Fig8, it is observed that the results obtained withSFB8PSE and SHB20E
elements are in good agreement with those of temture as well as with those yielded by
ABAQUS elements, for both actuation mechanisms. él@w, it is worth noting that the
results obtained with the proposed solid—shell eleisiconverge faster than those of existing

11



conventional elements (i.e., relatively fewer elatseare required with the SHB8PSE and
SHB20E formulations to achieve convergence, as showig.8).

4.1.4. Square plate with piezoelectric patch models

One important advantage taken from the piezoetebthavior is in the application to the
shape control of structures. In order to show therest of solid—shell finite elements in this
type of modeling, we consider a square aluminurtem&200x200 mmwith a thickness of 8
mm. This plate is covered on both sides with foairp of localized PZT-5H patches in
various configurations, as shown in Fiy.Each patch has dimensions of 40x40°mvith a
thickness of 1 mm. The objective of this test isitwestigate the optimal location of
piezoelectric patches for shape control. With rdgtr loading conditions, the plate is
subjected to a uniformly distributed load of 100\ over its entire surface. A constant
voltage is then supplied incrementally to the poezamic actuators, which are polarized in
opposite directions, until the plate is flattenBdy. 10 shows the centerline deflection of the
composite plate along thedirection under different input voltages. The tesprovided by
the solid—shell elements SHB8PSE and SHB20E arepamd with those given by the
ABAQUS solid elements C3D8E and C3D20E. On the whialappears that fewer overall
degrees of freedom are required for the proposeiti-sbell elements to achieve
convergence, as compared to ABAQUS elements.dtsis noteworthy that despite the high
number of overall degrees of freedom required by @BD8E element, it provides less
accurate results than the SHB8PSE, especially migioration (c), where the error margin
reaches 16%.

In addition, the analysis of the plots in Fig) shows that the (a) and (d) configurations are
more effective in terms of shape control (platetniéss recovery). Note however that
configuration (a) requires up t20 V by pair of patches to recover the initial shay the
plate, whereas only 2 V are sufficient for configtion (d).

4.1.5. Shallow cylindrical sandwich blade

In order to assess the capabilities of the propasditl-shell elements in geometric
nonlinear analysis, a cantilever shallow cylindrgandwich shell with 300 mm for both of its
straight and curved edges, as depicted in Fig.is considered. A similar model has been
proposed by Kioua and Mirza64], but no comparison with available finite element
technologies was attempted. Here again, the hadt ghmade in aluminum and has a
thickness of 2.50 mm. This shell is entirely coweoa both sides with a thin PZT-5H layer of
0.25 mm thickness polarized across the thicknessoltage of 50 V is applied to each
piezoelectric layer (the internal faces are coretet¢d ground, while 50 V is applied to the
external faces) to induce bending actuation. Tiwaaes for theR/b ratio are considered

(R/b:{ 1 10,00} ). The considered layup configuration for the laated shell causes high

stiffness coupling and, consequently, also gengratewisting deformation. The deflections
along paths A, B and C, as shown in Higj, are investigated.

12



In Fig. 12, the results provided by the solid—shell finite edéerts SHBSPSE and SHB20E
are compared to those given by the ABAQUS solianelets C3D8E and C3D20E. Once
again, the good behavior of the SHBBPSE and SHB8ments is clearly observed, which
highlights the benefit of using the proposed sdlte elements in this kind of analysis.

With this preliminary set of static tests performéxtus is placed in the following sections
on free vibration modeling of sandwich structurest tcontain piezoelectric layers, in order to
evaluate the performance of the proposed solidHgretulations.

4.2. Vibration test problems

In the case of free vibration analysis, the sysbéuliscretized equationg) becomes

KUU K ug M uu 0 U 0
—-of = (23)
K# K% 0O 0} ¢ 0
In the following sections, a set of free vibratitasts both in open-circuit and short-circuit
configurations will be carried out on beam, platd ahell structures.

4.2.1. Beam benchmark tests

We consider here two sandwich beam models. Thasehb®ark tests are similar to those
previously presented in static analysis with shaad extension actuation mechanisms;
however, they have different geometric parametsshown in Figl3. The elastic layers are
made of aluminum, while the piezoelectric layers mrade in PZT-5H material. The modal
analysis is performed using both the short-cir¢BI€) and open-circuit (OC) configurations.
In Tables6 and 7, the first five free vibration frequencies are pdmd, revealing that the
results obtained with the SHBBPSE and SHB20E elé&sreme in good agreement with those
given by the ABAQUS quadratic solid element C3D20@Ehould be emphasized, however,
that less overall degrees of freedom are requirgkd the proposed solid—shell elements to
achieve accurate results, as compared to their AB3®olid element counterparts. It is also
worth noting that, despite the higher number ofraNelegrees of freedom required by the
C3DS8E element, its results still fall far from tmeference solutions, especially for high
frequencies.

4.2.2. Sandwich plate

In this second example of this category of benchnpaoblems, we investigate the free
vibration response of a simply supported sandwitdtep The plate consists of two
piezoelectric faces, in PZT-5H material polarizéohg the thickness, covering a core made
of aluminum with a varying thickness. The piezoglecfaces have a thickness of 1 mm,
while the other geometric dimensions are shown igq F4. Different thicknesses for the
aluminum core are considered, according to a ga@mnedtio r, in order to analyze the
sensitivity to thickness reduction of the resuligeg by the proposed solid—shell elements.
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The first five free vibration frequencies are invgated in both short-circuit and open-circuit
configurations and are reported in TaBle

According to TableB, the results obtained with the solid—shell firelements SHBSPSE
and SHB20E are in good agreement with those ofdfezence ABAQUS element C3D20E.
It should be noted, however, that fewer degreefredfdom are required for the proposed
solid—shell elements, as compared to their couattswith the same kinematics. Note also
that, despite the finer mesh required by the C3BI@ient, its results fall most of the time far
from the reference solutions.

4.2.3. Cantilever plate with piezo-patches

This benchmark test has been proposed by Cinefral. 65 and concerns the free
vibration analysis of a cantilever aluminum platghwfour pairs of piezoelectric patches.
More specifically, four patches are bonded on thp surface, with the four others
symmetrically bonded on the bottom surface (see Fi) The material and geometric
properties of the structure are reported in T&bl€he first ten free vibration frequencies are
investigated in both short-circuit and open-ciraanfigurations and are reported in Table
The results obtained with the proposed solid—stlethents are compared to those yielded by
ABAQUS elements and also to those given in Cinefral. B5]. The latter are based on a
model derived from the CUF with finite element defzation employing the 9-node MITC
element (Mixed Interpolation of Tensorial ComporsgnThe analysis in TablE) shows that
the results obtained with the proposed solid—stlelinents are in good agreement with those
of the reference element C3D20E as well as witkahgiven by the CUF-MITC modeb).

It also clearly appears that the linear ABAQUS datlement C3D8E, despite the high
number of overall degrees of freedom, provides ey results due to its high sensitivity to
locking effects.

In the following sections, free vibration analysi$ shell structures provided with
piezoelectric materials will be conducted. The &no assess the performance and reliability
of the proposed solid—shell elements in the modelr sandwich structures involving
geometric nonlinearities. In this latter contextptbenchmark tests will be analyzed.

4.2.4. Curved cantilever sandwich blade

In this test problem, a curved cantilever sandwitdde is considered. A similar test has
been investigated by Zouari et ab6], based on the experimentations conducted by Olson
and Lindberg 7], but only involved purely elastic behavior. Hesanilar to the previously
studied test, the core is made of aluminum, wingefaces are made in PZT-5H material, as
shown in Fig.16. Several core thicknesses are also investigatéd iboshort-circuit and
open-circuit configurations. From the results répoin Tablell, it appears that, once again,
the conventional solid finite elements C3D8E and23E require finer meshes to provide
accurate results, as compared to the proposed-shitl formulations. One may also notice
that with 4 times more elements for the C3D8E,@aspmared to the SHB8PSE element, it still
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exhibits a margin of error that exceeds 20%, fa fifth frequency and r = 1, while the
relative error with the SHB8PSE is of about 4% only

4.2.5. Hemispherical sandwich shell with a hole

The last benchmark test in this category is corexemith a doubly curved sandwich shell
structure. This consists of a hemispherical shé@th an 18° hole and a mean radius of 200
mm, as depicted in Figl7. The host structure is made of aluminum matena has a
thickness of 1.50 mm. This hemispherical shellnsrely covered on both sides with a thin
PZT-5H layer, which is polarized across its thickmef 0.25 mm. The shell structure is
clamped over the entire holed face. The currenlyaisaconsists in investigating the first five
modes in both short-circuit and open-circuit coafagions, which are illustrated in Fig8.
The results in terms of the corresponding natueduencies (first five natural frequencies)
are summarized in Tabl.

As previously done, the results obtained with tiheppsed solid—shell formulations are
compared in Tablel2 with their ABAQUS counterparts, which are based tbe same
geometry and kinematics. From Tall2 it appears that, while using coarser meshes, the
results provided by the developed solid—shell etgmere in good agreement with the
reference solution given by the C3D20E ABAQUS qgad#drpiezoelectric element. Again,
the worst results are by far those provided byG@GB®8E ABAQUS solid element, which is
attributable to its high sensitivity to locking etts.

5. Summary and conclusions

In the current contribution, two new hexahedralzpaectric solid—shell finite elements
have been developed. These finite element techissl@pnsist of an eight-node hexahedron,
denoted as SHB8PSE, and a twenty-node hexahedesigndted as SHB20E. These
formulations are based on purely three-dimensikim&matics and, accordingly, the resulting
finite elements have at each of their nodes thraeslational degrees of freedom and one
electric degree of freedom. To provide these elésneith some desirable shell features, and
to alleviate locking effects, an in-plane reducetbgration scheme is adopted, with a user-
defined number of integration points along the khess direction. The constitutive law is
also expressed in a local physical coordinate systehich is attached to the element mid-
plane, in order to enhance immunity with regarthtokness locking.

Particular attention has been paid to the poladmaif piezoelectric patches, which plays a
very important role in the mechanism of deformatiddoth static and free vibration
benchmark tests have been successfully conductetirectures ranging from simple beams
and plates to more complex sandwich shells. Thelatmn results obtained with the newly
devised solid—shell elements have been compardd reference solutions taken from the
literature and also with state-of-the-art finiteraents available in ABAQUS. Among the
latter, the quadratic hexahedral piezoelectric ds@lement C3D20E is often taken as
reference. In all of the benchmark tests investigathe solid—shell elements SHB8PSE and
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SHB20E have shown better performance, as compardidetr ABAQUS counterparts, the
C3D8E and C3D20E, respectively, while systematycakkcessitating a fewer number of
elements for similar accuracy. Also, although imsosituations of severe nonlinearities the
SHB8PSE element may exhibit some over-stiffness tludocking, its accuracy and
convergence rate remain overall much better thasetlof the C3D8E element. In future
work, it would be interesting to further improvestherformance of the SHB8PSE element, by
using for instance other advanced enhanced asswtnaith methods. It would be also
interesting to extend this study to the modelingribration control of multilayer structures
with piezoelectric materials in complete layergatches.

Appendix A. Derivation of the discrete gradient operators

For the SHB8PSE solid—shell element, the combinatbEgs. ) and 6), along with the
expression of the shape functions for linear eigite elements, allows expanding the

displacement field in the following form:

{ui =a, tay X, tazX,tazXtch+ch+chgch, (A.1)

hy=n¢, h, =&, h,=&n,h, = &n¢

By evaluating equation (A.1) at the nodes of them&nt, one can obtain a set of eight-
equation systems defined by

d =a;sta; X, ta;X,taX+ch+ch+chs#ch (A.2)
i=12,3 '

whered and X, denote the nodal displacements and nodal cooedinagspectively, while

vectorss andh, are defined by

s'=(1,1,1,1,1,1,1.1

h' =(1,1-1-1- 1~ 1,1,

h, =(1,-1-1,1- 1,1, 5 }1 (A.3)
hy =(1,-1,1-1,1- 1,5 }1

h, =(-1,1-1,1,1- 1,15 J

To determine the yet unknown constaats and c,; , the derivatives of the shape functions

evaluated at the origin of the reference framarareduced
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h-N, =N i=1,2, (A.4)

Xi ‘{:/]:(:O

Finally, using a set of preliminarily establishathogonality relations, one obtains

(A.5)

In the case of the SHB20E solid—shell element, éomb Eqgs. 6) and @), in conjunction
with the explicit form of the shape functions faragiratic twenty-node elements, leads to the
following expansion for the displacement field:

U =a, +a,x+azX,+ax+chtchtchachgch,
-|C6ih6 -+C7ih7 -iCShS-EQhQ—i_Cth 10+C1h 1]‘_i_C 19 ljrc ilg 13
) -|C14i hl4 + Cl5 hlS 1€ lﬁh 16

r&:fia h2:/7(1 h3:€(’71 h4:"521h5:’72’h6:Z2 ,h7=5/7( ‘
hy =&, hy=¢E20, hy=n¢,h,=n’ h,={¢ h =07,
\h, =&, hg=En?¢, hye=End?

(A.6)

Similarly, the evaluation of equation (A.6) at thedes of the element leads to three systems

of 20 equations defined by

CIi :aOis+aﬁx1+azx2+a3x3+c,th+cBh 2+Ci3h gt +C 1@ 1

1=1,2,3 (A7)

whered. and x represent the nodal displacements and nodal cwaedi, respectively, while

vectorss and h, are defined by
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=(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,11, 3
=(1,-1-1,1-1,1, % 1,6, 1,0,1,0,0000,1,0+ 1
=(1,1,-1-1~-171,1,1,1,6, 1,0,0,00:1,0,1,0
hy =(1,-1,1-11,-1,1-1,0,0,0,0,% 1,4, 1,0,00
=(1,1,1,1,1,1,1,1,0,1,0,1,1,1,1, 1,0, J
hf=(1,1,1,1,1,1,1,1,1,0,1,0,1,1,1, 10,11, 0

hg =(1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,1,1, 1) 1

hy =(-1,1-1,1,1y 1,% 1,0,0,0,0,0,0,0, 0, @,0)
thg =(-1,-1,1,1- 17 1,1,1,0,0,0,9, 4, 1110,0,0, 0 (A.8)
hg =(-1,-1-1-1,1,1,1,1,6, 1,6, 0,0,0,0,0,1,0,)1
hp,=(-1,1,1-1-1,1,% 1,0,0,0,9, 1,171,0,0,0,0

(VA

(-
h,=(-1,-1-1-1,1,1,1, % 1,6, 1,0,0,0001,0,1,0
h,=(-1,1,1-1-1,1,% 1,0,1,6, 1,0,0000,1,0+ 1
h,=(-1,-1,1,1- 17 1,1,% 1,0,1,0,0,0001,0,1, 0
h,=(1,1-1-1-1-1,1,1,0,0,0,0,0,0, 0, 0, 0,,M)0
hy=(1,-1-1,1-1,1,% 1,0,0,0,0,0,0, 0, 0, ®,®)
(

hy=(1-1,1-1,1- 1,% 1,0,0,0,0,0,0, 0,0, 0,,M)0

In a similar way, using some preliminarily estalid orthogonality conditions, it can be
shown that the yet unknown constaatsand c,; are given by the same Eq. (A.5). However,

the previous expressions of vectgrs must be replaced here by

(A.9)

where the constant componetfits; are given by
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1 1
= 0 0 0 0 0 0 0 0 0 0 0 0 o J— 0
4 4
1 1
0o = 0 0 0 0 0 0 0 0 0 0 (o J— 0 0
4 4
1 1
0 0 — 0 0 0 0 0 0 0 0 0 0 0 0 —
4 4
3 1 1
0 0 — — — 0 0 0 0 0 0 0 0 0 0
8 8 8
1 3 1
0 0 — — — 0 0 0 0 0 0 0 0 0 0
8 8 8
1 1 3
0 0 0 — — — 0 0 0 0 0 0 0 0 0 0
8 8 8
1
0 0 0 0 0 0 — 0 0 0 0 0 0 0 0 0
8
1
0 0 0 0 0 0 0 — 0 0 0 0 —— 0 0 0
_ 20 10
[N,)= 5 . (A.10)
0 0 0 0 0 0 0 0 — 0 — 0 0 0 0 0
20 10
3 1
0 0 0 0 0 0 0 0 0 — 0 —— 0 0 0 0
20 10
1
0 0 0 0 0 0 0 0 — 0 — 0 0 0 0 0
10 2
1
0 0 0 0 0 0 0 0 0 — 0 — 0 0 0 0
10 2
3
0 0 0 0 0 0 0 —— 0 0 0 0o — 0 0 0
10 20
1 1
0 - 0 0 0 0 0 0 0 0 0 0 0 — 0 0
4 8
1 1
- 0 0 0 0 0 0 0 0 0 0 0 0 0 — 0
4 8
1 1
0 0 —_ 0 0 0 0 0 0 0 0 0 0 0 0 -
4 8

Appendix B. Computation of the stabilization matrices for 8t1¢B8PSE

As mentioned before, the stabilization matricestifier SHBSPSE element are computed in
a co-rotational coordinate frame before being fiansed to the orthotropy frame of the
piezoelectric material. In this orthogonal co-raiaal coordinate frame, which has been
previously defined by a rotation matrik given by Egs. X3)-(15), several terms of the
stabilization matrices are shown to simplify. Inde®ecause this system of co-rotational
coordinates is chosen to be aligned with the refexrdrame, the relationships between the
two coordinate systems can be approximated by

0% 1 1

_=_~=_/]iTDzi

0§ 0&/ox 8 (B.1)
%:%:O ’|¢J .
0¢; 0%
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where vectorX; refers to the nodal coordinates expressed in theotational frame, and

repeated indices here do not indicate a summatilen Then, using Eq. (B.1), the following
simplifications are demonstrated (s&8][for more details):

h__ah =0. h.= 8£k — Sngk j:A1TD?1A2TD?2A3TDZ3
1] )

X ATE Y AT 8 8 8

| T B.2
= (B.2)

where J denotes the determinant of the Jacobian matrite lgain that the repeated indices
in Eqg. (B.2) do not indicate a summation rule. didigion, the indices, j andk are pairwise

distinct and take values 1, 2 and 3, with all & ffossible permutations. Finally, Eq. (B.2)
leads to the following expressions:

J hav=0

0 vave [ (h Yy e sy LA XA )
Hy =], (av=[, (h*av=3[, (,)’dv= =R (B.3)

1
H; :Iveh,th,ideé(/‘kT [X)

By replacing the expressions (B.3) in EtR)( providing the stabilization stiffness matrix,eon

obtains

kll k12 le
KuuSab = k21 k 22 k 23 (B4)

31 k 32 33

(B.5)
_ 1. .t

Ky = (A +2,U)H11§y4y4

kij =0 , i Zj

where A =Ev/(1-v?) and ¢ =E/2(1+v), with E being the Young modulus and the

Poisson ratio.
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Similarly, the stabilization matriceX g, and K%, , related to the piezoelectric and

dielectric matrices, are obtained as

" R
kit = e;H 11[;/4/; +§yyl}
kat L

Ka=lkE| e Pil i
(934 B.6
31 o - (B.6)

(24 —_ (27 A AT 1,\ ~T

K Stab [kn ’ kll_K31H1 yy3+§y«V4

Appendix C. Transformation of tensors from local (materianfre to global frame

The piezoelectric properties of the materials gvecsied in a local orthotropy frame
inherent to the material. For the computation efdifferent matrices involved (e.qg., stiffness,
piezoelectric and dielectric permittivity matriceg)is necessary to evaluate these properties
in a global fixed coordinate system. For this psggoa rotation matrixe is used for the
transformation of vector and matrix components fritv@ global frame to the local physical

frame. Hence, the componerflg, , €, andk; of the tensor< , e andK, expressed in the

global coordinate system, are related to their (mmptsf: and K, in the local

mnop ! ermo

material frame by the following relationships:

A

Cijkl = zimzjnzkozlpcrmop
€k = zimzjnzko’eT‘no (C.1)
Kij = 2im2]'nkrm

In matrix form, Eq. (C.1) can be rewritten as

C=TICO"
e =2 BT’ (C.2)
K=2KEZ'

where
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R=1Ry Ry Ry (C.3)
2 31 2 32 2 33
and
2, R, R R.R1s R ® 1 RZ L
Ry Ry, Ry R ,R 2 R R R Z
o R Re Ry R:R RR RE =

BB R R REARE 2R B HR A »R A 3R R, |,

RyRy RoRyp RRp REAFR B uR R 3R B 2R B 3R B, | (C4)
211231 212232 21?33 214? 35}'-2 g 32 2 g ?-52 % 332 gl -52212231
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Tables

Table 1. Explicit forms for the matrices and vestmsulting from the electromechanical
coupling.

[me]=[[N] AN Jav Mass matrix
[k*]=[,[8*] [c][B*]av Stiffness matrix
[k#]=-],[B*] [«][B*]av Dielectric matrix

[ ] :I [BUJT [e]T [B‘”] v ; [K w} = [K “”’] ! Piezoelectric coupling matrix
{Fy=[[NT{t}av+[[N"T{f}ds+f,  Force vector

{Q} =-[ [N“]{a}av=][N?]{a}ds-a, Electrical charge vector

Table 2. Tip displacementsatL.

E €31 €3 Ksq U, (um)
v ) 5 C3D8E SHB8PSE C3D20E SHB20E
(e (cm?) (cim?) (uFm) (100x4x2)  (10x1x2)  (10x1x2)  (5x1x2)
2 0 -0.046 -0.046 0.1062 0.258 0.345 0.344 0.345

Table 3. Material properties for the steel platéhvai piezoelectric sensor layer; permittivity
K,=8.854x 10° F/n, with K=K, (K"

C,,=C,,=107.60 GPa ; £ =100.40 C
C,=6312GPa ; L = =84.1GPa
C,=C,=19.62GPa ; § =22.24 GF

Pzt e.=e,=12.0C/m
e,=e,=— 9.6C/Mh ;g =15.1Cm
K2 =K5=1936 ;K'5=2109

Steel E=210GPa y =C
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Table 4. Locking effects that may affect a thinzoielectric sensor (thicknesg, discretized
with piezoelectric elements) attached to a steskpfthickness,, discretized with solid or

solid—shell elements): normalized displaceméhfs/U, "' .

a, [mm] a,/a, 0.001  0.01 0.1

C3D8 (20x20x1) + C3D8E (20x4x1) 0.001 0.001 0.001

L SHB8PS (20x20x1) + SHBSPSE (20x4x1) 1.045 1.038 83.9
C3D20 (10x10x1) + C3D20E (10x2x1) 0.958 0.957 0.956
SHB20 (10x10x1) + SHB20E (10x2x1) 0.996 0.996 0.995
C3D8 (20%x20x1) + C3D8E (20x4x1) 0.108 0.108 0.107

1o  SHBBPS (20x20x1) + SHBPSE (20x4x1) 1034 1011 74.9
C3D20 (10x10x1) + C3D20E (10x2x1) 0.968 0.966 0.944
SHB20 (10x10x1) + SHB20E (10x2x1) 0.998 0.997 0.997
C3D8 (20x20x1) + C3D8E (20x4x1) 1.865 1.858 1.776

oo SHBBPS (20x20x1) + SHBEPSE (20x4x1) 1028 1.023 79.9
C3D20 (10x10x1) + C3D20E (10x2x1) 0981 0979 0.957

SHB20 (10x10x1) + SHB20E (10x2x1) 0.999 0.999 0.999

Table 5. Material properties used in the extensiwh shear mechanism models.

p = 7730 Kg.m"®

C,,=C,,= C,,= 126 GPa
C,=795GPa ; G =& =84.1GPa
C.=C,=C,=23GPa

PZT-5H
e.=6,=17C/m
e,=e,=— 65C/mh ; g =23.3Cfm
K,=K,=1.50% 10° F/im x,, =18 10 F
=32 Kg.m®
Foam P gm
E=353MPa ;v =0.:
= 2690 Kg.m’
Aluminum gm

E=70.3GPa v =0.3
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Table 6. First five natural frequencies for theesmsion actuated sandwich beam.

C3D8E SHB8PSE C3D20E SHB20E
(40x4x4) (20x2x3) (20x2x3) (10%x1x3)

Short circuit

1 764.42 754.72 751.58 749.35
2 1271.0 1275.8 1271.2 1268.46
3 4705.9 4655.5 4630.3 4616.0
4 7610.9 7658.6 7615.7 7600.8
5 8926.7 9223.6 9293.6 9253.3
Open circuit
1 805.66 789.10 787.17 785.76
2 1294.9 1301.6 1297.4 1294.8
3 4951.4 4861.4 4842.5 4833.3
4 7744.8 7805.3 7763.3 7750.6
5 8930.7 9261.9 9297.4 9296.0

Table 7. First five natural frequencies for theastectuated sandwich beam.

C3D8E SHB8PSE C3D20E SHB20E
(40%x4x3) (20x2x3) (20x2x3) (10x1x3)
Short circuit = Open circuit

1 791.36 789.10 780.87 781.61
2 1271.7 1276.8 1271.8 1269.2
3 4875.2 4873.4 4813.2 4817.5
4 7618.6 7668.6 7623.8 7610.8
5 9912.4 10501 10475 10434
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Table 8. First five natural frequencies for thetaagular sandwich plate.

C3D8E SHB8PSE C3D20E SHB20E
(48%40x%3) (24%x20x%3) (24%x20x%3) (12x10x3)

Short circuit

223.95 185.98 183.23 181.09
425.59 341.49 333.22 330.27
r=1 530.56 405.12 392.41 390.66
728.22 605.46 584.85 586.70
824.87 640.87 606.99 605.60
507.81 512.84 514.54 506.96
912.90 939.91 930.65 919.43
r=5 1087.2 1115.0 1095.1 1088.2
1577.4 1660.3 1628.7 1620.1
1687.0 1766.7 1697.8 1695.0
1458.5 1704.7 1712.3 1707.4
2451.2 3003.2 3004.0 2875.3
r=20 2789.5 3406.6 3441.1 3385.4
4143.4 5159.3 5125.0 5146.7
4372.4 5603.9 5426.7 5522.3
Open circuit
24431 210.04 207.35 205.20
457.24 382.95 374.25 372.21
r=1 566.96 455.22 441.48 439.92
786.27 680.54 658.43 660.02
884.27 723.84 686.53 685.81
552.26 557.74 558.40 551.45
994.08 1021.7 1010.5 1003.5
r=5 1184.0 1214.5 11915 1185.1
1723.6 1806.6 1771.0 1764.1
1840.7 1927.8 1851.0 1848.5
1533.0 1764.6 1771.2 1758.9
2579.5 3126.3 3099.4 3000.0
r=20 2939.2 3618.3 3551.9 3495.7
4363.5 5335.9 5282.7 5307.2
4606.1 5786.0 5596.6 5661.0
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Table 9. Material and geometric data for the canét plate with piezoelectric patches.

a, =0.075m;p =0.025m ;h =053 10

p = 7600 Kg.m®

C,=C,,=C,;=90.37 GPa

C,=C,;=C,=35.14 GPa

C,=C,.,=C,=24.8GPa

e.=e, =16.62 C/fh

e,=e,= 1447C/h ; g =18.34Cim

K,,= K,,= 183x10° F/m ;k,, =158 10 F/

a=03m;b=0.2m;h=08 10
Aluminum p = 2700 Kg.n?*

E=70GPa ;v =0.32

PZT
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Table 10. First ten free frequencies for the dawvdir plate with piezo-patches.

C3D8 SHB8PS C3D20 SHB20
(80x32x1)  (40x16x1)  (40x16x1) (20x8x1) CUF - MITC
+ + + + [65]
C3D8E SHB8PSE C3D20E SHB20E (20x8)
8x(20x4x1) 8x(10x2x1) 8x(10x2x1) 8x(5x1x1)

Short circuit

1 19.395 7.5679 7.6138 7.7271 7.6059
2 37.296 25.426 25.904 25.762 25.346
3 126.11 45.696 45.975 46.299 45.787
4 164.34 90.648 92.159 91.601 90.446
5 347.01 124.63 124.96 124.30 123.76
6 369.33 148.86 148.79 151.52 148.93
7 496.42 184.67 185.48 185.49 184.69
8 579.36 237.29 241.54 239.96 235.50
9 714.57 332.27 329.74 327.58 328.22
10 737.00 332.50 333.28 335.31 332.49
Open circuit

1 19.540 7.6114 7.6547 7.7681 7.6074
2 37.420 25.478 25.959 25.829 25.351
3 126.43 45.762 46.043 46.366 45.790
4 164.69 90.892 92.425 91.926 90.454
5 351.48 124.77 125.09 124.42 123.76
6 374.30 150.69 150.61 153.48 149.00
7 496.52 186.69 187.52 189.81 184.88
8 579.63 237.55 241.84 240.34 235.48
9 718.10 333.81 334.51 326.42 327.03
10 746.49 339.34 336.93 343.08 332.31
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Table 11. First five natural frequencies for thevewd cantilever sandwich blade.

C3D8E SHB8PSE C3D20E SHB20E
(48%40x%3) (24%x20x%3) (24x20%x3)  (12x10x3)

Short circuit

72.569 72.162 68.824 68.736
136.19 128.27 124.93 124.75
r=1 289.89 225.35 218.86 218.56
318.10 296.81 281.80 281.19
373.47 323.07 310.50 309.68
154.14 154.86 153.62 153.99
183.73 186.08 183.57 183.67
r=5 544.47 530.31 528.10 528.67
580.13 585.25 572.11 573.17
716.01 716.42 705.46 706.46
257.69 284.26 285.08 286.33
469.37 499.81 502.38 504.90
r=20 1253.2 1415.8 1401.4 1407.7
1521.9 1527.4 1526.1 1534.4
1555.9 1765.7 1757.5 1764.6
Open circuit
80.281 79.093 76.910 76.081
154.85 140.42 138.20 138.36
r=1 299.73 242.90 236.48 236.51
351.89 327.73 317.98 313.16
397.39 345.72 338.24 331.87
162.34 161.03 161.91 160.26
198.07 199.98 197.90 198.16
r=>5 552.07 539.90 538.66 539.29
629.27 627.02 622.81 615.36
763.78 754.82 754.54 745.80
272.66 297.74 298.60 299.96
482.33 508.13 513.38 513.22
r=20 1340.7 1487.2 1473.6 1479.6
1541.7 1552.3 1545.6 1559.7
1629.9 1820.5 1825.2 1819.7
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Table 12. First five natural frequencies for theniepherical sandwich shell with a hole.

C3D8E SHB8PSE C3D20E SHB20E
(200x50%3)  (56x14x3) (60%x20x%3) (28%x7x%3)

Short circuit

96.873 79.149 76.109 76.110
193.18 118.04 114.60 113.80
296.19 220.94 215.44 215.81
363.22 301.63 289.37 289.86
576.11 363.47 342.83 348.82
Open circuit
97.953 80.407 77.366 77.447
194.24 119.04 115.33 113.87
299.25 221.51 217.30 215.88
365.82 304.01 292.63 293.50
581.14 364.21 346.70 348.95

35



Figures

¢ ¢
20
UZG 5: T 8 uZG 5: T 8
A E L 117 Eoi | 19 123
Ps b e 13+ 5 116
6 > p4 7 6 : 7 018
| ' 100 ' )
Uy uyﬁl ,5-3---——-——:7 Uy / 90 uy6.:1§2,)--;io-———-o£—>i’]
¢ 102 4 ° 1okl 12, | __o18)4
o 14 809, 13415
7o el
2 3 . it
.f/ Y 10
¢

Figure 1. Schematic representation for the referggometry of the SHBSPSE and SHB20E
elements as well as for the location of their in&tign points in the case when the number of
through-thickness integration pointsns, =5.
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Figure 2. Cantilever bimorph beam.
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Figure 4. Convergence results for the cantileverdoph beam problem in the case of
distorted meshes; (a) linear hexahedral elemdngjuadratic hexahedral elements.

Normalized tip displacanent

Figure 3. Cantilever bimorph beam with distortedsme
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Configuration (c) Configuration (d)

Figure 9. Square plate with piezoelectric patches.
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Figure 13. Cantilever sandwich beam, extensiomad)shear (b) actuation mechanisms.

Figure 14. Simply supported rectangular sandwielepl
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Figure 15. Cantilever plate with piezo-patches.
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Figure 16. Curved cantilever sandwich blade.
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Figure 17. Hemispherical sandwich shell with a hole
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Figure 18. First five vibration modes for the hephisrical sandwich shell with a hole.

45



|
i
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