
HAL Id: hal-02389403
https://hal.science/hal-02389403v1

Submitted on 2 Dec 2019 (v1), last revised 20 Jan 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Complete Variable-Length Codes: An Excursion into
Word Edit Operations

Jean Néraud

To cite this version:
Jean Néraud. Complete Variable-Length Codes: An Excursion into Word Edit Operations. LATA
2020, Mar 2020, Milan, Italy. �hal-02389403v1�

https://hal.science/hal-02389403v1
https://hal.archives-ouvertes.fr

Complete Variable-Length Codes: An

Excursion into Word Edit Operations

Jean NÉRAUD ∗

Abstract

Given an alphabet A and a binary relation τ ⊆ A∗×A∗, a language X ⊆ A∗ is τ -independent

if τ(X) ∩X = ∅; X is τ -closed if τ(X) ⊆ X. The language X is complete if any word over A

is a factor of some concatenation of words in X. Given a family of languages F containing

X, X is maximal in F if no other set of F can stricly contain X. A language X ⊆ A∗ is a

variable-length code if any equation among the words of X is necessarily trivial. The study

discusses the relationship between maximality and completeness in the case of τ -independent

or τ -closed variable-length codes. We focus to the binary relations by which the images of

words are computed by deleting, inserting, or substituting some characters.

Keywords: closed, code, complete, deletion,dependent, detection, distribu-
tion, edition, embedding, independent, insertion, Levenshtein, maximal, string,
substitution, substring, subword, variable-length, word

1 Introduction

In formal language theory, given a property F , the embedding problem with respect
to F consists in examining whether a language X satisfying F can be included into
some language X̂ that is maximal with respect to F , in the sense that no language
satisfying F can strictly contain X̂. In the literature, maximality is often connected
to completeness: a language X over the alphabet A is complete if any string in the
free monoid A∗ (the set of the words over A) is a factor of some word of X∗ (the
submonoid of all concatenations of words in X). Such connection takes on special
importance for codes: a language X over the alphabet A is a variable-length code
(for short, a code) if every equation among the words (i.e. strings) of X is necessarily
trivial.

A famous result due to M.P. Schützenberger states that, for the family of the
so-called thin codes (which contains regular codes and therefore also finite ones),

∗Université de Rouen, Laboratoire d’Informatique, de Traitement de l’Information et des Systèmes,
Avenue de l’Université, 76800 Saint-Étienne-du-Rouvray, France; jean.neraud@univ-rouen.fr, ner-
aud.jean@gmail.com; http:neraud.jean.free.fr; orcid: 0000-0002-9630-461X

1

being maximal is equivalent to being complete. In connection with these two concepts
lots of challenging theoretical questions have been stated. For instance, to this day
the problem of the existence of a finite maximal code containing a given finite one is
not known to be decidable. From this latter point of view, in [16] the author asked
the question of the existence of a regular complete code containing a given finite one:
a positive answer was brought in [4], where was provided a now classical formula for
embedding a given regular code into some complete regular one. Famous families of
codes have also been concerned by those studies: we mention prefix and bifix codes [2,
Proposition 3.3.8, Proposition 6.2.1], codes with a finite deciphering delay [3], infix
[10], solid [11], or circular [13].

Actually, with each of those families, a so-called dependence system can be
associated. Formally, such a system is a family F of languages constituted by those
sets X that contain a non-empty finite subset in F . Languages in F are F -dependent,
the other ones being F-independent. A special case corresponds to binary words
relations τ ⊆ A∗ ×A∗, where a dependence systems is constituted by those sets X
satisfying τ ∩ (X × X) 6= ∅: X is τ -independent if we have τ(X) ∩ X = ∅ (with
τ(X) = {y : ∃x ∈ X, (x, y) ∈ τ}). Prefix codes certainly constitute the best known
example: they constitute those codes that are independent with respect to the
relation obtained by removing each pair (x, x) from the famous prefix order. Bifix,
infix or solid codes can be similarly characterized.

As regards to dependence, some extremal condition corresponds to the so-called
closed sets: given a word relation τ ⊆ A∗ × A∗, a language X is closed under τ
(τ -closed, for short) if we have τ(X) ⊆ X. Lots of topics are concerned by the notion.
We mention the framework of prefix order where a one-to-one correspondence between
independent and closed sets is provided in [2, Proposition 3.1.3] (cf. also [1, 18]).
Congruences in the free monoid are also concerned [15], as well as their connections
to DNA computing [7]. With respect to morphisms, involved topics are also provided
by the famous L-systems [17] and, in the case of one-to-one (anti)-automorphisms,
the so-called invariant sets [14].

As commented in [6], maximality and completeness concern the economy of a
code. If X is a complete code then every word occurs as part of a message, hence
no part of X∗ is potentially useless. The present paper emphasizes the following
questions: given a regular binary relation τ ⊆ A∗ × A∗, in the family of regular
τ -independent (-closed) codes, are maximality and completeness equivalent notions?
Given a non-complete regular τ -independent (-closed) code, is it embeddable into
some complete one?

Independence has some peculiar importance in the framework of coding theory.
Informally, given some concatenation of words in X, each codeword x ∈ X is trans-
mitted via a channel into a corresponding y ∈ A∗. According to the combinatorial
structure of X, and the type of channel, one has to make use of codes with prescribed
error-detecting constraints: some minimum-distance restraint is generally applied.
In this paper, where we consider variable length codewords, we address to the Leven-
shtein metric [12]: given two different words x, y, their distance is the minimal total
number of elementary edit operations that can transform x into y, such operation

2

consisting in a one character deletion, insertion, or substitution. Formally, it is the
smallest integer p such that we have y ∈ Λp(x), with Λp =

⋃
1≤k≤p(δ1 ∪ ι1 ∪ σ1)k,

where δk, ιk, σk are further defined below. From the point of view of error detection,
X being Λp-independent guarantees that y ∈ Λp(x) implies y 6= x. In addition, a code
satisfies the property of error correction if its elements are such that Λp(x)∩Λp(y) = ∅
unless x = y: according to [9, chap. 6], the existence of such codes is decidable.
Denote by Subw(x) the set of the subsequences of x:

– δk, the k-character deletion, associates with every word x ∈ A∗, all the
words y ∈ Subw(x) whose length is |x| − k. The at most p-character deletion is
∆p =

⋃
1≤k≤p δk;

– ιk, the k-character insertion, is the converse relation of δk and we set
Ip =

⋃
1≤k≤p ιk (at most p-character insertion);

– σk, the k-character substitution, associates with every x ∈ A∗, all y ∈ A∗
with length |x| such that yi (the letter of position i in y), differs of xi in exactly k
positions i ∈ [1, |x|]; we set Σp =

⋃
1≤k≤p σk;

– We denote by Λp the antireflexive relation obtained by removing all pairs
(x, x) from Λp (we have Λ1 = Λ1).

For short, we will refer the preceding relations to edit relations. For reasons of
consistency, in the whole paper we assume |A| ≥ 2 and k ≥ 1. In what follows, we
draw the main contributions of the study:

Firstly, we prove that, given a positive integer k, the two families of languages
that are independent with respect to δk or ιk are identical. In addition, for k ≥ 2, no
set can be Λk-independent. We establish the following result:

Theorem A. Let A be a finite alphabet, k ≥ 1, and τ ∈ {δk, ιk, σk,∆k, Ik,Σk,Λk}.
Given a regular τ -independent code X ⊆ A∗, X is complete if, and only if, it is
maximal in the family of τ -independent codes.

A code X is Λk-independent if the Levenshtein distance between two distinct
words of X is always larger than k: from this point of view, Theorem A states some
noticeable characterization of maximal k-error detecting codes in the framework of
the Levenshtein metric.

Secondly, we explore the domain of closed codes. A noticeable fact is that for
any k, there are only finitely many δk-closed codes and they have finite cardinality.
Furthermore, one can decide whether a given non-complete δk-closed code can be
embedded into some complete one. We also prove that no closed code can exist with
respect to the relations ιk, ∆k, Ik.

As regard to substitutions, beforehand, we focus to the structure of the set
σ∗k(w) =

⋃
i∈N σ

i
k. Actually, excepted for two special cases (that is, k = 1 [5, 19], or

k = 2 with |A| = 2 [8, ex. 8, p.77]), to our best knowledge, in the literature no general
description is provided. In any event we provide such a description; furthermore we
establish the following result:

Theorem B. Let A be a finite alphabet and k ≥ 1. Given a complete σk-closed code
X ⊆ A∗, either every word in X has length not greater than k, or a unique integer

3

n ≥ k + 1 exists such that X = An. In addition for every Σk(Λk)-closed code X,
some positive integer n exists such that X = An.

In other words, no σk-closed code can simultaneously possess words in A≤k and
words in A≥k+1. As a consequence, one can decide whether a given non-complete
σk-closed code X ⊆ A∗ is embeddable into some complete one.

2 Preliminaries

We adopt the notation of the free monoid theory. Given a word w, we denote by |w|
its length; for a ∈ A, |w|a denotes the number of occurrences of the letter a in w.
The set of the words whose length is not greater (not smaller) than n is denoted by
A≤n (A≥n). Given x ∈ A∗ and w ∈ A+, we say that x is a factor of w if words u, v
exist such that w = uxv; a subword of w consists in any (perhaps empty) subsequence
wi1 · · ·win of w = w1 · · ·w|w|. We denote by F(X) (Subw(X)) the set of the words
that are factor (subword) of some word in X (we have X ⊆ F(X) ⊆ Subw(X)). A
pair of words w,w′ is overlapping-free if no pair u, v exist such that uw′ = wv or
w′u = vw, with 1 ≤ |u| ≤ |w| − 1 and 1 ≤ |v| ≤ |w′| − 1; if w = w′, we say that w
itself is overlapping-free.

It is assumed that the reader has a fundamental understanding with the main
concepts of the theory of variable-length codes: we suggest, if necessary, that he (she)
report to [2]. A set X is a variable-length code (a code for short) if for any pair of
sequences of words in X, say (xi)1≤i≤n, (yj)1≤j≤p, the equation x1 · · ·xn = y1 · · · yp
implies n = p, and xi = yi for each integer i (equivalently the submonoid X∗ is free).
The two following results are famous ones from the variable length code theory:

Theorem 2.1 Schützenberger [2, Theorem 2.5.16] Let X ⊆ A∗ be a regular code.
Then the following properties are equivalent:

(i) X is complete;
(ii) X is a maximal code;
(iii) a positive Bernoulli distribution π exists such that π(X) = 1;
(iv) for every positive Bernoulli distribution π we have π(X) = 1.

Theorem 2.2 [4] Given a non-complete code X, let y ∈ A∗\F(X∗) be an overlapping-
free word and U = A∗ \ (X∗ ∪A∗yA∗). Then Y = X ∪ y(Uy)∗ is a complete code.

With regard to word relations, the following statement comes from the definitions:

Lemma 2.3 Let τ ∈ A∗ ×A∗ and X ⊆ A∗. Each of the following properties holds:
(i) X is τ -independent if, and only if, it is τ−1-independent (τ−1 denotes the

converse relation of τ).
(ii) X is δk(∆k)-independent if, and only if, it is ιk(Ik)-independent.
(iii) X is τ -closed if, and only if, it is τ∗-closed.

4

3 Complete independent codes

We start by providing a few examples:

Example 3.1 For A = {a, b}, k = 1, the prefix code X = a∗b is not δk-independent
(we have an−1b ∈ δk(anb)), whereas the following codes are δ1-independent:

– the regular (prefix) code: Y = {a2}+{b, aba, abb}. Note that since it contains
{a2}+, δ1(Y) is not a code.

– the complete (non-regular) context-free Dyck bifix code D1, which generates
the Dyck free submonoid D∗1 = {w ∈ A∗ : |w|a = |wb|} (for every word w ∈ D1

we have |δ1(w)|a 6= |δ1(w)|b). Note that δ1(D1) contains the empty word, ε, thus it
cannot be a code; however δ1(D1) \A remains a (non-complete) bifix code

– the non-complete finite bifix code Z = {ab2, ba2}: actually, δ1(Z) is the
complete uniform code A2.

– for every pair of different integers n, p ≥ 2, the prefix code T = aAn ∪ bAp.
We have δ1(T) = An ∪Ap, which is not a code, although it is complete.

In view of establishing the main result of Section 3, we will construct some peculiar
word:

Lemma 3.2 Let k ≥ 1, i ∈ [1, k], τ ∈ {δi, ιi, σi}. Given a a non-complete code
X ⊆ A∗ some overlapping-free word y ∈ A∗ \ F(X∗) exists such that τ(y) does not
intersect X and y /∈ τ(X).

Proof. Let X be a non-complete code, and let w ∈ A∗ \ F(X∗). Trivially, we
have wk+1 /∈ F(X∗). Moreover, in a classical way a word u ∈ A∗ exists such that
y = wk+1u is overlapping-free (eg. [2, Proposition 1.3.6]). Since we assume i ∈ [1, k],
each word in τ(y) is constructed by deleting (inserting, substituting) at most k letters
from y, hence by construction it contains at least one occurrence of w as a factor.
This implies τ(y) ∩ F(X∗) = ∅, thus τ(y) does not intersect X.

By contradiction, assume that a word x ∈ X exists such that y ∈ τ(x).
It follows from δ−1k = ιk and σ−1k = σk that y = wk+1u is obtained by deleting
(inserting, substituting) at most k letters from x: consequently at least one
occurrence of w appears as a factor of x ∈ X ⊆ F(X∗): this contradicts w /∈ F(X∗),
therefore we obtain y /∈ τ(X) (cf. Figure 1). �

Fig. 1: Proof of Lemma 3.2: y ∈ τ(X) implies w ∈ F(X); for i = k = 3 and y = w4u, the action of

the substitution τ = σ3 is represented by the arrows, in some extremal condition.

5

As a consequence, we obtain the following result:

Theorem 3.3 Let k ≥ 1 and τ ∈ {δk, ιk, σk}. Given a regular τ -independent code
X ⊆ A∗, X is complete if, and only if, it is maximal as an τ -independent codes.

Proof. According to Theorem 2.1, every complete τ -independent code is a maximal
code, hence it is maximal in the family of τ -independent codes. For proving the
converse, we make use of the contrapositive. Let X be a non-complete τ -independent
code, and let y ∈ A∗ \ F(X∗) satisfying the conditions of Lemma 3.2. With the
notation of Theorem 2.2, necessarily X ∪ {y}, which is a subset of Y = X ∪ y(Uy)∗,
is a code. According to Lemma 3.2, we have τ(y) ∩X = τ(X) ∩ {y} = ∅. Since X is
τ -independent and τ antireflexive, this implies τ(X ∪ {y}) ∩ (X ∪ {y}) = ∅, thus X
non-maximal as a τ -independent code. �

We notice that for k ≥ 2 no Λk-independent set can exist (indeed, we have
x ∈ σ21(x) ⊆ Λk(x)). However, the following result holds:

Corollary 3.4 Let τ ∈ {∆k, Ik,Σk,Λk}. Given a regular τ -independent code X ⊆
A∗, X is complete if, and only if, it is maximal as a τ -independent code.

Proof. As indicated above, if X is complete, it is maximal as a τ -independent
code. For the converse, once more we argue by contrapositive that is, with
the notation of Lemma 3.2, we prove that X ∪ {y} remains independent. By
definition, for each τ ∈ {∆k, Ik,Σk,Λk}, we have τ ⊆

⋃
1≤i≤k τi, with τi ∈ {δi, ιi, σi}.

According to Lemma 3.2, since τi is antireflexive, for each i ∈ [1, k] we have
τi(X ∪ {y}) ∩ (X ∪ {y}) = ∅: this implies (X ∪ {y}) ∩

⋃
1≤i≤k τi(X ∪ {y}) = ∅, thus

X ∪ {y} τ -independent. �

With regard to the relation Λk, Corollary 3.4 expresses some interesting
property in term of error detection. Indeed, as indicated in Section 1, every code is
Λk-independent if the Levenshtein distance between its (distinct) elements is always
larger than k. From this point, Corollary 3.4 states some characterization of the
maximality in the family of such codes.

It should remain to develop some method in view of embedding a given non-
complete Λk-code into a complete one. Since the construction from the proof Theorem
2.2 does not preserve independence, this question remains open.

4 Complete closed codes with respect to deletion or in-
sertion

We start with relation the δk. A noticeable fact is that corresponding closed codes
are necessarily finite, as attested by the following result:

Proposition 4.1 Given a δk-closed code X, and x ∈ X, we have |x| ∈ [1, k2 − k −
1] \ {k}.

6

Proof. It follows from ε /∈ X and X being δk-closed that |x| 6= k. By contradiction,
assume |x| ≥ (k−1)k and let q, r be the unique pair of integers such that |x| = qk+r,
with 0 ≤ r ≤ k − 1. Since we have 0 ≤ rk ≤ (k − 1)k ≤ |x|, an integer s ≥ 0 exists
such that |x| = rk + s, thus words x1, · · · , xk, y exist such that x = x1 · · ·xky, with
|x1| = · · · = |xk| = r and |y| = s. By construction, every word t ∈ Sub(x) with
|t| ∈ {r, s} belongs to δ∗k(x) ⊆ X (indeed, we have r = |x| − qk and s = |x| − rk).
This implies x1, · · · , xk, y ∈ X, thus x ∈ Xk+1 ∩X: a contradiction with X being a
code. �

Example 4.2 (1) According to Proposition 4.1, no code can be δ1-closed. This can
be also drawn from the fact that, for every set X ⊆ A+ we have ε ∈ δ∗1(X).

(2) Let A = {a, b} and k = 3. According to Proposition 4.1, every word in
any δk-closed code has length not greater than 5. It is straightforward to verify
that X = {a2, ab, b2, a4b, ab4} is a δk-closed code. In addition, a finite number of
examinations leads to verify that X is maximal as a δk-closed code. Taking for π the
uniform distribution we have π(X) = 3/4 + 1/16 < 1: thus X is non-complete.

According to Example 4.2 (2), no result similar to Theorem 3.3 can be stated in the
framework of δk-closed codes. We also notice that, in Proposition 4.1 the bound does
not depend of the size of the alphabet, but only depends of k.

Corollary 4.3 Given a finite alphabet A and a positive integer k, one can decide
whether a non-complete δk-closed code X ⊆ A∗ is included into some complete one.
In addition there are a finite number of such complete codes, all of them being
computable, if any.

Proof. According to Proposition 4.1 only a finite number of δk-closed codes over A
can exist, each of them being a subset of A≤k

2−k−1 \Ak. �

We close the section by considering the relations ∆k, ιk and Ik:

Proposition 4.4 No code can be ιk-closed, ∆k-closed, nor Ik-closed.

Proof. By contradiction assume that some ιk-closed code X ⊆ A∗ exists. Let
x ∈ X, n = |x| and u, v ∈ A∗ such that x = uv. It follows from |(vu)k| = kn,
that u(vu)kv ∈ ι∗k(x). According to Lemma 2.3(iii), we have ι∗k(X) ⊆ X, thus
u(vu)kv ∈ X. Since u(vu)kv = (uv)k+1 = xk+1 ∈ Xk+1, we have Xk+1 ∩ X 6= ∅:
a contradiction with X being a code. Consequently no Ik-closed codes can exist.
According to Example 4.2(1), given a code X ⊆ A∗, we have δ1(X) 6⊆ X: this implies
∆k(X) 6⊆ X, thus X not ∆k-closed. �

5 Complete codes closed under substitutions

Beforehand, given a word w ∈ A+, we need a thorough description of the set
σ∗k(w). Actually, it is well known that, over a binary alphabet, all n-bit words can
be computed by making use of some Gray sequence [5]. With our notation, we

7

have An = σ∗1(w). Furthermore, for every finite alphabet A, the so-called |A|-arity
Gray sequences allow to generate An [8, 19]: once more we have σ∗1(w) = An. In
addition, in the special case where k = 2 and |A| = 2, it can be proved that we have
|σ2(w)| = 2n−1 [8, Exercise 8, p. 28]. However, except in these special cases, to the
best of our knowledge no general description of the structure of σ∗k(w) appears in the
literature. In any event, in the next paragraph we provide an exhaustive description
of σk(w). Strictly speaking, the proofs, that we have reported in Section 5.2, are not
involved in σk-closed codes: we suggest the reader that, in a first reading, after para.
5.1 he (she) directly jumps to para. 5.3.

5.1 Basic results concerning σ∗k(w)

Proposition 5.1 Assume |A| ≥ 3. For each w ∈ A≥k, we have σ∗k(w) = A|w|.

In the case where A is a binary alphabet, we set A = {0, 1}: this allows a well-known
algebraic interpretation of σk. Indeed, denote by ⊕ the addition in the group Z/2Z
with identity 0, and fix a positive integer n; given w,w′ ∈ An, define w ⊕ w′ as
the unique word of An such that, for each i ∈ [1, n], the letter of position i in
w ⊕ w′ is wi ⊕ w′i. With this notation the sets An and (Z/2Z)n are in one-to-one
correspondence. Classically, we have w′ ∈ σ1(w) if, and only if, some u ∈ An

exists such that w′ = w ⊕ u with |u|1 = 1 (thus |u|0 = n − 1). From the fact that
σk(w) ⊆ σk1 (w), the following property holds:

w′ ∈ σk(w)⇐⇒ ∃u ∈ An : w = w′ ⊕ u, |u|1 = k. (1)

In addition w ⊕ u = w′ is equivalent to u = w ⊕ w′. Let d = |{i ∈ [1, n] : wi =
w′i = 1}|. The following property follows from |u|1 = (|w|1 − d) + (|w′|1 − d) and
|w|1 + |w′|1 = |w1|+ |w′|1 − 2|w′|1 (mod 2) :

|w|1 + |w′|1 = |w1| − |w′|1 (mod 2) = |u|1 (mod 2). (2)

Finally, for a ∈ A we denote by a its complementary letter that is, a = a ⊕ 1; for
w ∈ An we set w = w1 · · ·wn.

Lemma 5.2 Let A = {0, 1}, n ≥ k + 1. Given w,w′ ∈ An the two following
properties hold:

(i) If k is even and w′ ∈ σ∗k(w) then |w′|1 − |w|1 is an even integer;
(ii) If |w′|1 − |w|1 is even then we have w′ ∈ σ∗k(w), for every k ≥ 1.

Given a positive integer n, we denote An
0 (An

1) the set of the words w ∈ An such
that |w|1 is even (odd).

Proposition 5.3 Assume |A| = 2. Given w ∈ A≥k exactly one of the following
conditions holds:

(i) |w| ≥ k + 1, k is even, and σ∗k(w) ∈ {A|w|0 , A
|w|
1 };

(ii) |w| ≥ k + 1, k is odd, and σ∗k(w) = A|w|;
(iii) |w| = k and σ∗k(w) = {w,w}.

8

5.2 Proofs of the statements 5.1, 5.2 and 5.3

Actually, Proposition 5.1 is a consequence of the following property:

Lemma 5.4 Assume |A| ≥ 3. For every word w ∈ A≥k we have σ1(w) ⊆ σ2k(w).

Proof. Let w′ ∈ σ1(w) and n = |w| = |w′| ≥ k. We prove that w′′ ∈ A∗ exists with
w′′ ∈ σk(w) and w′ ∈ σk(w′′). By construction, i0 ∈ [1, n] exists such that:

(a) w′i = wi if, and only if, i 6= i0.
It follows from k ≤ n that some (k − 1)-element subset I ⊆ [1, n] \ {i0} exists. Since
we have |A| ≥ 3, some letter c ∈ A \ {wi0 , w

′
i0
} exists. Let w′′ ∈ An such that:

(b) w′′i0 = c and, for each i 6= i0: w
′′
i 6= wi if, and only if, i ∈ I.

By construction we have w′′ ∈ σk(w), moreover c 6= w′i0 implies w′i0 6= w′′i0 . According
to (a) and (b), we obtain:

(c) w′i0 6= c = w′′i0 ,
(d) w′i = wi 6= w′′i if i ∈ I, and:
(e) w′i = wi = w′′i if i /∈ I ∪ {i0}.

Since we have |I ∪ {i0}| = k, this implies w′ ∈ σk(w′′). �

Proof of Proposition 5.1. Let w′ ∈ An \ {w}: we prove that w′ ∈ σ∗k(w).
Let I = {i0, · · · , ip} = {i ∈ [1, n] : w′i 6= wi} and let (w(ij))0≤j≤p be a sequence of

words such that w = w(i0), w(ip) = w′ and, for each j ∈ [0, p− 1]: w
(ij+1)
` 6= w

(ij)
` if,

and only if, ` = ij+1. Since we have w(ij+1) ∈ σ1(w(ij)) (1 ≤ j < p), by induction
over j we obtain w′ ∈ σ∗1(w) thus, according to Lemma 5.4, w′ ∈ σ∗k(w). �

In view of proving Lemma 5.2 and Proposition 5.3, we need some new lemma:

Lemma 5.5 Assume |A| = 2. For every w ∈ A≥k+1, we have σ2(w) ⊆ σ2k(w).

Proof. Set A = {0, 1}. It follows from σ2 ⊆ σ21 that the result holds for k = 1.
Assume k ≥ 2 and let n = |w|, w′ ∈ σ2(w). By construction, there are distinct
integers i0, j0 ∈ [1, n] such that the following holds:

(a) w′i = wi if, and only if, i ∈ {i0, j0}.
Since some (k − 1)-element set I ⊆ [1, n] \ {i0, j0} exists, words w′′, w′′′ ∈ An such
that:

(b) w′′i = wi if, and only if, i ∈ {i0} ∪ I, and:
(c) w′′′i = w′′i if, and only if, i ∈ {j0} ∪ I.

By construction, we have w′′ ∈ σk(w) and w′′′ ∈ σk(w′′), thus w′′′ ∈ σ2k(w). Moreover,
the fact that we have w′′′ = w′ is attested by the following equations:

(d) w′′′j0 = w′′j0 = wj0 = w′j0 ,
(e) w′′′i0 = w′′i0 = wi0 = w′i0 , and:

(f) for i /∈ {i0, j0}: w′′′i = w′′i = wi = w′i if, and only if, i ∈ I. �

Proof of Lemma 5.2. Assume k even. According to Property (1) we have
w′ = w ⊕ u with |u|1 = k. According to (2), |w′|1 − |w|1 is even: hence (i) follows.

9

Conversely, assume |w′|1−|w|1 even and let u = w⊕w′. According to (2), |u|1 is also
even, moreover according to (1) we obtain w′ = σ|u|1(w): this implies w′ ∈ σ∗2(w).
According to Lemma 5.5, we have w′ ∈ σ∗k(w): this establishes (ii). �

Proof of Proposition 5.3. Let w ∈ A≥k and n = |w|. (iii) is trivial and (i)
follows from Lemma 5.2(i): indeed, since k is even, σ∗k(w) is the set of the words
w′ ∈ An such that |w′|1 − |w|1 is even. Assume k odd and let w′ ∈ An \ {w}; we
will prove that w′ ∈ σ∗k(w). If |w′|1 − |w|1 is even, the result comes from Lemma
5.2(ii). Assume |w′|1 − |w|1 odd and let t ∈ σ1(w′), thus w′ ∈ σ1(t) ⊆ σk ◦ σk−1(t)
that is, w′ ∈ σk(t′) for some t′ ∈ σk−1(t). It follows from w′ ∈ σ1(t) that |t|1− |w|′1 is
odd, whence |t|1 − |w|1 = (|t|1 − |w′|1) + (|w′|1 − |w|1) is even: according to Lemma
5.2(ii), this implies t ∈ σ∗k(w). But since k − 1 is even, we have t′ ∈ σk−1(t) ⊆ σ∗2(t):
according to Lemma 5.5, this implies t′ ∈ σ∗k(t) (we have |t| = |w′| = n). We obtain
w′ ∈ σk(t′) ⊆ σ∗k(t) ⊆ σ∗k(σ∗k(w)) = σ∗k(w): this completes the proof. �

5.3 The consequences for σ-closed codes

Given a σk-closed code X ⊆ A∗, we say that the tuple (k,A,X) satisfies Condition
(3) if each of the three following properties holds:

(a) k is even, (b) |A| = 2, (c) X 6⊆ A≤k. (3)

We start by proving the following technical result:

Lemma 5.6 Assume |A| = 2 and k even. Given a pair of words v, w ∈ A+, if
|w| ≥ max{|v|+ 1, k + 1} then the set σ∗k(w) ∪ {v} cannot be a code.

Proof. Let v, w ∈ A+, and n = |w| ≥ max{|v| + 1, k + 1} (hence we have
v /∈ σ∗k(w) ⊆ A|w|). By contradiction, we assume that σ∗k(w) ∪ {v} is a code.
We are in Condition (i) of Proposition 5.3 that is, we have σ∗k(w) ∈ {An

0 , A
n
1}.

On a first hand, since An−1 is a right-complete prefix code [2, Theorem 3.3.8],
it follows from |v| ≤ n − 1 that a (perhaps empty) word s exists such that
vs ∈ An−1. On another hand, it follows from An−1A = An = An

0 ∪ An
1 that, for

each u ∈ An−1, a unique pair of letters a0, a1, exists such that ua0 ∈ An
0 , ua1 ∈ An

1

with a1 = a0 that is, a ∈ A exists with vsa ∈ σ∗k(w). According to Lemma 5.2(i),
|sav|1 − |w|1 = |vsa|1 − |w|1 is even; according to Lemma 5.2(ii), this implies
sav ∈ σ∗k(w). Since we have (vsa)v = v(sav), the set s∗k(w)∪{v} cannot be a code. �

As a consequence of Lemma 5.6, we obtain the following result:

Lemma 5.7 Given a σk-closed code X ⊆ A∗, if (k,A,X) satisfies Condition (3)
then either we have X ⊆ A≤k, or we have X ∈ {An

0 , A
n
1 , A

n} for some n ≥ k + 1.

Proof. Assume that we have X 6⊆ A≤k. Firstly, consider two words v, w ∈ X ∩A≥k+1

and by contradiction, assume |v| 6= |w| that is, without loss of generality |v|+ 1 ≤ |w|.

10

Since X is σk-closed, we have σ∗k(w) ⊆ X, whence the set σ∗k(w) ∪ {v}, which a
subset of X is a code: this contradicts the result of Lemma 5.6. Consequently,
we have X ⊆ A≤k ∪ An, with n = |v| = |w| ≥ k + 1. Secondly, once more
by contradiction assume that words v ∈ X ∩ A≤k, w ∈ X ∩ A≥k+1 exist. As
indicated above, since X is σk-closed, σ∗k(w) ∪ {v} is a code: since we have
|w| ≥ k + 1 and |w| ≥ |v| + 1, once more this contradicts the result of Lemma
5.6. As a consequence, if X 6⊆ A≤k then necessarily we have X ⊆ An, for some
n ≥ k + 1. With such a condition, according to Proposition 5.3 for each pair of
words v, w ∈ X, we have σ∗k(v), σ∗k(w) ∈ {An

0 , A
n
1}: this implies X ∈ {An

0 , A
n
1 , A

n}. �

According to Lemma 5.7, with Condition (3) no σk-closed code can simulta-
neously possess words in A≤k and words in A≥k+1.

Lemma 5.8 Given a σk-closed code X ⊆ A∗, if (k,A,X) does not satisfy Condition
3 then either we have X ⊆ A≤k, or we have X = An, with n ≥ k + 1.

Proof. If Condition (3) doesn’t hold then exactly one of the three following conditions
holds:

(a) X ⊆ A≤k;
(b) X 6⊆ Ak and |A| ≥ 3;
(c) X 6⊆ A≤k with |A| = 2 and k odd.

With each of the two last conditions, let w ∈ X ∩ A≥k+1. Since X is σk-closed,
according to the propositions 5.1 and 5.3(ii), we have An = σ∗k(w) ⊆ σ∗k(X). Since
An is a maximal code, it follows from Lemma 2.3(iii) that X = An. �

As a consequence, every σk-closed code is finite. In addition, we state:

Theorem 5.9 Given a complete σk (Σk, Λk)-closed code X, exactly one of the
following conditions holds:

(i) X is a subset of A≤k;
(ii) a unique integer n ≥ k + 1 exists such that X = An.

In addition, every Σk(Λk)-closed code is equal to An, for some n ≥ 1.

Proof. Let X be a complete σk-closed code. If Condition (3) does not hold,
the result is expressed by Lemma 5.8. Assume that Condition (3) holds with
X 6⊆ A≤k. According to Lemma 5.7, in any case some integer n ≥ k + 1 exists
such that X ∈ {An

0 , A
n
1 , A

n}. Taking for π the uniform distribution, we have
π(An

0) = π(An
1) = 1/2 and π(An) = 1 thus, according to Theorem 2.1: X = An.

Recall that we have σ∗1(w) = A|w| (eg. [8]). Let w ∈ X and n = |w|; if X is Σk-closed,
we have An = σ∗1(X) ⊆ Σ∗k(X) ⊆ X thus X = An (indeed, An is a maximal
code). Since Σk ⊆ Λk, if X is Λk-closed then it is Σk-closed, thus we have X = An. �

As a corollary, in the family of Σk(Λk)-closed codes, maximality and com-
pleteness are equivalent notions. With regard to σk-closed codes, things are
otherwise: indeed, as shown in [16], there are finite codes that have no finite

11

completion. Let X be one of them, and k = max{|x| : x ∈ X}. By definition X
is σk-closed. Since every σk-closed code is finite, no complete σk-closed code can
contain X.

Proposition 5.10 Let X be a (finite) non-complete σk-closed code. Then one can
decide whether some complete σk-closed code containing X exists. More precisely,
there is only a finite number of such codes, each of them being computable, if any.

Proof sketch. We draw the scheme of an algorithm that allows to compute every
complete σk-closed code X̂ containing X. In a first step, we compute Y = X ∩A≤k.
If Y = X, according to Theorem 5.9, we have X̂ ⊆ A≤k: X̂, if any, can be computed
in a finite number of steps. Otherwise, X̂ exists if, and only if, for some n ≥ k + 1
we have X ⊆ An: this can be straightforwardly checked. �

References

[1] Berstel, J., Felice, C.D., Perrin, D., Reutenauer, C., Rindonne, G.: Bifix codes
and sturmian words. J. of Algebra 369, 146–202 (2012)

[2] Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge
University Press (2010)

[3] Bruyère, V., Wang, L., Zhang, L.: On completion of codes with finite deciphering
delay. European J. Comb. 11, 513–521 (1990)

[4] Ehrenfeucht, A., Rozenberg, S.: Each regular code is included in a regular
maximal one. RAIRO - Theor. Inform. Appl. 20, 89–96 (1986)

[5] Ehrlich, G.: Loopless algorithms for generating permutations, combinations,
and other combinatorial configurations. J. ACM 20, 500–513 (1973)

[6] Jürgensen, H., Konstantinidis, S.: Codes. In: Handbook of Formal Languages,
chap. 8, pp. 511–607. Springer Verlag, Berlin (1997)

[7] Kari, L., Păun, G., Thierrin, G., Yu, S.: At the crossroads of linguistic, DNA
computing and formal languages: characterizing RE using insertion–deletion
systems. In: Proc. of the Third DIMACS Workshop on DNA Based Computing.
pp. 318–333 (1997)

[8] Knuth, D.: The art of computer programming, vol.4, Fascicule 2 : generating
all tuples and permutations. Addison Wesley (2005)

[9] Konstantinidis, S.: Error Correction and Decodability. Ph.D. thesis, The Uni-
versity of Western Ontario, London, Canada (1996)

[10] Lam, N.: Finite maximal infix codes. Semigr. Forum 61, 346–356 (2000)

[11] Lam, N.: Finite maximal solid codes. Theot. Comput. Sci. 262, 333–347 (2001)

12

[12] Levenshtein, V.: Binary codes capable of correcting deletions, insertion and
reversals. Soviet Physics Dokl. Engl. trans. in: Dokl. Acad. Nauk. SSSR 163,
845–848 (1965)

[13] Néraud, J.: Completing circular codes in regular submonoids. Theoret. Comp.
Sci. 391, 90–98 (2008)

[14] Néraud, J., Selmi, C.: Embedding a θ-invariant code into a complete one.
Theoret. Comput. Sci. (2019, Available online 29 August 2018, in press,
DOI:101016/jtcs201808022)

[15] Nivat, M.: Congruences parfaites et quasi-parfaites. Séminaire Dubreil. Algèbre
et théorie des nombres 25, 1–9 (1971)

[16] Restivo, A.: On codes having no finite completion. Discr. Math. 17, 309–316
(1977)

[17] Rozenberg, G., Salomaa, A.: The Mathematical Theory of L-Systems. Academic
Press (1980)

[18] Rudi, K., Wonham, W.M.: The infimal prefix-closed and observable superlan-
guage of a given language. Systems and Control Letters 15, 361–371 (1990)

[19] Savage, C.: A survey of combinatorial gray codes. SIAM Rev. 39(4), 605–629
(1997)

13

