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Abstract. Programming with explicit timing information is often te-
dious and error prone. This is especially visible in music programming
where, when played, the specified durations of notes and rests must be
shortened in order to compensate the actual duration of all surrounding
processing. In this paper, we develop the notion of timed extension of a
monad that aims at relieving programmers from such a burden. We show
how, under simple conditions, such extensions can be built, and how use-
ful features of monad programming such as asynchronous concurrency
with promises or data-flow programming with monadic streams can be
uniformly lifted to the resulting timed programming framework. Even
though presented and developed in the abstract, the notion of timed ex-
tension of a monad is nevertheless illustrated by two concrete instances:
a default timed IO monad where programmers specify durations in mi-
croseconds, and a musically timed IO monad, where programmers specify
durations in number of beats, the underlying tempo, that is, the speed
of the music in beats per minute, possibly changed whenever needed.

1 Introduction

Timed programming. The simplest example of timed programming is prob-
ably a program that plays some music. Assume a function f :: Int → Note that
tells which note is to be played at any instant n from start. Assume that we want
to play each of these notes for one second, with one second of silence (or rest)
between each note. With duration arguments expressed in seconds, in Haskell’s
IO monad, one could expect that the program:

playMusic :: (Int → Notes)→ Int → IO ()
playMusic f n = do {playNote (f n) 1; delay 1; playMusic f (n + 1)}

realizes such an expected behavior when launched by playMusic f 0. While this
program should be correct, for it is defined with the correct timing specification,
it is actually not, for it relies on the false assumption that every other computa-
tions but those that are specified with a given duration are instantaneous.

More precisely, one can define the time drift of this program as the difference
between the actual instant a note is played and the specified instant it should
have been played. Then one can observe that, when ran, the time drift of the
program above is unbounded. Indeed, it increases, note after note, at least by



the actual duration of the computation of each note. In other words, such a
program, when run in the IO Monad yields a time leak. Playing correctly such
a music requires at least reducing the specified duration of each note or rest
by the actual duration of the surrounding computations, implicitly but wrongly
assumed to be of neglectable duration, not mentioning the time inaccuracy of
actions such as delays.

Though simple, the explicit programming of such reductions in order to
achieve a correct scheduling in time is repetitive, tedious and therefore error
prone. We aim at relieving programmers from such a burden. One way to achieve
this is to treat the program above as correct, for it specifies correct specified du-
rations, and, instead, to change the way it is executed at runtime, that is, to
change the underlying monad.

A timed IO monad. It is a well established fact that, thanks to monad model-
ing, pure functional programming can be safely extended to programming with
side effects [19, 15]. Observing that passing time is a side effect, we thus aim at
designing some timed monad that freely allows the programmer to assume that
many actions are instantaneous, even if they certainly are not, and assume that
all other actions have a specified positive duration, even if their actual durations
will be shortened for achieving a correct scheduling.

This can be done by extending monads to timed monads in such a way that
there is a clean distinction between:

(1) the specified temporal scheduling, automatically derived from the specified
durations of the timed actions contained in a program,

(2) the actual temporal scheduling observed when running that program in the
underlying monad, induced by the actual durations of these timed actions,

in such a way that, if possible and within reasonable bound, the actual temporal
scheduling matches the specified temporal scheduling.

Observe that such a distinction between specified and actual temporal schedul-
ing is fairly standard in music. The specified scheduling is described in the music
score, as written by the composer, the actual scheduling is observed during the
music performance, as defined by the musicians.

Organization of the paper. The notion of timed extension of a monad is de-
fined in Section 2 via a type class and some equational properties every instance
of that class shall satisfy. We also discuss the validity of these equations, fairly
sensitive in presence of measured time.

In Section 3, we show how a monad can be uniformly extended into a timed
monad as soon as it is equipped with basic timing primitives. This is achieved
by extending the (implicit) monad state by an (explicit) timestamp that refers
to the expected or specified timestamp in that state. Under simple conditions of
the existing basic timing primitives, the time drift is provably positive in any
state. Applied to the IO monad, this yields a timed IO monad with duration
measured in microseconds.

Considering multi-scales approach, we provide in Section 4 another uniform
timed extension of a monad, with basic timing primitives defined over one du-



ration type, that yields a timed monad extension defined over another duration
type. Applied to the IO monad, this yields a musically timed IO monad with
duration measured in number of beats, a dynamically changeable tempo defining
the beat rate w.r.t. to the underlying physical duration type.

Last, we show how various monadic programming features, when available
in the underlying monads, can be lifted to their timed extensions. This includes
asynchronous concurrent programming with promises (Section 5), or data-flow
programming with monadic streams (Section 6). Related works are then dis-
cussed in Section 7 before examining some potential followups in Section 8.

2 Timed monad class

We describe below the notion of timed extension of a monad. The monads we
shall consider are assumed to be strict, that is, when executing a bind m >>= f ,
the action m is always evaluated before evaluating f on the returned value, i.e.
the bind is strict in its first argument.

2.1 Timestamp, duration, time scale and time drift

We briefly review here (our encoding of) basic timed concepts. A timestamp is
defined here as the duration elapsed from some fixed but unknown initial time.
We expect timestamps, therefore durations as well, to be totally ordered in a
time scale. In Haskell, this is done by putting:

newtype Time d = Time d deriving (Eq ,Ord)

where d is the duration type and Time d is the timestamp type. While the sum
of two durations makes perfect sense, the sum of two timestamps does not, so
we (only) equip timescales with the following primitives:

duration :: Num d ⇒ Time d → Time d → d
duration (Time d1) (Time d2) = (d1 − d2)
shift :: Num d ⇒ Time d → d → Time d
shift (Time d1) d2 = Time (d1 + d2)

that measures the (relative) duration between two timestamps, and that shifts
a timestamp by some duration.

As already mentioned in the introduction, a key point of our proposal lays
in the distinction between:

(1) expected timestamps used for scheduling specification,
(2) actual timestamps observed along scheduling realization.

This distinction induces a timing performance measure: the time drift defined
as the difference between the actual timestamp and the expected timestamp.

It is a desirable property that, in a running timed program, the time drift
is kept positive so that no action is actually scheduled before its specified time,
and bounded so that any specified duration above that bound can accurately be
handled by the underlying scheduler.



2.2 Timed monad

Simply said, a timed monad is a monad where every action has some specified
(possibly dynamic) duration. The interface of a timed monad is detailed by the
following type class:

class (Ord d ,Num d ,Monad m,Monad t)
⇒ TimedMonad m d t | t → m, t → d where

now :: t (Time d)
drift :: t d
delay :: d → t ()
lift :: m a → t a
run :: t a → m a

that describes a timed monad t :: ∗ → ∗ that extends a monad m :: ∗ → ∗ with
duration measured over some type d :: ∗. There, the functional dependencies
t → m and t → d ensure that both the initial monad m and the duration space
d are uniquely determined by the timed monad t .

The meaning of these primitives is detailed below. Let us mention however
that now shall return the current specified timestamp, drift shall return the
current time drift, the actual or real timestamp being defined by the following
derived action:

realNow :: TimedMonad m d t ⇒ t (Time d)
realNow = do {t ← now ; d ← drift ; return (shift t d)}

insisting again, if ever needed, on such a crucial distinction we are making be-
tween specified and actual timing information.

We provide below some equational laws that every timed monad instance
shall satisfy. For such laws to be stated smoothly enough, we define the following
timed monad action that, parameterized by a timed action m, returns its specified
duration, that shall always be positive.

dur :: TimedMonad m d t ⇒ t a → t d
dur m = do {t0 ← now ; ← m; t1 ← now ; return (duration t1 t0)}

Observe that computing such a specified duration implies running the action
together with its side-effects but dropping its returned value. This means that,
in practice, it shall be of little use. We will later see, in Section 5, another way
to retrieve the specified duration of a running timed action for using it elsewhere
in a program.

2.3 Timed monad laws

The semantics of timed primitives is detailed more formally by the following
invariant laws that shall be satisfied by any monad m extended into a timed
monad t over a duration type d . The reader shall keep in mind that dur measures
specified durations, not real ones, most of the laws being obviously false when
precise enough real durations are considered.



Monad primitives. First, since the timed monad t is first a monad, the usual
monad laws shall be satisfied:

return a >>= f ≡ f a (1)

m >>= return ≡ m (2)

(m >>= f )>>= g ≡ m >>= (λx → f x >>= g) (3)

with the following duration laws for monad primitives:

dur (return a) ≡ return 0 (4)

dur (m >>m ′) ≡ dur m >>= λd → dur m ′ >>= λd ′ → return (d + d ′) (5)

for every value a :: a, action m :: t a, action m ′ :: t b and function f :: a → t b.
In other words, return actions take no time and the duration of two actions
composed by the bind operator is the sum of the durations of these actions. As
a derived law, since fmap f m = m >>= (return ◦ f ), we also have:

dur m ≡ dur (fmap f m) (6)

for every action m ::t a and function f ::a → b. In other words, in a timed setting,
functors preserve specified durations, time measurement acting over types as a
fibration [10].

Current (specified) time and drift. The action now shall instantaneously
return the current specified timestamp as evaluated by accumulating the spec-
ified durations of the action performed before that one. The action drift shall
instantaneously return the current time drift, that is, the difference between the
actual timestamp (as measured by the underlying runtime) and the specified
timestamp (as stored in the underlying timed monad state). By instantaneous,
we mean that the following equations shall be satisfied:

dur (now) ≡ return 0 (7)

dur (drift) ≡ return 0 (8)

These equations also imply that neither now nor drift have any side effect.

Delays. The action delay d shall wait until the current specified timestamp (as
returned by now) shifted by the given positive duration d is eventually passed
for real therefore, in optimal cases, reducing the time drift to a minimal value.
The following laws shall be satisfied:

dur (delay d) ≡ delay d >> return d (9)

delay (d1 + d2) ≡ delay d1 >> delay d2 (10)

delay (−d) ≡ return () (11)

for every positive duration d d1 d2 :: d . The first law states that the specified
duration of delay d is the parameter d, the second one states that delay restricted



to positive durations is additive with respect to bind, the third one states that
delays with negative durations have no effects at all. As we shall observe in 5.3,
as safer assumption could be that a delay of negative duration creates a temporal
causality error.

Instantaneous lift. The function lift shall turn an action of the underlying
monad m to an action in the timed monad t with the following laws that shall
be satisfied:

lift ◦ return ≡ return (12)

lift (m >>= f ) ≡ lift m >>= (lift ◦ f ) (13)

dur (lift (m)) ≡ lift m >> return 0 (14)

for any m :: m a and f :: a → m b. The first two laws are the usual laws for
monad transformers. Any instance (TimedMonad m d t) is a transformation of
the monad m into the monad t . However, we have not specified here a monad
transformer since only specific monads, equipped with some timing primitives,
can be transformed this way. The third law states that, by definition, the specified
duration of the timed action lift m :: t a with m :: m a is zero, regardless of the
actual duration of the action m.

In practice, this assumption means that lift shall only be used on actions that
are reasonably instantaneous, e.g. printChar c in the IO monad, but should not
be used on actions that are visibly not instantaneous, e.g. getChar in the IO
monad as this would immediately yield an unbounded time drift. As we shall
see below a timed lift function is available for that latter case.

Runs. The function run allows for moving a timed action back into the under-
lying untimed monad with:

run ◦ lift ≡ id (15)

i.e. lift preserves the essence of the actions it lifts. Observe that over timed
actions, the reverse direction does not hold since we have

lift (run m) 6≡ m (16)

as soon as the timed action m has a non-zero duration.

Timed lift. Deriving from these primitives, we can lift any monad action from
the underlying monad to the timed monad taking into account its actual dura-
tion1 by:

timedLift :: TimedMonad m d t ⇒ m a → t a
timedLift m = do {a ← lift m; d ← drift ; delay d ; return a }

Such a timed lifting is then applicable to visibly non-instantaneous such as
blocking actions, e.g. getChar in the IO monad.

1 A careful reading of this code shows that the resulting specified duration of a timed
lifted action is, more precisely, the actual duration of its execution minus the existing
time drift right before its execution.



2.4 On the validity of timed monad extensions

One may wonder if there exists any timed extension of a monad at all that fulfills
the properties stated above. Strictly speaking, with unrestricted usage of drift
combined with an accurate measurement of physical time, the answer is no !
Indeed, given two distinct but equivalent timed actions m1 and m2, we have:

m1 >> drift 6≡ m2 >> drift (17)

unless m1 and m2 have the same actual duration, which is very unlikely.
This suggests that, unless measuring time drift for testing purposes, the func-

tion drift shall not be used. However, such a suggestion is not applicable for, as
seen above, the function timedLift , necessarily defined with drift , is needed for
lifting monad action with unbounded real duration. In other words, when ex-
tending an untimed monad into a timed one, there necessarily are functions such
as timedLift that do not preserve (untimed) monad action equivalence. This im-
plies that the validity of all timed equations but (15) shall only be observed in
a timed setting. In some sense, timed and untimed worlds shall be kept distinct
and incomparable, each of them being equipped with its own induced action
equivalence.

3 Default timed monad instances

We provide below a default instance of a timed extension of a monad that can
be defined as soon as that monad admits enough primitives for time handling.

3.1 Monads with timer

Monads with timing informations are defined by the following class type:

class (Ord d ,Num d ,Monad m)⇒ HasTimer m d where
getRealTime :: m (Time d)
waitUntil :: Time d → m ()
getDrift :: (Time d)→ m d
getDrift t = do {r ← getRealTime; return (duration r t)}

where getRealTime shall return the real timestamp measured over the duration
type d , waitUntil shall wait until the specified time stamps is passed (for real),
and the derived action getDrift shall therefore compute the difference between
the real current timestamp and the one passed in parameter. Any monad with
timing information shall satisfy the following properties:

(1) Time monotonicity: for every action m :: m a, the action

getRealTime >>= λt1 → m >> getRealTime >>= λt2 → return (t0, t1)

shall return (t1, t2) with t1 6 t2,



(2) Coherent waits: for every timestamp t1 the action

waitUntil t1 >> getRealTime

shall return t2 with t1 6 t2.

The first property states that time shall flow from the past to the future. The
second one states that a waitUntil action shall never resume before the expected
timestamp is actually passed for real.

The IO example. As an instance example, thanks to the System.Clock and
Control .Concurrent libraries in Haskell, one can put:

newtype Micro = Micro Int deriving (Show ,Eq ,Ord ,Num)

getSystemTime :: IO (Time Micro)
getSystemTime = do {t ← getTime Monotonic;

(return ◦ Time ◦ fromInteger) (div (toNanoSecs t) 1000)}
instance HasTimer IO Micro where

getRealTime = getSystemTime
waitUntil (Time d) = do {Time r ← getSystemTime;

(threadDelay ◦ fromInteger ◦ toInteger) (d − r)}
where Micro is a type of durations measured in microseconds.

3.2 Derived timed monad instance

Deriving a timed monad instance from a monad with timing information can then
be achieved by extending the (implicit) monad state by an explicit timestamp.
More precisely, we define the timed action data type:

data TA m d a = TA (Time d → m (Time d , a))

over a monad m :: ∗ → ∗ and a duration type d :: ∗, from which we derive:

instance (Monad m,HasTimer m d)⇒ Monad (TA m d) where
return a = TA (λs → return (s, a))
TA m >>= f = TA (λs → m s >>= λ(s1, a)→ let (TA m1) = f a in m1 s1)

and

instance (Monad m,HasTimer m d)
⇒ TimedMonad m d (TA m d) where

now = TA (λs → return (s, s))
drift = TA $ λs → getDrift s >>= λd → return (s, d)
delay d | d 6 0 = return ()
delay d | d > 0 = TA $ λs → do
{dr ← getDrift s; waitUntil (shift s (d − dr)); return (shift s d , ())}

lift m = TA $ λs → m >>= λa → return (s, a)
run (TA m) = getRealTime >>= m >>= λ( , a)→ return a

This eventually provides the expected default timed monad extension of a monad
m with timing information.



The correctness of such a construction, that is, the fact that laws (1)– (15)
are satisfied by TA m d under the restriction described in 2.4, can easily be
proved from the above code and the hypothesis made on m, d and t . More
precisely, the standard monad laws follow directly from the fact that TA m d is
a simple variation on a classical state monad transformer. Thanks to property
(1) assumed for getRealTime, durations are always positive. Then, timed laws
follow from the way all the above defined functions act on timestamps.

3.3 More on temporal correctness issues

One can observe that run initializes the time drift with a positive (if not zero)
value since the initial specified timestamp is set to the actual timestamp. Thanks
to property (2) on waitUntil , one can also observe that delays always resume
after the specified timestamp is actually passed for real. It follows that the time
drift after a delay is always positive. Since every other primitive timed action
has an actual duration greater than its specified duration, it follows that:

(1) the time drift is always positive,

as easily proved by induction on the syntactic complexity of timed monad actions
built from timed monad primitives. In other words, the action scheduling in the
default instance is made in such a way that no action is actually scheduled before
its specified scheduling time.

Temporal correctness also requires that such a time drift is bounded. Here,
we can only observe that, obviously, in the general case:

(2) nothing ensures the time drift is bounded.

Indeed, as already mentioned, lifting a blocking IO action as an instantaneous
one immediately induces an unbounded time drift. We shall discuss such an issue
in the conclusion.

The IO example. As a particular case, the default timed extension of the IO
monad, we call TIO, is simply defined by:

type TIO = TA IO Micro

with the instance TimedMonad IO Micro TIO deriving from the above instance
HasTimer IO Micro.

4 Symbolic timed extension of a monad

We consider now the case of a time scale for the programmer distinct from the
timescale of the underlying monad. More precisely, given an inner time scale, e.g.
the physical time, measured by some inner duration type i, we aim at offering a
symbolic timescale measured by some outer duration type o. This requires having
some type s for measuring the possible speed (or tempo) of outer durations w.r.t.
to inner durations.



4.1 Inner and outer durations with tempi

The relationship between duration types i , o and tempo s, when time speed is
assumed to be piecewise constant, is conveniently modeled by the following type
class:

class (Num i ,Num o,Num s)⇒ ScaleChange i o s | s → i , s → o where
initialSpeed :: s
step :: s → i → o
backStep :: s → o → i

where initialSpeed is some fixed initial speed value, step s i that essentially
computes the outer duration obtained by “multiplying” the speed s by the in-
ner duration i , and backStep s o that essentially computes the inner duration
obtained by “dividing” the outer duration o by (some non zero) speed s.

The way these “multiplication” and “division” are actually performed shall
depend on the chosen types. In the abstract, the following equations shall be
satisfied by any instances:

backStep s (step s i) ≡ i (18)

step d (backStep d o) ≡ o (19)

for any inner duration i , outer duration o and non zero speed s, up to the
possible rounding errors due to changes of numerical types.

As a consequence, the function mapping the inner timescale Time i to the
outer timescale Time o shall be bijective (up to rounding) and, in case step and
backStep functions are truly implemented as some multiplication and division,
piecewise linear.

The IO example. As an instance example, one can define:

newtype Beat = Beat Double deriving (Eq ,Ord ,Show ,Num)

newtype BPM = BPM Double deriving (Eq ,Ord ,Show ,Num)

instance ScaleChange Micro Beat BPM where
initialSpeed = BPM 60
step (BPM t) (Micro d) = Beat $ t ∗ ((fromInteger ◦ toInteger) d)/ratio
backStep (BPM t) (Beat d) = Micro $ fromInteger (floor (d ∗ ratio/t))

with ratio = 60∗106, the time speed being expressed in beats per minutes (bpm).

4.2 Derived symbolic timed monad instance

A symbolic timed extension of a monad can then be built quite like the default
timed extension described above. Indeed, we define symbolic timed states by:

data ST i o s = ST {innerTime :: Time i , outerTime :: Time o, speed :: s }
with symbolic timed actions defined by:

data STA m i o s a = STA (ST i o s → m (ST i o s, a))



This eventually yields the instance TimedMonad m o (STA m i o s), defined
essentially like the instance of TA m d , taking care however to maintain coherent
inner and outer timestamps in every symbolic timed state. This can be done
without any real difficulty, laws (18)–(19) ensuring, for a given time speed s,
coherent back and forth translation between duration types i and o.

The IO example. As a particular case, the promised musically timed extension
of the IO monad is defined by:

type MusicIO = STA IO Micro Beat BPM

The underlying tempo can be changed at any time by the following parameter-
ized timed action:

setTempo :: BPM → MusicIO ()
setTempo t | t 6 0 = error $ "setTempo : forbidden negative tempo"

setTempo t
= STA $ λs → let ST ti to = s in return (ST ti to t , ())

Given function f ::Int → Note, our initial example can then simply and correctly
be encoded by:

playInIO = run playMusic

playMusic :: (Int → Notes)→ Int → MusicIO ()
playMusic f n

= do { lift (playNote (f n)) 1; delay 1; playMusic f (n + 1)}
playNote :: Note → Beat → MusicIO ()
playNote n d = startNote n >> delay d >> stopNote n

By construction, the tempo has been initialized to 60 bpm, that is, one beat per
second.

5 Timed promises

One may ask how robust our constructions of timed monads are, or, more pre-
cisely, to which extent additional features of a given monad can be lifted to its
timed extension. We shall describe here the case of asynchronous concurrent
promises that can uniformly be lifted from any monad where they are defined
to its (default) timed extension when there is one.

5.1 Monad references

Since the 70s, there is the concept of promises that successfully extends func-
tional programming to asynchronous concurrent features. Simply said, a promise
is a place holder returned by a forked program that is eventually fulfilled by the
value returned by that program [6].

In Haskell, the notion of promise is conveniently replaced by the notion of
monad references [11] specified as follows:



class Monad m ⇒ MonadRef m where
type Ref m :: ∗ → ∗
fork :: m a → m (Ref m a)
read :: Ref m a → m a
tryRead :: Ref m a → m (Maybe a)
parRead :: Ref m a → Ref m b → m (Either a b)

where the action fork m shall fork the monad action m and immediately returns
a reference to that action, the action read r shall return the value produced by
the running action referenced by r as soon as it is available, the action tryRead r
shall be a non blocking version of read r and the action parRead r1 r2 shall take
two monad references r1and r2 as parameters and return the value of the first
referenced action that terminates, or either of the values if both are already
terminated or are terminating at the same (or indistinguishable) time.

The basic (non-concurrent) semantics of monad reference basic primitives is
governed by the following laws:

(fork m)>>= read ≡ m (20)

fork ◦ read ≡ return (21)

fork (m >>= f ) ≡ (fork m)>>= λr → fork (read r >>= f ) (22)

for every m :: m a, f :: a → m b. Other laws, specifying the expected concurrent
semantics of monad references are detailed in the companion article [11].

5.2 Timed monad references

Equipping a timed extension of monad by monad references, as soon as the
underlying monad itself has references, is (almost) easy as shown by the following
instance:

data TRef m d a = TRef (Time d) (Ref m (Time d , a))

instance (MonadRef m,HasTimer m d)⇒ MonadRef (TA m d) where
type Ref (TA m d) = TRef m d
fork (TA m) = TA $ λs → do {r ← fork (m s); return (s,TRef s r)}
read (TRef r) = TA $ λs → do {(t , a)← read r ; return (max s t , a)}
tryRead (TRef r) = TA $ λs → do {c ← tryRead r ; case c of

Nothing → return (s,Nothing)
Just (t , a)→ return (max s t , Just a)}

parRead (TRef r1) (TRef r2) = TA $ λs → do {c ← parRead r1 r2;
case c of {Left (t , a)→ return (max s t ,Left a);

Right (t , b)→ return (max s t ,Right b)}}

One can observe that in all read actions above, variable t refers to the (specified)
timestamp at which the referenced action is eventually completed while variable
s refers to the (specified) timestamp at which the read action is called. As these
two timestamps refer to independant events, we need to compute the (specified)



timestamp max s t right after which these two events have occured. Then,
one can check that equations (20)–(22) are satisfied, even though this requires
equivalent actions to also have the same (specified) duration.

Remark. With the above proposed instance, nothing ensures the function
parRead returns the value of the soonest terminated action as specified by ter-
mination timestamps. Indeed, the function parRead is non deterministic in two
cases, the first one being when two referenced actions are already terminated, the
second one being when there are terminating almost at the same time. Clearly,
the first case can easily be solved by performing a tryRead on the second refer-
ence right after the first one is received and, if terminated, sorting the returned
values according to their timestamp. However, the second case is more tricky to
solve. One solution is to ensure that function tryRead returns Nothing only in
the case the referenced action provably terminates later than the specified time
at which tryRead is launched. Such a possibility is however yet not implemented.

5.3 Time specific action on timed monad references

The reader may have observed that, in the code above, we do not use the times-
tamp recorded in a timed reference when forking an action. Its relevance appears
in the function durRef given below, from which various timed specific actions
are derived.

durRef :: TRef m d a → TA m d d
durRef (TRef t0 r)

= TA (λs → do {(t , )← read r ; return (max s t , duration t t0)})
replayRef :: TRef m d a → TA m d a
replayRef r = do {t1 ← now ; d ← durRef r ; a ← read r ; t2 ← now ;

delay (d − duration t2 t1); return a }
expandRef :: (d → d)→ TRef m d a → TA m d a
expandRef f r = do {t1 ← now ; d ← durRef r ; a ← read r ; t2 ← now ;

let d1 = f d − duration t2 t1 in delay d1; return a }
where durRef returns, when finished, the specified duration of a referenced ac-
tion, replayRef replays the referenced action from start, with the same duration
but no side effect, and expandRef replays a referenced action but expanding (or
shrinking) its duration by appliying some function parameter f .

Observe that all these actions can be used as soon as their parameters are
available therefore even before the referenced actions are terminated and there
specified durations are known. This means that shrinking a duration may fail to
be done correctly as illustrated by fork m>>=expandRef ( /2) that unsucessfully
tries to replay twice faster a just forked action. Such a resulting action is not
temporal causal or, equivalently, duration d1 in the code of expandRef is strictly
negative hence no delay is applied. Executing a negative delay is here a clear
sign of a causality error, an error that could well be raised as such.

As already observed in music experiments conducted along a previous mod-
eling of interactive music by temporal tiles [1], programming interactive music



systems, these functions yield a completely new branch of realtime musical ef-
fects, such has repeating every note with its same duration, an effect that is
essentially not available in the existing reactive music application software.

6 Data flow programming with timed monad streams

Defining data flows by means of nested monad actions is a technique that is
getting more and more popular for data-flow-like programming within generic
functional programming languages as illustrated by Snoyman’s Conduit library.
Following the (simpler) definition of monad streams recently (re)defined and
developed for audio processing and control [12], there is the type constructor:

newtype Stream f a = Stream {next :: f (Maybe (a,Stream f a))}
either defining monad streams with f = m for some monad m, or defining
references to (running) monad streams with f = Ref m for some monad m with
references [11]. Then, as a derived function example, we have:

merge :: MonadRef m
⇒ Stream m a → Stream m b → Stream m (Either a b)

that merges two monad streams by order of arrival of their elements. Applied to
timed monad and timed monad references, these kind of functions have clear ap-
plication in timed data flow programming, especially for handling asynchronous
control flows as recently illustrated [12].

In other words, timed data flow programming automatically derives from
timed monads and timed monad references. This somehow illustrates the funda-
tional nature of these two concepts that both extend monads.

7 Related Works

In functional programming languages, there already are many proposals for pro-
gramming timed reactive concurrent systems ranging from the synchronous lan-
guage family [18], possibly extended with modern polymorphism as with Reac-
tive ML [14], to the many variants of functional reactive program (FRP) series
initiated with FRAN [3, 4, 20]. However, to the best of our knowledge, most of
these approaches consider a qualitative timing, as defined by series of events,
instead of a quantitative timing that the programmer may specify as proposed
here.

More precisely, the synchronous language approach mostly aims at defining
timed programs over symbolic time scales (series of clock ticks) for which the
actual duration between any two ticks is provably bounded. This eventually led
to the successful development of programming languages such as Lustre or Es-
terel [18] that allows programmers to implement (provably correct) synchronous
realtime applications. Yet, programming timed applications with weaker but
quantitative time specification seems to go out of the application scope of these
languages, despite interesting extensions toward polymorphic and higher-order
timing mechanisms [2].



The FRP approach, somewhat more theoretical, aims at defining an ade-
quate API for programming with timed signal. Initially designed to cope with
arbitrary timescale [3], concrete implementations of FRP are mostly limited to
reactive programming, though with some exceptions [16]. In practice, timescales
are defined by event arrivals, that act as qualitative clock ticks, function be-
tween signals being restricted to Mealy machines. There, the initially proposed
API with signals defined as functions from timestamps to values yields (fairly
easily) memory leaks which are avoided by such a restriction, either by syntactic
means [17] or by modal type mechanisms [13]. Our timed extension of monads,
with derived timed monad streams, brings back qualitative time measurement
between clock ticks without the associated time leaks.

The multitime scale approach, presented in Section 4 is an example of a fairly
simple (piece-wise linear and locally finite) hybrid (bijective) signal. Along the
lines proposed in [16], it can probably be extended for defining more general
hybrid signals, with their associated monitoring actions. Our approach is also
influenced by Hudak’s aim at defining temporal objects by means of the proper-
ties their combinators shall satisfy [7]. Though our proposal eventually diverges
from Hudak’s polymorphic temporal media, it nevertheless inherits from its un-
derlying intention to bridge the gap between theory and practice, as already
illustrated by Euterpea [9].

Last, the initial motivation for the present development of timed monads
was to define an efficient and more generic programming interface for encoding
temporal tiles [8, 1]. As a matter of fact, all interactive music experiments con-
ducted with such a model are easily and more efficiently re-implemented within
the proposed timed monad framework. In particular, experiments with music
control conducted within the symbolic timed IO monad defined in these pages
yield a time drift smaller than 5ms therefore a resulting latency unnoticeable by
human hears.

8 Conclusion

Along these pages, we have proposed and instantiated a fairly generic notion of
timed extension of a monad. We have also shown how additional programming
features of monads can simply be lifted into these extension. This time extension
relies on distinguishing specified and actual duration: a distinction already put in
practice in interactive music systems, the musician and the computer interacting
one with the other [1]. Of course, the topic is far from being closed, how to add
timing information into interactive program being a vast subject. On the positive
side, our proposal allows for clearly identifying what are the yet unsolved timing
problems and where to look for solutions.

As already observed in 3.3, nothing ensures that the time drift is bounded
in a timed monad action. The reader might be disappointed by such a fact.
However, ensuring that a given program has a bounded time drift is a well-known
tricky issue, undecidable in the general case. What restrictions on programs
may yield timed actions with provably bounded time drift is a long standing



research problem [18]. Clearly, recursively defined action shall only be allowed
when each recursive call is both terminal, in order to avoid a (stack) memory
leak, and guarded by some sufficient long delays, in order to avoid a time leak.
One possibility could be to extend modal types [13] with quantified durations.
Existing results in quantitative temporal logic may help. Also, extending the
underlying monad actions type by some bound on their actual durations might
help as well. This would allow checking that actions are properly lifted with
adequate delays. Indeed, as already observed, lifting a blocking action as an
instantaneous action is nonsense. Similar techniques should probably be used for
detecting temporally non causal transformations as illustrated in 5.3 example.

As also observed in 2.4, two actions in a base monad m can be equivalent
while their timed lifting is not. Indeed, with durations measured in microseconds,
it is very unlikely that two distinct but equivalent actions have the same duration.
Real time measurement is a property killer. One partial solution might be to
measure time drift with less accuracy. In a music system, with symbolic time,
such a problem is well-known. It arises when aiming at translating back realtime
performances into music scores, as in score followers [5]. Rephrased in terms of
timed monad, the implementation of drift is the key to handling such a problem.
Is there any time drift between two different musicians performing the same score
? Measurements say yes, but listeners say no. The measurement of the time drift
should follow listeners.

Of course, developing programming languages towards application in music
may sound a bit pointless compared to applications with more economical im-
pact such as, say, autonomous vehicles or connected objects. Is that so ? Clearly,
experiments are easier to conduct in music than in most other application fields,
with less dramatic consequences in case of errors. Moreover, time is known and
handled by musicians for centuries. As illustrated throughout, various musical
concepts can be generalized or abstracted into useful timed programming con-
cepts. Our approach is hopefully abstract enough to be potentially applicable to
other areas. Timed programming, with its need for automatic handling of time
drift, is surely in the close neighborhood of spacetime programming, with its
need for automatic handling of spacetime drifts.
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