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ON OPTIMAL TRANSPORT OF MATRIX-VALUED MEASURES

YANN BRENIER AND DMITRY VOROTNIKOV

Abstract. We suggest a new way of defining optimal transport of positive-semidefinite
matrix-valued measures. It is inspired by a recent rendering of the incompressible Eu-
ler equations and related conservative systems as concave maximization problems. The
main object of our attention is the Kantorovich-Bures metric space, which is a matricial
analogue of the Wasserstein and Hellinger-Kantorovich metric spaces. We establish some
topological, metric and geometric properties of this space.

. Introduction

Positive-definite-matrix-valued densities arise in signal processing, geometry (Riemann-
ian metrics) and other applications. Due to the success of the Monge-Kantorovich optimal
transport theory, there have been recent attempts to introduce the matrix-valued optimal
transport in a relevant way [, , , , , , , , ]. It is reasonable to try to
achieve this goal via a dynamical formulation in line with []. This requires a kind of
transport equation for matricial densities. The listed references either employ the Lind-
blad equaton [] and related ideas, or have a static Monge-Kantorovich outlook. Our
approach is totally different, and we believe that it is promising for the applications be-
cause of its relative simplicity from the numerical perspective.

The first author has recently observed in [] that the incompressible Euler equation can
be recast as concave maximization problem. The method is actually applicable to various
conservative PDEs, cf. [, ]. The procedure of [, ] naturally produces variational
problems involving matricial densities. These problems are very similar to the dynamical
optimal transport and to the mean-field games, and may serve a heuristic for constructing
matricial optimal transport problems. The problem that we introduce in this paper is
based on the transport-like operator

− (∇q)Sym (.)

that is related to the concave maximization rendering [] of the incompressible Euler
equation. Here q is a suitable momentum-like field. One can generate (.) even more
straigtforwardly by considering the Burgers-like problem

∂tv + div(v ⊗ v) = 0. (.)

Mathematics Subject Classification. A, A, Q, F, B.
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This is perhaps the most elementary vectorial PDE that fits into the framework of “ab-
stract Euler” equations introduced in []. The corresponding concave maximization
problem, cf. [], may be formally written as

sup
q,B

∫
[0,T ]×Rd

v0 · q −
1
4
G−1q · q (.)

where the vector fields q and the positive-definite matrix fields G are subject to the con-
straints

∂tGt = − (∇qt)Sym , (.)

GT ≡
1
2
Id . (.)

However, the operator (.) that appears in (.) has a nontrivial cokernel, which means
that we cannot join any two matrix-valued densities with a path directed by the tangents
of the form (.). This is somewhat similar to the impossibility of joining two measures
of different mass in the classical Monge-Kantorovich transport. The latter issue can be
fixed in the framework of the unbalanced optimal transport [, , , , , ] by
interpolating between the classical optimal transport and the Hellinger (also known as
Fisher-Rao) metric related to the information geometry [, , ]. The matricial coun-
terpart of the Hellinger metric is the Bures metric [, ]. The latter one is usually
defined for constant densities but can be naturally generalized to non-constant densities,
cf. []. Then we can interpolate between this quantum information metric and the ma-
tricial transport driven by (.). This procedure generates an additional reactive term in
the transport equation, and we can join any two positive-definite-matrix-valued measures
by a suitable continuous path. The same correction term was recently used in [] for the
Lindblad equation. The resulting dynamical transportation problem generates a distance
on the space of positive-definite-matrix-valued measures, which we call the Kantorovich-
Bures distance. This distance is a matricial generalization the Wasserstein distance []
and of the recently introduced Hellinger-Kantorovich distance [, , , , ]. The
Kantorovich-Bures distance is frame-indifferent in the spirit of rational mechanics [].
The Kantorovich-Bures space is a geodesic metric space. It has a conic structure com-
parable to the one that was recently discovered [] for the Hellinger-Kantorovich space.
The Bures space of constant positive-definite matrices may be viewed as a totally geodesic
submanifold in the Kantorovich-Bures space.

The paper is organized as follows. In the remaining part of the Introduction, we present
basic notation and preliminary facts. In Section , we define the Bures-Kantorovich dis-
tance using a dynamical variational construction. In Section , we explore some topolog-
ical, metric and geometric properties of the Bures-Kantorovich metric space. In Section
, we study the metric cone structure of the Bures-Kantorovich space. In the Appendices,
we discuss the frame-indifference of the distance and formal Riemannian geometry of the
Bures-Kantorovich space, and prove several technical lemmas.

Notation and preliminaries.
• We will use the following basic notation:
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– R
d×d is the space of d × d matrices, equipped with the Frobenius product

Φ : Ψ = T r(ΦΨ >) and the norm |Φ | =
√
Φ : Φ ,

– ASym := 1
2 (A+A>) will denote the symmetric part of A ∈Rd×d ,

– S is the subspace of symmetric d × d matrices,
– P+ is the subspace of symmetric positive-semidefinite d × d matrices,
– P++ is the subspace of symmetric positive-definite d × d matrices,
– P 1 is the subspace of symmetric positive-definite d ×d matrices of unit trace,
– P

+ is the set of P+-valued Radon measures P on R
d with finite T r(dP (Rd)),

– P
++ is the set of absolutely continuous (w.r.t. the Lebesgue measure Ld) P++-

valued Radon measures P on R
d with finite T r(dP (Rd)),

– P
1 is the set of P+-valued Radon measures P on R

d with T r(dP (Rd))=.
• We will use the following simple inequalities

PA : A ≤ T rP |A|2, P q · q ≤ T rP |q|2, P ∈ P+,A ∈Rd×d ,q ∈Rd . (.)

A : B ≥ 0, A,B ∈ P+. (.)

• We use the following notation for sets of functions:

Cb: bounded continuous with ‖φ‖∞ = sup |φ|;
C1
b : bounded C1 with bounded first derivatives;
C∞c : smooth compactly supported;
C0: continuous and decaying at infinity;
Lip : bounded and Lipschitz continuous with ‖φ‖Lip = ‖∇φ‖∞ + ‖φ‖∞.

• Given a sequence {Gk}k∈N ⊂ P
+ and G ∈ P+ we say that:

(i) Gk converges narrowly to G if there holds

∀φ ∈ Cb(Rd) : lim
k→∞

∫
R
d
φ(x)dGk(x) =

∫
R
d
φ(x)dG(x).

(ii) Gk converges weakly-∗ to G if there holds

∀φ ∈ C0(Rd) : lim
k→∞

∫
R
d
φ(x)dGk(x) =

∫
R
d
φ(x)dG(x).

• Given a measure G0 ∈ P
+ and a continuous function F : Rd → R

d , the measure
F#G0 is the pushforward of G0 by F, determined by∫

R
d
φd(F#G0) =

∫
R
d
φ ◦FdG0

for all test functions φ ∈ Cb(Rd).
• For curves t ∈ [0,1] 7→ Gt ∈ P+ we write G ∈ Cw([0,1];P+) for the continuity with

respect to the narrow topology.
• Given a non-identically-zero measureG ∈ P+ we will denote by L2(dG) = L2(dG;S×
R
d) the Hilbert space obtained by completion of the quotient by the seminorm
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kernel of the space C1
b (Rd ;S ×Rd) equipped with the Hilbert seminorm

‖U‖2L2(dG) =
∫
R
d

dG(x)u ·u +
∫
R
d

dG(x)U (x) :U (x).

Here U := (U,u) stands for a generic element in C1
b (Rd ;S ×Rd).

It is not difficult to see that the elements of L2(dG) can be rendered as pairs
U = (U,u) ∈ L2(dG;S)× L2(dG;Rd), where the latter two spaces are defined in the
conventional way (as, for instance, in []).
• In a similar fashion, given a narrowly continuous curve G ∈ Cw([0,1];P+), we can

define the space L2(0,1;L2(dGt)). The Hilbert norm in L2(0,1;L2(dGt)) is

‖U‖2L2(0,1;L2(dGt))
=

∫ 1

0

(∫
R
d

dGt(x)ut(x) ·ut(x) +
∫
R
d

dGt(x)Ut(x) :Ut(x)
)

dt.

• The bounded-Lipschitz distance (BL) between two matrix measures G0,G1 ∈ P+ is

dBL(G0,G1) = sup
‖Φ‖Lip≤1

∣∣∣∣∣∫
R
d
Φ : (dG1 −dG0)

∣∣∣∣∣ .
The distance dBL metrizes the narrow convergence on P

+. A sketch of the proof
in the case of matrix measures on an interval can be found in []. In our situa-
tion the claim can still be shown by mimicking the proof strategy for the scalar-
valued Radon measures [, ]. The key observation [] is that S-valued bounded
continuous functions can be approximated by monotone (in the sense of positive
semi-definiteness) sequences of bounded Lipschitz ones. We also point out is that
the supremum can be restricted to smooth compactly supported functions. This
follows from the tightness of a set consisting of two matricial measures of finite
mass.
• By geodesics we always mean constant-speed, minimizing metric geodesics.
• C is a generic positive constant.

. The Kantorovich-Bures distance

The starting point for our considerations is

Definition . (Kantorovich-Bures distance). Given two matrix measures G0,G1 ∈ P+, we
define

d2
KB(G0,G1) := inf

A(G0,G1)
‖U‖2L2(0,1;L2(dGt))

, (.)

where the admissible setA(G0,G1) consists of all couples (Gt ,Ut)t∈[0,1], Ut = (Ut ,ut), such that
G ∈ Cw([0,1];P+),
G|t=0 = G0; G|t=1 = G1,
U ∈ L2(0,T ;L2(dGt)),
∂tGt = {−∇(Gtut) +GtUt}Sym in the weak sense, i.e.,
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R
d
Φ : (dGt −dGs)−

∫ t

s

∫
R
d
(dGτ : ∂τΦτ )dτ

=
∫ t

s

∫
R
d
(dGτuτ ·divΦτ + dGτUτ : Φτ )dτ (.)

for all test functions Φ ∈ C1
b ([0,1]×Rd ;S) and t, s ∈ [0,1].

We could have formally started from minimizing a more general Lagrangian, namely,

d2
KB(G0,G1) := inf

B(G0,G1)

∫ 1

0

(∫
R
d
G−1
t (x)qt(x) · qt(x) +G−1

t (x)Rt(x) : Rt(x)dx
)

dt, (.)

where the admissible set B(G0,G1) consists of tuples (Gt ,qt ,Rt), where Gt(x) ∈ P++, qt(x) ∈
R
d and Rt(x) ∈Rd×d , such that{

G|t=0 = G0; G|t=1 = G1,
∂tGt = {−∇qt +Rt}Sym .

This complies with (.), (.) and the discussion in the Introduction. The reactive part
is a generalization of the Bures metric, as will be evident in Remark ., see also Remark
.. In contrast with (.), we opted for dropping the factor 1/4 in the right-hand sides of
(.) and (.) for a purely aesthetic reason, although this factor seems to be rather fun-
damental. Indeed, keeping it would halve the distance dKB, which is in good agreement
with Theorem  (ii). It would also eliminate the factor 4 in Theorem , Proposition .,
Corollary ., etc.

Perturbing an alleged minimizer of (.) by adding (δq,δR) for which

L(δq,δR) := {−∇(δqt) + δRt}Sym = 0, (δq,δR)|t=0,1 = 0,

we see that the minimizer formally satisfies∫ 1

0

(∫
R
d
G−1
t (x)qt(x) · δqt(x) +G−1

t (x)Rt(x) : δRt(x)dx
)

dt = 0,

for all pertubations (δq,δR) from Ker L. This implies that such a minimizer can be written
in the form q = GdivU , R = GU , for some Ut(x) ∈ S , hence (.) yields (.) via setting
u := divU .

Remark . (Transport of Hermitian matrices). It seems that our results can be easily ex-
tended onto the case of matrix functions with complex entries; we opted for describing
the real-valued case just for maintaining a more transparent connection with the classical
Monge-Kantorovich transport.

Remark . (Torus). All the considerations of the paper are valid, mutatis mutandis, if the
measures in question are defined on the torus Td instead of Rd .

We shall prove shortly that

Theorem . dKB is a distance on P
+.
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We first need a preliminary technical bound:

Lemma .. Let G ∈ Cw([0,1];P+) be a narrowly continuous curve, assume that the constraint
(.) is satisfied for some potential U ∈ L2(0,T ;L2(dGt)) with finite energy

E = E[G;U] = ‖U‖2L2(0,T ;L2(dGt))

and let M := 2(max{m0,m1} + E) with mi = T r dGi(Rd). Then the masses are bounded uni-
formly in time, mt = T r dGt(Rd) ≤M and

∀Φ ∈ C1
b (Rd ;S) :

∣∣∣∣∣∫
R
d
Φ : (dGt −dGs)

∣∣∣∣∣ ≤ (‖divΦ‖∞ + ‖Φ‖∞)
√
ME|t − s|1/2 (.)

for all 0 ≤ s ≤ t ≤ 1.

Proof. By narrow continuity of t 7→ Gt the masses mt are uniformly bounded and m =
max
t∈[0,t]

mt is finite. A Cauchy-Schwarz-like argument applied to the weak constraint (.),

together with (.), imply∣∣∣∣∣∫
R
d
Φ : (dGt −dGs)

∣∣∣∣∣
=

∣∣∣∣∣∣
∫ t

s

(∫
R
d

dGτ (x)uτ (x) ·divΦ(x) +
∫
R
d

dGτ (x)Uτ (x) : Φ(x)
)

dτ

∣∣∣∣∣∣
≤

(∫ t

s

(∫
R
d

dGτ (x)divΦ(x) ·divΦ(x) +
∫
R
d

dGτ (x)Φ(x) : Φ(x)
)

dτ
)1/2

×
(∫ t

s

(∫
R
d

dGτ (x)uτ (x) ·uτ (x) +
∫
R
d

dGτ (x)Uτ (x) :Uτ (x)
)

dτ
)1/2

≤ (‖divΦ‖∞ + ‖Φ‖∞)
√
m · |t − s|1/2E1/2,

and it is enough to estimate m ≤M = 2(max{m0,m1} + E) as in our statement. Choosing
Φ ≡ I we obtain from the previous estimate |mt −ms| ≤

√
mE|t − s|1/2. Let t0 ∈ [0,1] be any

time whenmt0 =m: choosing t = t0 and s = 0 we immediately getm ≤m0 +
√
mE|t0−0|1/2 ≤

m0 +
√
mE, and some elementary algebra bounds m ≤ 2(m0 + E). Exchanging the roles of

G0,G1 we get similarly m ≤ 2(m1 +E), and finally m ≤M. �

Proof of Theorem . Let us first show that dKB(G0,G1) is always finite for any G0,G1 ∈ P+.
Indeed for any P0 ∈ P

+ it is easy to see that Pt = (1 − t)2P0 and Ut =
(
− 2

1−t I,0
)

give a
narrowly continuous curve t 7→ Pt ∈ P+ connecting P0 to zero, and an easy computation
shows that this path has finite energy E = 4T r(dP0(Rd)) < ∞ (this curve is actually the
geodesic between P0 and 0, see Corollary . below). Rescaling time, it is then easy to
connect any two measures G0,G1 ∈ P

+ in time t ∈ [0,1] by first connecting G0 to 0 in
time t ∈ [0,1/2] and then connecting 0 to G1 in time t ∈ [1/2,1] with cost exactly E =
2(4dG0(Rd) + 4dG1(Rd)) <∞.
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In order to show that dKB is really a distance, observe first that the symmetry dKB(G0,G1) =
dKB(G1,G0) is obvious by definition.

For the indiscernability, assume that G0,G1 ∈ P
+ are such that dKB(G0,G1) = 0. Let(

Gkt ,U
k
t

)
t∈[0,1]

be any minimizing sequence in (.), i.e., lim
k→∞

E[Gk ;Uk] = d2
KB(G0,G1) = 0.

By Lemma .we see that the massesmkt = T r dGkt (Rd) are uniformly bounded, sup
t∈[0,1], k∈N

mkt ≤

M. For any fixed Φ ∈ C∞c (Rd ;S) the fundamental estimate (.) gives∣∣∣∣∣∫
R
d
Φ : (dG1 −dG0)

∣∣∣∣∣ ≤ (‖divΦ‖∞ + ‖Φ‖∞)
√
ME[Gk ;Uk].

Since lim
k→∞

E[Gk ;Uk] = 0 we conclude that
∫
R
d Φ : (dG1 − dG0) for all Φ ∈ C∞c (Rd ;S), thus

G1 = G0 as desired.
As for the triangular inequality, fix anyG0,G1, P ∈ P+ and let us prove that dKB(G0,G1) ≤

dKB(G0, P )+dKB(P ,G1). We can assume that all three distances are nonzero, otherwise the
triangular inequality trivially holds by the previous point. Let now (Gkt ,U

k
t )t∈[0,1] be a

minimizing sequence in the definition of d2
KB(G0, P ) = lim

k→∞
E[Gk ;Uk], and let similarly

(G
k
t ,U

k
t )t∈[0,1] be such that d2

KB(P ,G1) = lim
k→∞

E[G
k
;U

k
]. For fixed τ ∈ (0,1) let (Gt ,Ut) be

the continuous path obtained by first following
(
Gk , 1

τU
k
)

from G0 to P in time τ , and

then following
(
G
k
, 1

1−τU
k
)

from P to G1 in time 1−τ . Then
(
Gkt ,U

k
t

)
t∈[0,1]

is an admissible

path connectingG0 toG1, hence by definition of our distance and the explicit time scaling
we get that

d2
KB(G0,G1) ≤ E[Gk ;Uk] =

1
τ
E[G

k
;U

k
] +

1
1− τ

E[Gk ;Uk].

Letting k→∞ we obtain for any fixed τ ∈ (0,1)

d2
KB(G0,G1) ≤ 1

τ
d2
KB(G0, P ) +

1
1− τ

d2
KB(P ,G1).

Finally choosing τ = dKB(G0,P )
dKB(G0,P )+dKB(P ,G1) ∈ (0,1) yields

d2
KB(G0,G1) ≤ 1

τ
d2
KB(G0, P ) +

1
1− τ

d2
KB(P ,G1) = (dKB(G0, P ) + dKB(P ,G1))2

and the proof is complete. �

Corollary .. The elements of a bounded set in (P+,dKB) have uniformly bounded mass.
Conversely, subsets of P+ with uniformly bounded mass are bounded in (P+,dKB).

Proof. The first statement is an immediate consequence of Lemma .. The converse one
follows from the observation that the squared distance from any element P0 ∈ P+ to zero
is controlled by 4m(P0), see the proof of Theorem . �

Another simple property is
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Lemma .. If (Gt ,Ut)t∈[0,1] is a narrowly continuous curve with total energy E then t 7→ Gt
is 1/2-Hölder continuous w.r.t. dKB, and more precisely

∀ t0, t1 ∈ [0,1] : dKB(Gt0 ,Gt1) ≤
√
E|t0 − t1|1/2.

Proof. Rescaling in time and connecting Gt0 to Gt1 by the path (Gs, (t1 − t0)Us)s∈[0,1] with
t = t0 + (t1 − t0)s, the resulting energy scales as d2

KB(Gt0 ,Gt1) ≤ E[G;U] ≤ E|t0 − t1|. �

Remark .. In Definition . it is possible to restrict ourselves to the admissible paths
which satisfy the additional constraint u ≡ 0. This leads to another distance dH on
P

+, which is a matricial analogue of the Hellinger distance. All the results of this pa-
per remain true for dH , and the proofs are literally the same. However, this distance
is much stronger than dKB, which might be less relevant in applications. For example,
dKB(δxk I,δ0I)→ 0 as xk→ 0, but dH (δxk I,δ0I) = 2

√
2.

. Properties of the distance and existence of geodesics

We begin with some topological properties of the Kantorovich-Bures space.

Theorem  (Comparison with narrow converence). The convergence of matrix measures
w.r.t. the distance dKB implies narrow convergence, and any Cauchy sequence in (P+,dKB) is
Cauchy in (P+,dBL). Moreover, for any pair G0,G1 ∈ P+ with masses m0,m1 there holds

dBL(G0,G1) ≤ Cd
√

(m0 +m1)dKB(G0,G1) (.)

with some uniform Cd depending only on the dimension.

Proof. Fix G0,G1, and let (Gt ,Ut) be any admissible path from G0 to G1 with finite energy
E. Taking the supremum over Φ with ‖Φ‖Lip ≤ 1 in (.) we get dBL(G0,G1) ≤ C

√
ME,

where M = 2(max{m0,m1} + E) as in Lemma .. Choosing now a minimizing sequence
instead of an arbitrary path and taking the limit we essentially obtain the same estimate
with E = limE[Gk ;Uk] = d2

KB(G0,G1), whence

dBL(G0,G1) ≤ C
√

2(max{m0,m1}+ d2
KB(G0,G1))dKB(G0,G1).

By the triangle inequality and Corollary .we control d2
KB(G0,G1) ≤ 2(d2

KB(G0,0)+d2
KB(0,G1)) =

8(m0 +m1), which immediately yields (.).
If Gk is a Cauchy sequence in (P+,dKB) with mass mk = T r dGk(Rd). Since Cauchy

sequences are bounded we control 4mk = d2
KB(Gk ,0) ≤ C uniformly in k, thus from (.)

we see that

dBL(Gp,Gq) ≤ CdKB(Gp,Gq).

Thus, Gk is dBL-Cauchy. Similarly, if a sequence is dKB-converging, it is dBL- and hence
narrowly converging (to the same limit). �
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Definition .. Let (X,%) be a metric space, σ be a Hausdorff topology on X. We say that
the distance % is sequentially lower semicontinuous with respect to σ if for all σ -converging
sequences xk

σ→ x, yk
σ→ y one has

%(x,y) ≤ liminf
k→∞

%(xk , yk).

Theorem  (Lower-semicontinuity). The distance dKB is sequentially lower semicontinuous
with respect to the weak-∗ topology on P

+.

Proof. Consider any two converging sequences

Gk0 →k→∞
G0, Gk1 →k→∞

G1 weakly-∗

of finite Radon measures from P
+(Rd). For each k, the endpoints Gk0 and Gk1 can be joined

by an admissible narrowly continuous path (Gkt ,U
k
t )t∈[0,1] with energy

E[Gk ;Uk] ≤ d2
KB(Gk0,G

k
1) + k−1.

Due to weak-∗ compactness, the massesmk0 = T r dGk0(Rd) andmk1 = T r dGk1(Rd) are bounded
uniformly in k ∈ N. By Corollary . the set ∪k∈N{Gk0,G

k
1} is bounded in (P+,dKB), thus

the energies E[Gk ;Uk] and the masses mkt = T r dGkt (Rd) are bounded uniformly in k ∈N
and t ∈ [0,1]

mkt ≤M and E[Gk ;Uk] ≤ E.
By the (classical) Banach-Alaoglu theorem with P

+ ⊂ (C0)∗, all the curves (Gkt )t∈[0,1] lie
in a fixed weak-∗ sequentially relatively compact set KM = {G ∈ P

+ : T r dG(Rd) ≤ M}
uniformly in k, t. By the fundamental estimate (.) we get∣∣∣∣∣∫

R
d
Φ : (dGkt −dGks )

∣∣∣∣∣ ≤√
ME|t − s|1/2(‖divΦ‖∞ + ‖Φ‖∞) ≤ C|t − s|1/2(‖∇Φ‖∞ + ‖Φ‖∞)

for all φ ∈ C1
b , which implies

∀ t, s ∈ [0,1], ∀k ∈N : dBL(Gks ,G
k
t ) ≤ C|t − s|1/2.

Invoking the above uniform 1/2-Hölder continuity w.r.t. dBL, the sequential lower semi-
continuity of dBL with respect to the weak-∗ convergence (Lemma B. in Appendix B), and
the fact that Gkt ∈ KM , we conclude by a refined version of Arzelà-Ascoli theorem (Lemma
B. in the Appendix B) that there exists a dBL (thus narrowly) continuous curve (Gt)t∈[0,1]
connecting G0 and G1 such that

∀t ∈ [0,1] : Gkt → Gt weakly-∗ (.)

along some subsequence k → ∞ (not relabeled here). Let Q := (0,1) ×Rd and µk be the
matricial measure on Q defined by duality as

∀φ ∈ Cc(Q) :
∫
Q
φ(t,x)dµk(t,x) =

∫ 1

0

(∫
R
d
φ(t, .)dGkt

)
dt.
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Exploiting the pointwise convergence (.) and the uniform bound on the massesmkt ≤M,
a simple application of Lebesgue’s dominated convergence guarantees that

µk→ µ0 weakly- ∗ in P
+(Q),

where the finite measure µ0 ∈ P
+(Q) is defined by duality in terms of the weak-∗ limit

Gt = limGkt (as was µk in terms of Gkt ).
We are going to apply a variant of the Banach-Alaoglu theorem, Proposition B. in

Appendix B, in the space

X = C1
c (Q;S ×Rd).

Namely, we set
‖(Φ ,φ)‖ = ‖φ‖L∞(Q) + ‖Φ‖L∞(Q),

‖(Φ ,φ)‖k =
(∫

Q
dµkφ ·φ+ dµkΦ : Φ

)1/2

, k = 0,1, . . . ,

and define the linear forms

ϕk(Φ ,φ) =
∫
Q

dµkuk ·φ+ dµkU k : Φ , k = 1,2, . . . .

The separability of C1
c (Q;S ×Rd), the weak-∗ convergence of µk , uniform boundedness of

the masses of T r µk(Q) ≤M, and the Cauchy-Schwarz inequality imply that the hypothe-
ses of our Proposition B. are met with

ck := ‖ϕk‖(X,‖.‖k)∗ ≤ ‖U
k‖L2(0,1;L2(dGk)) =

√
E[Gk ;Uk] ≤

√
d2
KB(Gk0,G

k
1) + k−1.

Consequently, there exists a continuous functional ϕ0 on the space (X,‖ · ‖0) such that up
to a subsequence

∀(Φ ,φ) ∈ C1
c (Q;S ×Rd) :

∫ 1

0

(∫
R
d

dGkt u
k
t ·φt + dGktU

k
t : Φt

)
dt →

k→∞
ϕ0(Φ)

with moreover
‖ϕ0‖(X,‖·‖0)∗ ≤ liminf

k→∞
dKB(Gk0,G

k
1). (.)

Let N0 ⊂ X be the kernel of the seminorm ‖ · ‖0. By the Riesz representation theorem,
the dual (X,‖·‖0)∗ = (X/N0,‖·‖0)∗ can be isometrically identified with the completion X/N0
of X/N0 with respect to ‖ · ‖0, which is exactly L2(0,1;L2(dGt)). As a consequence there
exists U = (U,u) ∈ L2(0,T ;L2(dGt)) such that

ϕ0(Φ ,φ) =
∫
Q

dµ0u ·φ+ dµ0U : Φ =
∫ 1

0

(∫
R
d

dGtut ·φt + dGtUt : Φt

)
dt

and
‖U‖L2(0,1;L2(dGt)) = ‖ϕ0‖(X,‖·‖0)∗ ,
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and it is straightforward to check that (G,U) is an admissible curve joiningG0,G1, because
the above convergence is enough to pass to the limit in the constraint (.). Recalling (.),
it remains to take into account that by the definition of our distance

d2
KB(G0,G1) ≤ E[G;U] = ‖U‖2L2(0,1;L2(dGt))

= ‖ϕ0‖2(X,‖·‖0)∗ ≤ liminf
k→∞

d2
KB(Gk0,G

k
1).

�

During the proof of Theorem  we observed the upper bound

d2
KB(G0,G1) ≤ 8(m0 +m1).

Let us show that it can improved.

Proposition . (Upper bound of the distance). For every pair G0,G1 ∈ P
+ with masses

m0,m1 one has
d2
KB(G0,G1) ≤ 4(m0 +m1). (.)

Proof. Since P
++ is dense in P

+ in the weak-∗ topology (one can simply use the standard
mollifiers), in view of Theorem  we can assume that G0,G1 ∈ P++. Consider the curve

dGt =
(
t
√
G1 + (1− t)

√
G0

)2
dLd .

The corresponding potential Ut ∈ L2(0,1;L2(dG)) can be defined by the by Riesz duality
as

〈U, (Φ ,φ)〉L2(0,1;L2(dG)) = 2
∫ 1

0

∫
R
d
(
√
G1 −

√
G0) :

(
t
√
G1 + (1− t)

√
G0

)
Φt dLd dt (.)

for all (Φ ,φ) ∈ L2(0,1;L2(dG)). It is not difficult to see that the constraint (.) is satisfied.
By definition, the energy of this path is ‖U‖2L2(0,1;L2(dG)). By the Cauchy-Schwarz inequality
and (.),

〈U, (Φ ,φ)〉2L2(0,1;L2(dG))

≤ 4
∫ 1

0

∫
R
d
(
√
G1 −

√
G0)dLd

∫
R
d

d
(
t
√
G1 + (1− t)

√
G0

)
Φt

:
(
t
√
G1 + (1− t)

√
G0

)
Φt dLd dt

≤ 4‖Φ ,0‖2L2(0,1;L2(dG))

∫ 1

0

∫
R
d
(
√
G1 −

√
G0) : (

√
G1 −

√
G0)dLd dt

≤ 4‖Φ ,φ‖2L2(0,1;L2(dG))

∫ 1

0

∫
R
d
(T r G1 + T r G0)dLd dt.

Thus, the energy E[Gt ,Ut] is less than or equal to the right-hand side of (.). �

Definition . (cf. []). We say that two points x,y in a metric space (X,%) almost admit a
midpoint if there exists a sequence {zk} ⊂ X such that

|%(x,y)− 2%(x,zk)| ≤ k−1, |%(x,y)− 2%(y,zk)| ≤ k−1.
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Theorem  (Existence of geodesics). (P+,dKB) is a geodesic space, and for all G0,G1 ∈ P+ the
infimum in (.) is always a minimum. Moreover this minimum is attained for a dKB-Lipschitz
curve G such that dKB(Gt ,Gs) = |t − s|dKB(G0,G1) and a potential U ∈ L2(0,1;L2(dGt)) such
that ‖Ut‖L2(dGt) = cst = dKB(G0,G1) for a.e. t ∈ [0,1].

Proof. We first observe from the definition of our distance that any two points in P
+ al-

most admit a midpoint. By Corollary . and the (classical) Banach-Alaoglu theorem,
dKB-bounded sequences contain weakly-∗ converging subsequences. Now Lemma B.
(analogue of the Hopf-Rinow theorem for non-complete metric spaces) together with The-
orem  imply that (P+,dKB) is a geodesic space. The existence and claimed properties of
a minimizing admissible path in (.) follow by mimicking the argument from the proof
of Theorem  for the sequence of almost minimizing paths, and by evoking the general
properties of metric geodesics [, ]. �

The next theorem gives some insight into the geometry of the Kantorovich-Bures space.

Theorem  (Explicit geodesics). Fix any element G∗ ∈ P+ and define the map g : P+→ P
+ by

g(A) = AG∗A.

Then for any pair of commuting matrices A0,A1 ∈ P+ one has

d2
KB(g(A0), g(A1)) = 4

∫
R
d

dG∗(A1 −A0) : (A1 −A0), (.)

and a geodesic between g(A0) and g(A1) is explicitly given by

Ḡt := g(tA1 + (1− t)A0). (.)

Proof. Step . Define a potential Ūt ∈ L2(0,1;L2(dḠ)) by Riesz duality as

〈Ū, (Φ ,φ)〉L2(0,1;L2(dḠ)) = 2
∫ 1

0

∫
R
d

dG∗(A1 −A0) : (tA1 + (1− t)A0)Φt dt (.)

for all (Φ ,φ) ∈ L2(0,1;L2(dḠ)). A straightforward computation shows that (Ḡt ,Ūt) satisfies
the constraint (.). The energy of this path coincides with ‖Ū‖2

L2(0,1;L2(dḠ))
. By the Cauchy-

Schwarz inequality,

〈Ū, (Φ ,φ)〉2
L2(0,1;L2(dḠ))

≤ 4
∫ 1

0

∫
R
d

dG∗(A1 −A0) : (A1 −A0)
∫
R
d

dG∗(tA1 + (1− t)A0)Φt : (tA1 + (1− t)A0)Φt dt

≤ 4‖Φ ,φ‖2
L2(0,1;L2(dḠ))

∫ 1

0

∫
R
d

dG∗(A1 −A0) : (A1 −A0)dt.

Thus, the energy E[Ḡt ,Ūt] is less than or equal to the right-hand side of (.).
Step . In view of the previous step, it suffices to prove that the square of the distance

is bounded from below by the right-hand side of (.). We first observe that without loss
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of generality we may assume that A0 ∈ P++. Indeed, the general case A0 ∈ P+ would
immediately follow by letting ε→ 0+ in the triangle inequality

dKB(g(A0), g(A1)) ≥ dKB(g(A0 + εI), g(A1))− dKB(g(A0 + εI), g(A0)).

Step . Consider any admissible path (Gt ,Ut)t∈[0,1] connecting G0 := g(A0) to G1 :=
g(A1). Let λ be any scalar probability measure on R

d . Set G̃t := λ
∫
R
d dGt , and define

Ũt ∈ L2(0,1;L2(dG̃)) by duality as

〈Ũ, (Φ ,φ)〉L2(0,1;L2(dG̃)) =
∫ 1

0

∫
R
d

dGtUt

∫
R
d
Φtdλdt (.)

for all (Φ ,φ) ∈ L2(0,1;L2(dG̃)). Then(G̃,Ũ) is an admissible path (joining A0λ
∫
R
d dG∗A0

and A1λ
∫
R
d dG∗A1). We claim that it has lesser energy than (G,U). To prove the claim,

we approximate this path with the sequence G̃kt := λ
∫
R
d (k−1I + dGt); the corresponding

potentials are

〈Ũk , (Φ ,φ)〉L2(0,1;L2(dG̃k)) =
∫ 1

0

∫
R
d

dGtUt

∫
R
d
Φtdλdt. (.)

Let us equip the linear space R
d×d with the scalar product

(B,B)k,t = k−1B : B+
∫
R
d

dGtB : B,

and let Πk,t be the orthogonal projection onto the subspace S . One explicitly computes
that

Ũ k
t :=Πk,t

(k−1I +
∫
R
d

dGt

)−1 ∫
R
d

dGtUt

 , ukt ≡ 0.
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Then

E[G̃k ;Ũk] =
∫ 1

0

∫
R
d

dλ
(
k−1I +

∫
R
d

dGt

)
Ũ k
t : Ũ k

t dt =
∫ 1

0
(Ũ k

t , Ũ
k
t )k,t dt

≤
∫ 1

0

(k−1I +
∫
R
d

dGt

)−1 ∫
R
d

dGtUt ,
(
k−1I +

∫
R
d

dGt

)−1 ∫
R
d

dGtUt


k,t

dt

≤
∫ 1

0

(
k−1I +

∫
R
d

dGt

)(k−1I +
∫
R
d

dGt

)−1 ∫
R
d

dGtUt


:

(k−1I +
∫
R
d

dGt

)−1 ∫
R
d

dGtUt

 dt

+
∫ 1

0

∫
R
d

dGt

Ut − (k−1I +
∫
R
d

dGt

)−1 ∫
R
d

dGtUt


:

Ut − (k−1I +
∫
R
d

dGt

)−1 ∫
R
d

dGtUt

 dt

=
∫ 1

0

∫
R
d

dGtUt :Ut dt

− k−1
∫ 1

0

(k−1I +
∫
R
d

dGt

)−1 ∫
R
d

dGtUt

 :

(k−1I +
∫
R
d

dGt

)−1 ∫
R
d

dGtUt

 dt

≤ E[G;U].

Arguing as in the proof of Theorem  we can pass to the limit inferior as k→∞ to show
that E[G̃t ,Ũt] ≤ E[G;U] as claimed.

Step . Obviously, the right-hand side of (.) does not change if we replace G∗ by λD,
where D :=

∫
R
d dG∗ ∈ P+, and λ is as above. Thus, by the previous steps it is enough to

check that the energies of the admissible paths of the form Gt = λFt with Ft ∈ P+, Fi =
AiDAi , i = 0,1, A0 ∈ P++, with constant-in-space potentials Ut = (Ut ,0) ∈ L2(0,1;L2(dG))
are bounded from below by the right-hand side of (.). Some finite-dimensional calculus
of variations shows that the minimum of those energies is achieved for Ft = (tA1 + (1 −
t)A0)D(tA1 + (1 − t)A0) with Ut = 2(tA1 + (1 − t)A0))−1(A1 −A0), t , 1. The corresponding
energy is exactly 4D(A1 −A0) : (A1 −A0). �

Corollary . (Geodesic to zero). For any G∗ ∈ P+, d2
KB(G∗,0) = 4T r dG∗(Rd), and (1− t)2G∗

is a geodesic between G∗ and 0.

Remark . (Bures manifolds). The set P++ ⊂ S has a natural structure of a smooth man-
ifold, and the tangent space TPP++ at every point P ∈ P++ can be identified with S . For
each Ξ ∈ TPP++, let UΞ ∈ S be the unique solution to the Lyapunov equation []

2Ξ = PUΞ +UΞP .
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Then
〈Ξ1,Ξ2〉P := PUΞ1

:UΞ2
(.)

is a Riemannian metric on P++ that is known as the Bures metric []. The induced
Riemannian metric on the submanifold P 1 ⊂ P++ is also called the Bures metric [].
Actually, P++ is a metric cone over P 1. In the next section we will see that P

+ has a
similar cone structure. The geodesics between P0, P1 ∈ P++ can be constructed as follows.
Let X ∈ P++ be the unique solution to the Riccati equation []

XP0X = P1.

Then the geodesic is
((1− t)I + tX)P0((1− t)I + tX).

Let dR denote the corresponding Riemannian distance on P++. Fix any probability mea-
sure λ on R

d . Since I and X commute, by Theorem  the embedding

P 7→ P λ

from P++ into P
+ is a totally geodesic map (in the sense of []). Moreover, in view of

Remark .,
dR(P0, P1) = dKB(P0λ,P1λ) = dH (P0λ,P1λ).

The midpoint 1
4 (I + X)P0(I + X) can serve to define a matrix mean ˆP0P1, which may be

dubbed the Bures mean. More conventional matrix means are discussed in [].

. The spherical distance and the conic structure

In this section we are going to explore the conic structure of (P+,dKB). We start by
defining a similar distance on P

1 (analogue of probability measures) by a straightforward
trick:

Definition . (Spherical Kantorovich-Bures distance). Given two matrix measuresG0,G1 ∈
P

1 we define

d2
SKB(G0,G1) := inf

A1(G0,G1)

∫ 1

0

(∫
R
d

dGt(x)ut(x) ·ut(x) +
∫
R
d

dGt(x)Ut(x) :Ut(x)
)

dt. (.)

where the admissible set A1(G0,G1) consists of all couples (Gt ,Ut)t∈[0,1] such that
G ∈ Cw([0,1];P1),
G|t=0 = G0; G|t=1 = G1,
U ∈ L2(0,T ;L2(dGt)),
∂tGt = {−∇(Gtut) +GtUt}Sym in the weak sense.

Proposition .. dSKB is a distance on P
1.

The proof is similar to the one of Theorem . Note that the indiscernability is obvious
since by construction dSKB ≥ dKB on P

1.
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Remark . (Equivalent definition). It is easy to see that Definition . can be equivalently
written in the following way: given two matrix measures G0,G1 ∈ P1 we define

d2
SKB(G0,G1) := inf

A2(G0,G1)∫ 1

0

∫
R
d

dGt(x)ut(x) ·ut(x) +
∫
R
d

dGt(x)Ut(x) :Ut(x)−
(∫

R
d

dGt(x) :Ut(x)
)2dt. (.)

where the admissible set A2(G0,G1) consists of all couples (Gt ,Ut)t∈[0,1] such that
G ∈ Cw([0,1];P1),
G|t=0 = G0; G|t=1 = G1,
U ∈ L2(0,T ;L2(dGt)),
∂tGt +Gt

∫
R
d dGt :Ut = {−∇(Gtut) +GtUt}Sym in the weak sense.

Indeed, A1(G0,G1) =A2(G0,G1)∩
[∫
R
d dGt :Ut ≡ 0

]
, hence the distance (.) is larger than

or equal to (.). On the other hand, the inverse inequality is also true since for any path
(Gt ,Ut ,ut) ∈ A2(G0,G1) we can find a path inA1(G0,G1) of the same energy: one just takes
(Gt ,Vt), where Vt ∈ L2(0,T ;L2(dGt)) is defined by duality via

〈V, (Φ ,φ)〉L2(0,1;L2(dG))

=
∫ 1

0

(∫
R
d

dGt(x)ut(x) ·φt(x) +
∫
R
d

dGt(x)
[
Ut(x)−

∫
R
d

dGt(y) :Ut(y)
]

: Φt(x)
)

dt. (.)

We recall [, ] that, given a metric space (X,dX) of diameter≤ π, one can define another
metric space (C(X),dC(X)), called a cone over X, in the following manner. Consider the
quotient C(X) := X × [0,∞)/X ×{0}, that is, all points of the fiber X ×{0} constitute a single
point of the cone which is called the apex. Now set

d2
C(X)([x0, r0], [x1, r1]) := r2

0 + r2
1 − 2r0r1 cos(dX(x0,x1)). (.)

The cones enjoy neat scaling and other nice geometric properties []. A particularly
regular situation appears when the diameter of X is strictly less than π, since in this case
there is a one-to-one correspondence between the geodesics in X and C(X). Given a cone
Y =C(X), X may be referred to as the sphere in Y .

Lemma .. If X is a length space, and Y = C(X), then the distance dX(x0,x1) coincides with
the infimum of Y -lengths of curves [xt ,1] which join [x0,1] and [x1,1] and lie within X × {1}.

Proof. Denote by I(x0,x1) the infimum of Y -lengths of curves [xt ,1] as in the statement
of the lemma. Observe from (.) that dX(x+,x−) ≥ dC(X)([x+,1], [x−,1]) for any x+,x− ∈ X.
Hence, the Y -length of any curve [xt ,1] is less than or equal to the X-length of xt. We
claim that they are actually equal. It suffices to prove

LY ([xt ,1]) ≥ qLX(xt) (.)
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for any q < 1. By linearity of (.), it is enough to prove it for curves of sufficiently small
length. From [, Ex. ..] we infer that

LY ([xt ,1]) ≥ 2sin(LX(xt)/2) ,

which yields (.) for short curves. Since X is a length space, we immediately conclude
that I(x0,x1) = dX(x0,x1). �

We are going to show that the cone over the metric space (P1,dSKB/2) coincides with
(P+,dKB/2). In other words, (P1,dSKB/2) is a sphere in the cone (P+,dKB/2), hence the
name “spherical distance”. Firstly, for any element G ∈ P+, we set

r = r(G) :=
√
m(G) =

√
T r dG(Rd).

Then we can identify G with a pair [G/r2, r] ∈C(P1).

Theorem  (Conic structure). i) The space (P1,dSKB) is a geodesic space of diameter ≤ π;
ii) (P+,dKB/2) is a metric cone over (P1,dSKB/2), where P

+ is identified with C(P1) via G↔
[G/r2, r].

Proof. Step . We first observe that it suffices to show that (P+,dKB/2) is a metric cone over
some metric space (which, due to the identification above, is nothing but P

1 equipped
with some distance d). Indeed, by Proposition ., for any two matrix measures G0,G1 ∈
P

1 one has
dKB(G0,G1)/2 ≤

√
2. (.)

Since (P+,dKB/2) is a cone over (P1,d), (.) and (.) imply that cos(d(G0,G1)) ≥ 0,
whence the diameter of (P1,d) is controlled from above by π/2 < π. By Theorem  and [,
Corollary .], (P1,d) is a geodesic space. Evoking Lemma . and Definition ., we see
that d actually coincides with dSKB/2.

Step . In view of (.) and [, Theorem .], it suffices to show the following scaling
property which characterizes the cones:

d2
KB(r2

0G0, r
2
1G1) = r0r1d

2
KB(G0,G1) + 4(r0 − r1)2, (.)

for all G0,G1 ∈ P
1, r0, r1 ≥ 0. Note that we have already proved it in the case r0r1 = 0

(see Corollary .), so we can assume that r0r1 > 0. Consider the scalar function a(t) =
r1t

r0+(r1−r0)t . Then

a(0) = 0, a(1) = 1, a′(t)(r0 + (r1 − r0)t)2 = r0r1.
We will also need its inverse function t(a).

Let (Gt ,Ut ,ut) be any admissible path joining G0,G1 ∈ P
1. Then the path (G̃t , Ũt , ũt),

where

G̃t = (r0 + (r1 − r0)t)2Ga(t),

Ũt = a′(t)Ua(t) +
2(r1 − r0)

r0 + (r1 − r0)t
I ,

ũt = a′(t)ua(t),
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connects r2
0G0 and r2

1G1. A straightforward computation shows that (G̃t , Ũt , ũt) satisfies
the constraint (.). Let us compute the energy of this path, using (.) with Φ = Φa =
(r0 + (r1 − r0)t(a))I :

E[G̃t;Ũt , ũt] =
∫ 1

0

(∫
R
d

dG̃tũt · ũt +
∫
R
d

dG̃tŨt : Ũt

)
dt

= r0r1

∫ 1

0
a′(t)

(∫
R
d

dGa(t)ua(t) ·ua(t) +
∫
R
d

dGa(t)Ua(t) :Ua(t)

)
dt

+ 4(r1 − r0)
∫ 1

0
a′(t)(r0 + (r1 − r0)t)

∫
R
d

dGa(t) :Ua(t) dt

+ 4(r1 − r0)2
∫ 1

0

∫
R
d

dGa(t) : I dt

= r0r1

∫ 1

0

(∫
R
d

dGaua ·ua +
∫
R
d

dGaUa :Ua

)
da

+ 4(r1 − r0)
∫ 1

0
(r0 + (r1 − r0)t(a))

∫
R
d

dGa :Uada

+ 4(r1 − r0)2
∫ 1

0
t′(a)

∫
R
d

dGa : I da

= r0r1E[Gt;Ut ,ut]

+ 4(r1 − r0)(r0 + (r1 − r0)t(1))
∫
R
d

dG1 : I

− 4(r1 − r0)(r0 + (r1 − r0)t(0))
∫
R
d

dG0 : I

= r0r1E[Gt;Ut ,ut] + 4(r0 − r1)2. (.)

Consequently, d2
KB(r2

0G0, r
2
1G1) ≤ r0r1d2

KB(G0,G1)+4(r0− r1)2. The opposite inequality is
proved in a similar fashion. �

Appendix A. Frame-indifference

The principle of material frame-indifference [] is one of the main principles of ratio-
nal mechanics, which expresses the fact that the properties of a material do not depend
on the choice of an observer. An observer in rational mechanics is identified with a frame,
which is a correspondence between the spatial points and the elements x of the space
R
d , as well as between the moments of time and the elements t of the scalar axis R. The

metrics in R
d and in the scalar axis, as well as the time direction, are assumed to be

frame-invariant. Then the most general change of coordinates is

t∗ = t− t0,
x∗ = c∗(t) +Qtx,
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where t0 ∈R, c∗ : R→R
d , Qt is a time-dependent orthogonal matrix.

Consider any vector which exists in the space irrespectively of the observer. In the
initial frame, it is represented by some w ∈ Rd . Then in the new frame it is w∗ = Qtw. A
frame-indifferent tensor is a linear automorphism of such vectors. The representations of a
frame-indifferent tensor function in the two frames are related as

T ∗(t∗,x∗) =QtT (t,x)Q>t .

We claim that our distance dKB complies with the frame indifference:

dKB (T ∗0 (t∗,x∗),T ∗1 (t∗,x∗)) = dKB (T0(t,x),T1(t,x)) . (A.)

In other words, dKB may be considered as a distance on positive-semidefinite-frame-
indifferent-tensor-valued measures.

To prove the claim it suffices to note that for any admissible path (Tt ,Ut ,ut)(t,x) in the
old frame, the path

(T ∗t ,U
∗
t ,u
∗
t )(t
∗,x∗) :=

(
QtTt(t,x)Q>t ,QtUt(t,x)Q>t ,Qtut(t,x)

)
is admissible in the new frame, and has the same energy (.). These assertions can be
verified by a straightforward computation: the only non-obvious issue for the validity of
(.) in the new frame is that the spatial gradient is frame-indifferent:

∇x∗w∗ =Qt(∇xw)Q>t
provided w∗ =Qtw, which is just a manifestation of the chain rule, cf., e.g., [, ].

Appendix B. Some technical facts

Proposition B. ([]). Let (X,‖ · ‖) be a separable normed vector space. Assume that there
exists a sequence of seminorms {‖ · ‖k} (k = 0,1,2, . . . ) on X such that for every x ∈ X one has

‖x‖k ≤ C‖x‖
with a constant C independent of k,x, and

‖x‖k →
k→∞

‖x‖0.

Let ϕk (k = 1,2, . . . ) be a uniformly bounded sequence of linear continuous functionals on (X,‖ ·
‖k), resp., in the sense that

ck := ‖ϕk‖(X,‖·‖k)∗ ≤ C.
Then the sequence {ϕk} admits a converging subsequence ϕkn → ϕ0 in the weak-∗ topology of
X∗, and

‖ϕ0‖(X,‖·‖0)∗ ≤ c0 := liminf
k

ck . (B.)

Lemma B.. The matricial bounded-Lipschitz distance dBL is sequentially lower semicontinu-
ous with respect to the weak-∗ topology.

The proof is obvious since the supremum in the definition of dBL can be restricted to
smooth compactly supported functions, which are dense in C0.
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Lemma B.. Let (X,%) be a metric space where every two points almost admit a midpoint.
Assume that there exists a Hausdorff topology σ on X such that %-bounded sequences contain
σ -converging subsequences, and % is sequentially lower semicontinuous with respect to σ . Then
(X,%) is a geodesic space.

Proof. Fix any two points x0,x1 ∈ X. It suffices to join them by a curve xt such that

%(xt ,xt̄) ≤ |t − t̄|%(x0,x1). (B.)

for all t, t̄ ∈ [0,1] (which is a posteriori continuous).
Let us first observe that every two points x,y ∈ X admit a midpoint, that is,

%(x,y) = 2%(x,z) = 2%(z,y).

for some z ∈ X. Indeed, take any sequence zk of almost midpoints, i.e.,

|%(x,y)− 2%(x,zk)| ≤ k−1, |%(x,y)− 2%(y,zk)| ≤ k−1.

The sequence {zk} is %-bounded, thus without loss of generality it σ -converges to some
z ∈ X. Then

2%(x,z) ≤ lim
k→∞

2%(x,zk) = %(x,y),

2%(y,z) ≤ lim
k→∞

2%(y,zk) = %(x,y).

But its is clear from the triangle inequality that the latter inequalities must be equalities.
Let Q = {s ∈ [0,1]|∃p ∈ N : 2ps ∈ N}. With the existence of midpoints at hand, by a

standard procedure [, p. ] one constructs points xs (s ∈ Q) satisfying (B.), that is, the
function s 7→ xs is %(x0,x1)-Lipschitz. Given any t ∈ [0,1], we can approximate it by a
sequence {sn} ∈ Q. Since s 7→ xs is Lipschitz on Q, xsn is a %-Cauchy sequence. Therefore
it is %-bounded, and admits a subsequence which σ -converges to some xt ∈ X. Due to the
sequential lower semicontinuity of the distance %, we can pass to the limit in (B.) for all
t, t̄ ∈ [0,1]. �

Lemma B.. Let (X,%) be a metric space. Assume that there exists a Hausdorff topology σ on
X such that % is sequentially lower semicontinuous with respect to σ . Let (xk)t, t ∈ [0,1], be
a sequence of curves lying in a common σ -sequentially compact set K ⊂ X. Let it be equicon-
tinuous in the sense that there exists a symmetric continuous function ω : [0,1]× [0,1]→ R+,
ω(t, t) = 0, such that

%((xk)t , (x
k)t̄) ≤ω(t, t̄). (B.)

for all t, t̄ ∈ [0,1]. Then there exists a %-continuous curve xt such that

%(xt ,xt̄) ≤ω(t, t̄), (B.)

and (up to a not relabelled subsequence)

(xk)t→ xt (B.)

for all t ∈ [0,1] in the topology σ .
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Proof. A standard Arzelà-Ascoli argument allows us to construct, for each rational num-
ber t ∈ [0,1], some points xt so that (B.) holds up to a not relabelled subsequence. Due to
the sequential lower semicontinuity of %, estimate (B.) is true for all rational t, t̄ ∈ [0,1].
Approximating any point t ∈ [0,1] by a sequence of rational numbers, by mimicking the
reasoning from the proof of Lemma B. we can construct a %-continuous curve xt satisfy-
ing (B.) for every t ∈ [0,1]. To show that the convergence (B.) takes place for all t ∈ [0,1],
one just repeats the argument from [, last part of the proof of Proposition ..]. �

Remark B.. Lemma B. (refined Hopf-Rinow) has been proved in [] assuming that X
is a complete length space, which is redundant. Similarly, Lemma B. (refined Arzelà-
Ascoli) has been proved in [] assuming that X is a complete metric space.

Appendix C. Matricial Otto calculus

We have seen in Remark . that some pieces of (P+,dKB) are isometric to Riemannian
manifolds. One can (at least formally) extend this geometry onto the whole P

+ such that
the corresponding geodesic distance coincides with dKB. Namely, we can develop some
kind of Otto calculus, cf. [, , ], on (P+,dKB). Starting from this point, we are
completely formal. As we observed in Section , the minimizing potentials in (.) can be
chosen in the form U = (U,divU ). This suggests to define the tangent spaces as

TGP
+ :=

{
∃U (x) ∈ S : Ξ = (−∇(GdivU ) +GU )Sym

}
and

‖Ξ‖TGP+ = ‖U‖H1
div(dG;S) :=

(∫
R
d

dGdivU ·divU +
∫
R
d

dGU :U
)1/2

.

Ignoring all smoothness issues, the operator

Ξ(U ) = (−∇(GdivU ) +GU )Sym (C.)

is H1
div(dG;S)-coercive, so the one-to-one correspondence between the tangent vectors Ξ

and potentials U = (U,divU ) is well defined. By polarization this defines a Riemannian
metric on TP+, and

d2
KB(G0,G1) = inf

∫ 1

0

∥∥∥∥∥dGtdt
∥∥∥∥∥2

TGtP
+

dt

 .
The gradients of functionals F : P+→R are given by

gradKBF (G) =
[
−∇

(
Gdiv

δF
δG

)
+G

δF
δG

]Sym
, (C.)

where δF
δG denotes the conventional first variation with respect to the Euclidean structure

〈U1,U2〉 =
∫
R
d U1 :U2. The gradient flows are matricial PDEs of the form

∂tG =
[
∇
(
Gdiv

δF
δG

)
−GδF

δG

]Sym
.
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The interesting driving functionals include the von Neumann entropy

FN (G) =
∫
R
d
G logG −G

and the “volume”

FV (G) =
∫
R
d

√
detG.

The gradient flow of FN is a sort of matricial “heat flow” with logarithmic reaction. In-
deed, for d = 1 it simply becomes ∂tG = ∂xxG −G logG. The gradient flow of FV has some
similarities with the mean curvature flow (if we view Gt as an evolving Riemannian met-
ric on R

d). Unfortunately, it is not a genuinely geometric flow since the latter ones are
expected to be invariant with respect to diffeomorphisms of R

d (for instance, the Ricci
flow has this property), and our flow, in spite of the frame-indifference of the distance,
does not behave in such a nice way.

The considerations above can be applied to the spherical space (P1,dSKB). Remark .
guides us to define

TGP
1 :=

{
∃U (x) ∈ S : Ξ = [−∇(GdivU ) +GU ]Sym −G

∫
R
d
G :U

}
and

‖Ξ‖TGP1 =

∫
R
d

dGdivU ·divU +
∫
R
d

dGU :U −
(∫

R
d

dG :U
)21/2

.

The gradients of functionals F : P1→R are

gradSKBF (G) =
[
−∇

(
Gdiv

δF
δG

)
+G

δF
δG

]Sym
−G

∫
R
d
G :

δF
δG

. (C.)

The second order calculus for both the cone and the sphere can be established by for-
mally computing the geodesic equations, which leads to the definitions of Hessians and
λ-convexity.
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