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The manipulation of individual copies of quantum systems is one of the most groundbreaking
experimental discoveries in the field of quantum physics. On both an experimental and a theoretical
level, it has been shown that the dynamics of a single copy of an open quantum system is a trajectory
of a piecewise-deterministic process. To the best of our knowledge, this application field has not
been explored by the literature in applied mathematics, from both probabilistic and statistical
perspectives. The objective of this chapter is to provide a self-contained presentation of this kind of
model, as well as its specificities in terms of observations scheme of the system, and a first attempt
to deal with a statistical issue that arises in the quantum world.

I. INTRODUCTION

A. The postulates of Quantum Mechanics

Quantum mechanics is one of the most successful theoretical frameworks in physics, its predictions
having been tested and verified with remarkable precision in countless scenarios. Roughly speaking,
and with the due exceptions, quantum mechanics deals with phenomena happening at the sub-
atomic, atomic and molecular scales, and with how these systems interact with one another. Several
new and counterintuitive phenomena arise at these scales, such as non-locality [1], non-determinism
[2], wave-particle duality [3], quantum entanglement [4], zero-point vacuum fluctuations [5] to name
but a few. One key point, central in the quantum theory, is the fundamental and irreducible role
played by measurements of a quantum system on the quantum system itself [3]. Quantum mechanics,
rather than describing how a quantum system behaves in absolute terms, is in fact a theory of how
a quantum system reacts when measured. This difference, which may appear almost semantic, is
on the contrary of fundamental importance for the correct interpretation of the theory and lies at
the core of many of the exotic phenomena observed in the quantum world. This bears two main
consequences: first, on a practical level, the way measurements affect the observed system and the
way the system interacts with its surroundings (thereby including the measuring apparata) is an
essential point in the structure of the theory; second, as suggested by the theory and verified by
experiments, measuring does not simply reveal a property of a system but, instead, contributes in
determining the property itself [6]. Quantum mechanics is thus an overcoming of classical mechanics
but, at the same time, needs classical objects (measuring apparata) for the appropriate definition of
physical properties to associate to a system. This intricate tie between quantum and classical physics
is probably the element that, more than others, make the interpretation of quantum mechanics a
non-trivial task.

In the absence of an intuitive level of understanding, the mathematical structure of the theory is
clear and well developed [7]. It rests on the following postulates, the ensemble of which is know as
the Copenhagen interpretation of quantum mechanics.
Postulate 1 (System’s state). The state of an isolated quantum system is described by a vector |ψ〉

in a complex projective Hilbert space H. This vector contains the full information on any possible
outcome of measurements performed on the system and, a such, represents the most complete
description of the system’s state. By definition of projective Hilbert spaces, state vectors have norm
1.

In the following we focus on the special but important case of systems whose Hilbert space is
finite-dimensional.
Postulate 2 (System’s properties). If the dimension of the system’s Hilbert space is N , any measur-



2

able physical property A on a system is represented by a Hermitian matrix A of dimension N ×N .
Conversely, any N×N Hermitian matrix represents a measurable property on the system. Hermitian
matrices are often referred to as observables. By the properties of Hermitian matrices, observables
have real eigenvalues and orthonormal eigenvectors, forming a basis in the Hilbert space.
Postulate 3 (Measurement outcomes). The measurement outcome of an observable A on a system

in the state |ψ〉 is a stochastic variable x. The support of x is the set EA of eigenvalues of A. For
any a ∈ EA, being |a〉 the corresponding eigenvector, the probability function is given by P(x =
a) = |〈a|ψ〉|2, where 〈v|u〉 stands for the Hermitian inner product 〈u, v〉. In case of degeneracy, the
probability is simply P(x = a) =

∑
i |〈ai|ψ〉|2, {|ai〉} being the subset of eigenvectors of A associated

to eigenvalue a.
Postulate 3 is central in the interpretation of quantum theory as it specifies what kind of informa-

tion the state vector provides and how this information can be experimentally accessed. The state
vector is not directly measurable: what is measurable is the probabilistic structure it imposes to
measurement outcomes.
Postulate 4 (Wave-function collapse). If property A is measured on a system in a state |ψ〉 yielding

the outcome a, the state of the system changes instantaneously to the eigenstate |a〉 of A associated
to the eigenvalue a. The discontinuous change |ψ〉 → |a〉 is referred to as wave-function collapse. In
case of degeneracy the state after measurement collapses to 1

N
∑

i cai |ai〉, {|ai〉} being the subset of
eigenvectors of A associated to eigenvalue a, cai being the coefficient of |ai〉 in the expansion of |ψ〉
on the basis of eigenvectors of A (see Postulate 2), and N =

√∑
i |cai|2 is a normalization factor.

Postulate 5 (Time evolution). The state of an isolated system between measures evolves in time
according to the so-called Schrödinger equation

d|ψ〉
dt

= − i
~
H|ψ〉, (1)

where ~ ' 1.05×10−34 m2 kg s−1 is the reduced Planck’s constant and H, the system’s Hamiltonian,
is the observable of the energy of the system. For time-independent Hamiltonians, its formal solution
is |ψ(t)〉 = U(t)|ψ(0)〉, with the time-evolution operator U(t) = e−

i
~Ht

B. Dynamics of open quantum Markovian systems

Subsection I A gave the basic postulates of quantum mechanics for isolated systems (with the
exception of their interaction with measuring apparata). However, in many situations of physical
interest, the assumption of isolated systems breaks down due to the almost unavoidable coupling to
the external world [8]. It is a matter of both theoretical interest and practical significance to extend
the five postulates to the case of an open quantum system, i.e., a system S allowed to exchange
energy and information with another system E, considered as an external environment. One can
always imagine to identify E in such a way that the composite system S + E can be regarded as
isolated. The state of the total system is thus represented by a vector |ψSE〉. Under the assumption
however of only having access to the subsystem S rather than to the global system S + E, the
distribution of measurement outcomes on S will reflect at the same time the intrinsic probabilistic
nature of quantum systems (Postulate 3) and our subjective lack of knowledge on the global system
state due to our ignorance on E. Because information on the state of the system is only partial, the
description of S in terms of a state vector (Postulate 1) does not hold anymore1. To account for a

1 This point of view, although useful in providing an intuition on the need of extending the structure of quantum mechanics to a new
class of states, only gives a partial view: due to the existence of a specifically quantum kind of correlations between two systems
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lack of knowledge about the specific vector state of a system S, a new class of quantum states needs
to be introduced [9] describing statistical ensembles of vector states. Given a set of (not necessarily
orthogonal) vectors {|ψi〉}, let us introduce the matrix

ρ =
∑
i

wi|ψi〉〈ψi|, (2)

with the weights 0 ≤ wi ≤ 1 and
∑

iwi = 1. The notation |u〉〈v| stands for the complex outer
product u⊗ v∗, v∗ being the complex conjugate of v. By construction, ρ is a Hermitian matrix. In
the case wk = 1 for a certain k, the matrix (2) is referred to as a pure state, and mixed state otherwise.
A mixed state represents a classical statistical mixture of pure states |ψi〉〈ψi|, each contributing with
a weight wi. The 5 postulates of Subsection I A generalize to
Postulate 1b (Density matrices). The state of a (generally open) quantum system is described

by a positive semidefinite Hermitian matrix ρ of the form (2) called its density matrix. The
eigenvalues of this matrix are the probabilities that the system S be found in the corresponding
eigenvector, which is a vector in the system’s Hilbert space. This implies that Trρ = 1. A density
matrix represents a pure state if and only if Trρ2 = 1. A pure state is simply an alternative way of
describing a vector state.

Postulate 2 does not change since it does not depend on the state of the system.
Postulate 3b (Measurement outcomes on density matrices). When measuring A on a state ρ, the

probability of obtaining the specific eigenvalue a is P(x = a) = 〈a|ρ|a〉. If ρ is a pure state |ψ〉〈ψ|,
P(x = a) = 〈a|ψ〉〈ψ|a〉 = |〈a|ψ〉|2, as expected from Postulate 3. In the general case, one obtains
P(x = a) =

∑
iwi|〈a|ψi〉|2, as expected from a statistical mixture of pure states.

Postulate 4b (Density matrix collapse). If the measurement of A on ρ yields the outcome a

associated to the eigenvector |a〉, the density matrix instantaneously collapses to σa = |a〉〈a|ρ|a〉〈a|
Tr(|a〉〈a|ρ|a〉〈a|)

More in general, thereby including the case of degeneracy in the spectrum of observables, consider
the spectral decomposition of A =

∑
i aiAi. Then P(x = ai) = Tr(AiρAi) and σai = AiρAi

Tr(AiρAi)
.

Postulate 5b (Density matrix evolution for closed systems). The Schrödinger equation, in the case
of a closed system, generalizes to the von Neumann equation

dρ

dt
= − i

~
[H, ρ], (3)

with the commutator of two matrices [A,B] = AB −BA.
Extending postulate 5b to a generic open quantum system is generally not straightforward. As-

suming the global system S+E to be isolated, its pure state ρSE = |ψSE〉〈ψSE| evolves according to
the von Neumann equation dρSE

dt
= − i

~ [HSE, ρSE], HSE being the Hamiltonian of the global system,
containing in general local Hamiltonians HS and HE of, respectively, S and E, and an interaction
term VSE. The density matrix ρS of subsystem S is obtained from ρSE by performing a partial trace
TrEρSE over the degrees of freedom of E. One has, in general,

dρS
dt

=
dTrEρSE

dt
= TrE

dρSE
dt

= − i
~

TrE[HSE, ρSE]. (4)

The issue comes from the fact that no general way is known of obtaining a closed form for the
r.h.s. of eq. (4), without any additional assumptions on the environment E and its interaction with

(entanglement), the state of a subsystem in a global entangled state cannot be described by a vector, even if full information on the
global state is available. This aspect goes however beyond the scope of this brief overview.
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S. However, in the case of weakly interacting systems and rapidly decaying correlation functions
of E, the so-called Born-Markov approximation can be performed [9], which ultimately leads to a
Markovian equation for the evolution of S (quantum master equation), which for an N-dimensional
quantum system can always be cast in the so-called GKSL form as

dρS
dt

= − i
~

[H̃S, ρS] +
N2−1∑
i=1

γi

(
LiρSL

†
i −

1

2
{L†iLi, ρS}

)
. (5)

Here H̃S is the system’s Hamiltonian, modified to take into account the change in the system’s energy
due to its interaction with E. The first term on the r.h.s. accounts for the free dynamics of S, not
triggered by its interaction with E. The second term on the r.h.s., on the contrary, describes the
dynamics of S directly induced by its interaction with E: Li (Lindblad operators) are non-Hermitian

matrices (L†i stands here for Hermitian conjugation), each describing a specific dynamical process
in S triggered by E and happening at a rate γi, and {A,B} stands here for the anti-commutator
AB + BA of two matrices. The explicit form of matrices {Li} and of rates {γi} depends on the
specific problem at hand. In particular the physical properties of E are encoded in the rates {γi}.

C. Stochastic wave function: quantum dynamics as piecewise-deterministic processes

In Subsection I B, mixed quantum states have been introduced to account for classical-like stochas-
ticity in the state vector, in addition to the purely quantum one. As a consequence, the density
matrix (2) has been introduced together with its Markovian time evolution (5). The formalism in
terms of density matrices describes the average response of a collection of identical quantum sys-
tems, the state vector of which has a certain amount of stochasticity. The density matrix can be
regarded as an average of systems’ state vectors, and its evolution (5) as the average time evolution
of such an ensemble of quantum systems. One can however wonder whether it is possible to obtain
a description of the evolution of a single element of this ensemble. In other words whether it is
possible to write down, for a single quantum system, an equation for its state vector extending eq.
(1) to the case of open system dynamics, in the same way as, for density matrices, eq. (5) extends
(3) to the case of an ensemble of open systems. Since, as discussed in Subsection I B, the interaction
with an environment generally “hides” part of the information about the state vector of a system
S, its time evolution cannot be deterministic and must take into account the environmental-induced
stochasticity. The two natural requirements for such a single-open-system dynamical equation is that
it must reduce to the deterministic equation (1) for a closed system, and its average must reproduce
eq. (5). This second requirement is fundamental if one wants the single-open-system equation to
describe the dynamics of one element of the ensemble (2). There are many possible formulations of
equations respecting these two requirements [9–16], the full treatment of which goes well beyond the
scope of this introduction. Here we give a brief overview on what goes under the name of Marko-
vian stochastic wave-function approach [9, 10, 14], which has the advantage of having a clear and
direct experimental interpretation and has recently been employed to investigate quantum stochastic
thermodynamics [17, 18].

Skipping the derivation (the details of which can be found in [9]) and with the same Li, γi and H̃S

as in eq. (5), the equation for the evolution of the state vector |ψ〉 of an open quantum system can
be given under the form of the stochastic differential equation

d|ψ〉 = − i
~
L(|ψ〉)dt+

N2−1∑
i=1

( Li|ψ〉
|Li|ψ〉|

− |ψ〉
)

dNi, (6)
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where | · | is the norm in the Hilbert space. Eq. (6) is the sum of a deterministic time evolution
with generator L(|ψ〉) and a stochastic contribution in terms of inhomogeneous Poisson processes
Ni = Ni(t) satisfying dNidNj = δijdNi and

E [dNi(t)] = γi|Li|ψ〉|2dt, (7)

The generator of the deterministic evolution has the form

L(|ψ〉) =
(
H̃S − ~

i

2

N2−1∑
i=1

γi
(
L†iLi − |Li|ψ〉|2

))
|ψ〉.

This deterministic evolution has the form of a (non-linear) Schrödinger equation, which can be shown

for time-independent Hamiltonian H̃S and Lindblad operators Li to have the formal solution

|ψ(t)〉Det = e−
i
~ Ĥt|ψ(0)〉, (8)

through the effective non-Hermitian Hamiltonian Ĥ = H̃S−~ i
2

∑N2−1
i=1 γiL

†
iLi. Note that, due to the

non-Hermitian part −~ i
2

∑N2−1
i=1 γiL

†
iLi, the norm of |ψ(t)〉 in eq. (8) generally decreases in time.

On the other hand, the stochastic contribution in (6) produces in the evolution of |ψ(t)〉 random
instantaneous transitions. As evident from (6), there is a discrete and finite set of possible jumps
for the state vector of the form

|ψ〉 → Li|ψ〉
|Li|ψ〉|

, i = 1, . . . , N2 − 1. (9)

Each of these jumps, due to property (7), happens at a rate γi|Li|ψ〉|2dt: the dynamics of the state
vector is thus a Markovian piecewise-deterministic process (PDP). It is possible to show that the
waiting-time distribution during a deterministic evolution from the initial state |ψ(0)〉 is f(t) =
1 − ||ψ(t)〉Det|2, which explains the meaning of a decreasing norm during deterministic evolutions.
It is easy to see that eq. (6) reduces to the deterministic Schrödinger equation when γi = 0 ∀i
(closed-system case). It is also possible to show rigorously that

E [|ψ(t)〉〈ψ(t)|] = ρ(t), (10)

|ψ(t)〉 being the solution of eq. (6), ρ(t) the solution of eq. (5).
The above point proves that the trajectories given by eq. (6) are indeed a valid single-system

representation of the ensemble dynamics. In addition, these trajectories have a direct and interesting
experimental interpretation. To make this interpretation clear, it is convenient to state here that
the Markovian master equation (5) is invariant under unitary or inhomogeneous transformations [9].

In the latter case the transformations Li → L′i and H̃S → H̃ ′S read

L′i = Li + βiI, and H̃ ′S = H̃S +
1

2i

N2−1∑
k=1

γk
(
β∗kLk − βkL

†
k

)
+ αI, (11)

where βi ∈ C and α ∈ R. Despite leaving eq. (5) invariant, the transformation (11) changes
eq. (6) while still assuring that E[|ψ(t)〉〈ψ(t)|] = ρ(t). This means that different single-system-
dynamics decompositions of the same ensemble dynamics are possible. It turns out that these
different decompositions correspond to the different ways of performing continuous measurements
on the environment E the system S is in contact with. Intuitively, since a direct measurement of S
would collapse its state vector and thus stop its dynamics, one must follow the dynamics of system
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S by indirect measures. Specifically, one looks for signatures, in the continuously-monitored state
of E, of possible transitions happening in S. Thanks to the fact that E and S interact and that it
is properly this interaction that causes departures from the closed-system dynamics, monitoring S
through E is enough to reconstruct its dynamics. Under this interpretation, the deterministic parts
of the evolution of S correspond to the absence of detected transitions in the state of E, while jumps
correspond to the detection of a particular transition i.

D. Estimation for piecewise-deterministic processes

As explained above, the pure quantum state of an open system evolves as a piecewise-deterministic
Markov process. In recent years, the literature has extensively investigated this class of stochastic
processes, in particular for statistical purposes in a general setting [19, 20] or in the context of
particular applications: while not exhaustive, applications considered are various, from cell cycle
modeling [21, 22] to fatigue crack propagation analysis [23] through insurance risk models [24], food
contaminants exposure [25], and neurobiology [26]. Nevertheless, to the best of our knowledge,
no paper deals with statistical estimation in the particular context of quantum dynamics, whose
specificities need to be taken into account. We think that three of them are particularly significant.
First, the state space of quantum trajectories is the unit ball of a complex Hilbert space, which is a bit
unusual. In addition, post-jump locations lie on the boundary so that the transition kernel does not
admit a density with respect to the Lebesgue measure on the whole state space but only on the unit
circle. For instance, the techniques developed by [27] for estimating the transition distribution do
not apply in this context. Last but not least, the direct observation of the trajectory is problematic
due to the wave-function collapse phenomenon, and can at most be performed only once at a specific
time managed by the experimenter, while usual observation schemes assume repeated observations
of the trajectory, either at the jump times or on a regular temporal grid.

II. PROBLEM FORMULATION

Let us imagine to have ns copies of a quantum system S, each in contact with the same Markovian
environment E. Assume that we know some properties of S (in particular, we know its Hamiltonian),
but we do not know its initial state |ψ(0)〉. Also, we do not know the state of E, which is assumed
not to evolve in time compatibly with the Born-Markov approximation. We assume to be allowed
here to continuously monitor E, such that the trajectory of each single quantum system can be
followed.

We wonder whether information on additional properties of S, on the initial state of its ns copies
and on the state of E can be inferred by looking at the system’s trajectories. On top of the piecewise-
deterministic trajectories, we allow a single direct measurement to be performed on each copy of S.
This instantaneously stops the dynamics of S and hence destroys its trajectory, which means that
after each such measurement a new copy of S must be considered and followed in time.
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A. Atom-field interaction

We consider in particular our system S to be an atom2 with two distinct energy levels only,
a situation often encountered in practical applications in the fields of quantum information and
quantum computation [28]. Be |0〉 and |1〉 these two energy levels, and be εg = ε1 − ε0 > 0 their
energy gap. The system’s Hamiltonian, expressed in the {|0〉, |1〉} basis, simply reads

HS =

(
0 0
0 εg

)
,

while most general expression for the system’s state vector is

|ψ〉 = c0|0〉+ c1|1〉, (12)

with c0, c1 ∈ C and |c0|2 + |c1|2 = 1. The (Markovian) environment E considered here is a thermal
electromagnetic field, at the unknown temperature T . In a semi-classical treatment of the problem
[29], in which S is considered a quantum system but E is treated classically, and in the weak-coupling
limit, the atom interacts with the field through the dipole moment of its |0〉 ↔ |1〉 transition. Such
an interaction leads to either the absorption of a photon of energy εg from E (transition |0〉 → |1〉)
or to the emission of an excitation of energy εg into E (transition |1〉 → |0〉). The atomic dynamics
is given, on an ensemble level, by the master equation

dρ

dt
= − i

~
[HS, ρ]

+ γ1

(
σ−ρσ+ − 1

2
{σ+σ−, ρ}

)
+ γ2

(
σ+ρσ− − 1

2
{σ−σ+, ρ}

)
, (13)

which is of the form (5) with L1 = σ− = |0〉〈1| describing the emission of a photon to E, L2 = σ+ =
(σ−)† = |1〉〈0| the absorption of a photon from E with rates, respectively, γ1 =

(
1 +n(εg, T )

)
γ0 and

γ2 = n(εg, T )γ0. Here γ0 is the atomic vacuum spontaneous emission rate and

n(ε, T ) =
1

−1 + eε/kBT
(14)

is the average number of photons of energy ε in a field at temperature T , kB ' 1.38 × 10−23 J K−1

being Boltzmann’s constant.
It is possible to solve eq. (13) analytically, obtaining

ρ(t) =

(
p0(t) K(t)
K∗(t) 1− p0(t)

)
,

with

p0(t) = p0(0)e−(γ1+γ2)t +
γ1

γ1 + γ2

(
1− e−(γ1+γ2)t

)
, (15)

K(t) = K(0)e
iεgt

~ e−
γ1+γ2

2
t

being, respectively, the |0〉-state ensemble population and the so-called quantum coherence between
states |0〉 and |1〉.

2 By “atom” we mean here any quantum system whose internal structure we can model as having a discrete set of energy levels. Examples
are real atoms, quantum dots, superconducting qubits, polarisation states of photons etc...
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B. Piecewise-deterministic trajectories

On the other hand, when continuously monitoring the field, the dynamics of S can be followed
under the form of a piecewise-deterministic process (PDP). In the specific example at hand, as a
particular case of the general setting discussed in Subsection I C, more than one possibility exists for
monitoring the field. Here we consider two possible schemes, equivalent respectively to the so-called
direct photodetection and the so-called homodyne photodetection [9, 12]. In the first case the jump
operators are simply σ− and σ+ with associated rates γ1 and γ2 respectively, the same as in eq. (13).
This configuration corresponds to directly probing the field for photons emitted/absorbed by the
atom. In the second case, four jump operators are introduced as L±e = σ−± iβ and L±a = σ+± iβ∗ =
(L∓e )† (β ∈ C), with rates γ±e = γ1

2
and γ±a = γ2

2
. This is a transformation of the kind (11) (it is

easy to see that it does not change the Hamiltonian of the system) and, as such, produces a valid
set of Lindblad operators. These operators correspond to monitoring the field E after it interferes
with another local electromagnetic field of amplitude β, which is not directly coupled to S.

Note that the “direct-photodetection-like” scheme is obtained from the “homodyne-
photodetection-like” scheme in the limit β → 0. We will hence hereafter focus on the homodyne
strategy alone. The deterministic part of the system’s trajectories is governed by the non-Hermitian
Hamiltonian

Ĥ =

(
−~ i

2

[
γ1|β|2 + γ2(1 + |β|2)

]
0

0 εg − ~ i
2

[
γ2|β|2 + γ1(1 + |β|2)

]) (16)

while, using eqs. (9) and (12), the four possible jumps are

J±e : c0|0〉+ c1|1〉 →
1√
N±e

(
(c1 ± iβc0)|0〉 ± iβc1|1〉

)
, (17)

J±a : c0|0〉+ c1|1〉 →
1√
N±a

(
± iβ∗c0|0〉+ (c0 ± iβ∗c1)|1〉

)
, (18)

where N±e and N±a are normalization factors. Following eq. (7) the associated probabilities are

p±e,a =
γ±e,aN

±
e,a

γ+
e N

+
e + γ−e N

−
e + γ+

a N
+
a + γ−a N

−
a

. (19)

Finally, given that the last jump has brought the system to the state h0|0〉+ h1|1〉, the waiting-time
distribution for the next jump is

f(τ) = 1− |h0|2e−τ
[
γ1|β|2+γ2(1+|β|2)

]
− |h1|2e−τ

[
γ2|β|2+γ1(1+|β|2)

]
. (20)

C. Measures

As discussed in Subsection I C, a quantum trajectory (or PDP), is generated when the environment
of an open quantum system is continuously monitored. This allows, in principle, to detect the
transitions induced by the system-environment interaction and to determine whether the system has
“jumped” to a new quantum state.

On top of that, we assume here that the analyst is allowed, only once per repetition of the PDP,
to directly measure the quantum system. By virtue of Postulate 4 of Subsection I A, this radically
interferes with the system’s dynamics and projects the state vector onto one eigenvector of the
measured observable. This is the reason why only one direct measurement is allowed during the
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PDP: after measuring, the PDP is fundamentally altered and no further information on the system’s
original dynamics can be extracted. Measuring properties of a single-system’s wave function is a
challenging but possible task [30, 31]. The quantity we choose to measure is, for the i-th trajectory
in the state |ψi(ti)〉 at time ti,

Y i
ti

= |〈0|ψi(ti)〉|2, (21)

i.e., the amplitude of the projection of the state onto the atomic ground state. Note that, in light of
eq. (10),

E[Y i
ti

] = E[〈0|ψi(ti)〉〈ψi(ti)|0〉] = 〈0| E [|ψi(ti)〉〈ψi(ti)|] |0〉
= 〈0| ρ(ti) |0〉 = p0(ti). (22)

A specific example of distribution of the outcomes Y i
ti

on 102 repetitions of the atomic PDP is
shown in the upper panel of Fig. 1. The bottom panel of Fig. 1 shows the r.h.s. (crosses) and the
l.h.s. (solid line) of eq. (22).

III. ESTIMATION PROCEDURE

A. Strategy

We are interested in the estimation of the unknown parameters of the system, namely the initial
condition p0(0) and the parameters γ1 and γ2. As aforementioned, we observe a dataset composed
of independent measures Y i

ti
, 1 ≤ i ≤ n, where the time of measurement ti can be chosen by the

analyst. In this chapter, we propose to apply an ordinary least squares estimation method that
only takes advantage of the average behaviour of the measures expressed in eq. (22). Precisely, the
estimator (p̂0(0), γ̂1, γ̂2) is expected to be obtained by minimizing the function

V (p0(0), γ1, γ2) =
n∑
i=1

(
Y i
ti
− p0(ti)

)2
,

where the dependency of p0 on the three parameters is implicit. The expression of p0 being rather
complex, and in order to avoid gradient algorithms for minimizing the sum of squares function,
we exploit the fact that the experimenter can manage the times of measurement to simplify the
equations. First, as t goes to infinity,

p0(t)→ γ1

γ1 + γ2

.

In addition, as t goes to 0, we have

p0(t) ∼ p0(0) + t [γ1 − p0(0)(γ1 + γ2)] .

Consequently, if the n/2 first measurements have been made in long time while the n/2 last measure-
ments have been made in short time, the parameters can be estimated by simultaneously minimizing
the approximated functions

V l(γ1, γ2) =
∑
i≤n/2

(
Y i
ti
− γ1

γ1 + γ2

)2

, (23)

V s(p0(0), γ1, γ2) =
∑
i>n/2

(
Y i
ti
− p0(0)− ti [γ1 − p0(0)(γ1 + γ2)]

)2
, (24)

where V l does not depend on the initial value p0(0).
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FIG. 1: Top: Distribution of measurement outcomes Y iti (eq. (21)) on 102 trajectories, all having the same initial state
1√
2
(|0〉+ |1〉) and measured at randomly-chosen timepoints ti. Bottom: average value (22). Each point at time tx corresponds

to the average of |〈0|ψi(tx)〉|2 over 104 trajectories, all having the same initial state 1√
2
(|0〉+ |1〉) . The solid line is the analytical

solution (15) of the ensemble dynamics. Other system parameters are εg = 1014 rad · s−1 and β = 0.

B. Least-square estimators

It should be noticed that (23) and (24) can be easily expressed in terms of p0(0) and

u1 =
γ1

γ1 + γ2

, (25)

u2 = γ1 − p0(0)(γ1 + γ2). (26)
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With this reparametrization, we have

V l(u1) =
∑
i≤n/2

(
Y i
ti
− u1

)2
,

V s(p0(0), u2) =
∑
i>n/2

(
Y i
ti
− p0(0)− tiu2

)2
.

The main advantage for these new equations is that the three variables have been decoupled from
each other. It is obvious to see that û1 defined as the average value of the Y i

ti
in long time, i.e.,

û1 =
2

n

∑
i≤n/2

Y i
ti
,

minimizes V l. In addition, V s(p0(0), u2) is the cost function associated with classical linear regres-
sion, with p0(0) as the intercept and u2 as the slope. The well-known solution of this minimization
problem is expressed in terms of empirical mean, variance and covariance of the measures in short
time,

û2 =

∑
i>n/2

(
ti −

2

n

∑
i>n/2

ti

)(
Y i
ti
− 2

n

∑
i>n/2

Y i
ti

)
∑
i>n/2

(
ti −

2

n

∑
i>n/2

ti

)2 ,

p̂0(0) =
2

n

∑
i>n/2

Y i
ti
− û2ti. (27)

The reparametrization (25) and (26) can be inverted and we get the following estimators of γ1 and
γ2,

γ̂1 =
û1û2

û1 − p̂0(0)
, (28)

γ̂2 =
(1− û1)û2

û1 − p̂0(0)
. (29)

C. Numerical experiments

To test the performance of the estimators (27), (28) and (29) we performed several numerical
experiments, by simulating sets of n trajectories according to eqs. (16) and (20), having chosen the
atomic transition energy εg = 1014 rad · s−1, a value falling into the infrared spectrum, following the
high interest arising nowadays on technologies based on infrared quantum dots [32]. The initial state
of each trajectory is |ψinit〉 = 1√

2
(|0〉+ |1〉) and we fixed γ1 = 0.3 s−1, γ2 = 0.1 s−1.

As a first set of numerical experiments, we fixed the value β = 0, thus limiting ourselves to
the case of direct photodetection, and simulated four groups of 102 sets of n trajectories, with
n = 50, 100, 500, 1000. For each set of n trajectories, the procedure of Subsections II C and III B
was applied to produce the estimation of the three parameters p0(0), γ1 and γ2. Fig. 2 shows the
distribution of the 102 estimator values for each value of n (top: p0(0); middle: γ1; bottom: γ2).
As clearly seen, the performance of the estimators (27), (28) and (29) increases significantly with
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increasing n. The average value of each estimator is in very good agreement with the real value of
the corresponding parameter (horizontal blue line in each panel).

As a second set of experiments, we investigated if and how different strategies for environmental
measurements have an impact on the estimator performances. In particular, in the set of simulations
shown in Fig. 3, we fixed the number of trajectories for each estimation to n = 103 and tuned the
value of β ∈ R in the range [0, 3]. For each β-value, 102 groups of 103 trajectories were simulated, and
estimators were calculated for each group. The boxplot distributions shown in the three uppermost
panels of Fig. 3, for respectively p0(0), γ1 and γ2, highlight the fact that the performance of the
estimators does not seem to depend on the chosen measuring strategy. This in spite of the fact
that the structure of the simulated trajectories strongly depends on such strategy, as shown in the
bottom panel of Fig. 3 giving, for each simulated value of β, the average number of jumps in the
corresponding set of trajectories, which increases quadratically with |β|.

IV. PHYSICAL INTERPRETATION

The two parameters γ1 and γ2, whose value is estimated through the procedure presented in
Subsection III B, contain important information on physical properties of both the atom and the
electromagnetic field. Their estimation can be thus used to access unknown physical properties of
both systems. Recall that γ1 =

(
1 + n(εg, T )

)
γ0 and γ2 = n(εg, T )γ0, with the average photon

number n(εg, T ) given by eq. (14) and the atomic vacuum spontaneous emission rate

γ0 =
|d|2ε3

g

3~4πε0c3
, (30)

where ε0 ' 8.85×10−12 F m−1 is the vacuum permittivity, c ' 2.998×108 m s−1 is the speed of light
in vacuum and d is the dipole moment vector of the atomic transition. This means that, assuming
the knowledge of the energy gap εg of the atomic transition, one has access to the temperature T of
the electromagnetic field as

T =
εg

kBlnγ1
γ2

. (31)

Estimating γ1 and γ2 through atomic trajectories means thus that one can use the atom to probe
the field temperature or, in other words, that the atom can be used as a field thermometer.

In addition, atomic properties can also be inferred. In particular, using now eqs. (14), (30) and (31)
together with the definition of γ1 and γ2 one obtains

|d|2 = (γ1 − γ2)
3~4πε0c

3

ε3
g

, (32)

which allows to estimate the square norm of the atomic dipole through observations of the atomic
PDP. This is exemplified in Fig. 4, showing the estimation of both T and |d| through the estimators
for γ1 and γ2.

For γ1 = 0.3 s−1, γ2 = 0.1 s−1 and εg = 1014 rad · s−1 one obtains |d| ∼ 2 × 10−31 C · m and
T ∼ 700 K, values which correspond to the blue horizontal lines in the panels of Fig. 4. The good
agreement shown in Fig. 4 between the estimations and the real values of T and |d| shows that the
procedure leading to the estimators (28) and (29) can indeed be used to probe unknown physical
properties of both the atom and the electromagnetic field.
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