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I. DERIVATION OF THE RESONANCES

In order to derive the equation of the resonances [Eq. (1) of the paper], we start from

the following conservative nonlinear Schrödinger equation (NLSE)

i∂zu+ d(i∂t)u− δβ2(z)

2
∂2
t u+ γ|u|2u = 0, (1)

d(i∂t) =
∑

n≥2

βn

n!
(i∂t)

n, D(ω) =
∑

n≥2

βn

n!
ωn. (2)

where t stands for time measured in the frame moving at natural group velocity of light

Vg = dk/dω−1 [1], γ is the nonlinear coefficient, βn = dnk/dωn is the n-th order average

dispersion, d(i∂t) and D(ω) are the average dispersion operators in time and frequency

domain (Fourier transform), respectively. In Eq. (1) the average group-velocity dispersion

(GVD) β2 is perturbed by the periodic modulation δβ2(z) and by higher-order dispersive

effects (βn, n ≥ 3).

We consider a localized wave-packet (either a soliton or a shock front) that moves with

characteristic velocity Vs = 1/∆k1, or in other words a solution us(z, t) = A(τ) exp(iqz)

of the unperturbed Eq. (1) which has nonlinear wavenumber q and is stationary in the
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reference frame τ = t−∆k1z. In terms of this new variable Eq. (1) reads as:

i∂zu+ d̂(i∂τ )u− δβ2(z)

2
∂2
τu+ γ|u|2u = 0, (3)

d̂(i∂τ ) =
∑

n≥2

βn

n!
(i∂τ )

n −∆k1i∂τ , D̂(ω) =
∑

n≥2

βn

n!
ωn −∆k1ω. (4)

When the perturbation is effective, the solution can be decomposed into the localized

wave and radiation modes g(z, τ)

u(z, τ) = A(τ)eiqz + g(z, τ). (5)

Assuming the radiation modes to be weak (|g| ≪ |A|), the linearization of Eq. (1) around

the localized wave yields

i∂zg + d̂(i∂τ )g −
δβ2(z)

2
∂2
τg + γ

(

u2
sg

∗ + 2|us|2g
)

=
δβ2(z)

2
∂2
t us − d̂H(i∂τ )us, (6)

where d̂H(i∂τ ) =
∑

n≥3
βn

n!
(i∂τ )

n accounts for the perturbation due to higher-order dispersive

terms. The RHS of Eq. (6) represents the driving force for the evolution of the radiation

modes. Importantly, the effective wavenumber of this forcing is not simply the wavenumber

of the localized wave-packet but is also affected by the quasi-momentum associated with the

periodic modulation of the second order dispersion.

Let us focus first on the free evolution of the system, described by the LHS of Eq. (6).

Without loss of generality, the radiation can be searched in the form

g(z, t) =
[

a(z)ei(kz−ωτ) + b∗(z)e−i(kz−ωτ)
]

exp

[

iqz + i
ω2

2

∫ z

0

δβ2(s)ds

]

. (7)

We find the following system that rules the free evolution [i.e. neglecting the forcing term

corresponding to RHS of Eq. (6)] of the dispersive waves

i∂z





a

b



+





D̂(ω)− k − q + 2γ|A|2 γA2 exp
[

−iω2
∫ z

0
δβ2(s)ds

]

−γ(A∗)2 exp
[

iω2
∫ z

0
δβ2(s)ds

]

−
(

D̂(−ω) + k − q + 2γ|A|2
)









a

b



 = 0. (8)

The dispersion relation of the linear waves k = k(ω) can be found by setting the determinant

of the matrix equal to zero. In terms of the odd and even dispersive contributions (D̂o(ω) =

D̂(ω)− D̂(−ω) and D̂e(ω) = D̂(ω) + D̂(−ω), respectively), we find

k±(ω) =
D̂o(ω)

2
± 1

2

√

[

D̂e(ω)− 2q + 2γ|A|2
] [

D̂e(ω)− 2q + 6γ|A|2
]

. (9)
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For the soliton, Eq. (9) holds true with A = 0 since radiation is not temporally overlapped

with the soliton (it grows on soliton tails where A exponentially vanishes) and q = γP/2 [1],

being P the peak power of the soliton. Therefore we obtain

k(ω) = D̂(ω)− γ
P

2
. (10)

For the shock wave, the radiation modes are amplified out of noise close to the leading

edge of the dispersive shock wave. Therefore they propagate over the flat-top background

A0 (power Pb = |A0|2), which develops as a result of the steepening of the pulse edges [2],

which is in turn responsible for the shock formation. In this case we can set q = γPb, i.e.

the wavenumber of the gray soliton associated to the leading edge of the dispersive shock

wave. In this case Eq. (9) yields

k±(ω) =
D̂o(ω)

2
± 1

2

√

D̂e(ω)
[

D̂e(ω) + 4γ|A0|2
]

. (11)

In the shock case the presence of the background generates two symmetric branches of the

dispersion relation. This fact accounts for the four wave mixing between the dispersive waves

and the pump. Usually the amplitude of the two symmetric waves (a and b) are orders of

magnitude different, so that only one branch of dispersion relation (k+ in our case) turns out

to be relevant. Under the hypothesis |A0|2 ≪ |D̂e|, we can expand in Eq. (11) the square

root to obtain, for the relevant branch,

k(ω) = D̂(ω) + γPb. (12)

The forcing term F arising from the RHS of Eq. (6) which is effective for the growth of

the radiation modes with complex amplitudes a and b, turns out to be

F =
δβ2(z)

2
exp

[

−i
ω2

2

∫ z

0

δβ2(s)ds

]

∂2
tA− exp

[

−i
ω2

2

∫ z

0

δβ2(s)ds

]

d̂H(i∂τ )A. (13)

By considering a periodic δβ2(z) with period Λ, we can expand the perturbation in Fourier

series of the form δβ2(z) =
∑

l cle
il 2π

Λ
z, and consequently expand the exponential in Eq. (13)

as

exp

[

−i
ω2

2

∫ z

0

δβ2(s)ds

]

=
∑

m

dme
im 2π

Λ
z. (14)

Therefore we cast Eq. (13) in the form

F = ∂2
τA

∑

l,m

cndme
i(l+m) 2π

Λ
z − d̂H(i∂τ )A

∑

m

dne
im 2π

Λ
z, (15)
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which allow to recognize two different driving terms for the growth of radiation modes. The

first one comes from the modulation of the GVD, whereas the second one from higher-order

dispersive terms. Importantly, even in the case of sinusoidal modulation, the exponential

term (14) generates an infinite set of Fourier harmonics.

Coupling of energy into the radiation modes (dispersive waves) efficiently occurs when

their wavenumber k(ω) equals the wavenumber of the forcing term. This leads to the fol-

lowing resonance condition (quasi-phase-matching)

k(ω) =
2π

Λ
m, m = 0,±1,±2, . . . (16)

or, equivalently, in the form of Eq. (1) of the paper:

D̂(ω)− knl =
2π

Λ
m, m = 0,±1,±2, . . . (17)

where knl = γP/2 and knl = −γPb, for the soliton and the shock configuration, respectively.

Equation (16) retains its validity for any general dispersion profile. However, in our

experiments the dispersive operator can be truncated to the first correction to GVD, i.e.

third-order dispersion β3, whereas all the higher-order dispersive terms can be safely ne-

glected. In this case, Eq. (16) can be cast, for the soliton configuration, in the final form

β3

6
ω3 +

β2

2
ω2 −∆k1ω − γ

P

2
=

2π

Λ
m, (18)

whereas for the shock configuration, we obtain

β3

6
ω3 +

β2

2
ω2 −∆k1ω + γPb =

2π

Λ
m. (19)

II. PROPERTIES OF THE DISPERSION OSCILLATING FIBERS

Two different DOFs with different lengths and modulation periods have been fabricated

for the experiments. The fiber used for the soliton experiment, labelled DOF#1 here, is

150 m long and has a modulation period Λ = 5 m. Its outer diameter, which longitudinal

evolution is displayed in Fig. 5a of the manuscript, oscillates between 110 and 123 µm.

The inset in Fig. 1a shows a scanning electron microscope (SEM) image of the DOF cross

section. It has two bigger holes around the core allowing to increase its form birefringence and

to ensure a polarization-maintaining behaviour. Figure 1a shows the full dispersion curve

simulated with a commercial finite-element mode solver for the maximum and minimum
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diameters (red and blue lines respectively), for the neutral axis excited in experiments. The

black line represents the average dispersion over the whole DOF length. The average zero-

dispersion wavelength is located at 1064.5 nm. Its attenuation was measured to be 0.75

dB at 1064 nm and its nonlinear parameter was calculated to be γ = 10 (W km)−1 at this

wavelength. The DOF used for the dispersive shock wave experiment, labelled DOF#2,

is 50 m long and has a modulation period Λ = 0.5 m. Its outer diameter (Fig. 5d of the

manuscript) oscillates between 110 and 122 µm. It is based on the same design than DOF#1

although the geometrical parameters of the cross-section are slightly different. Figure 1b

shows the simulated dispersion curves for the maximum and minimum diameters (red and

blue lines respectively) as well as the average one (black line). The average zero-dispersion

wavelength is located at 1062.5 nm. The overall attenuation is 0.35 dB at 1064 nm, and its

nonlinear parameter is γ = 10 (W km)−1 at this wavelength.
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FIG. 1: Simulated dispersion curves of the DOFs used for the soliton (a, DOF#1) and disper-

sive shock wave (b, DOF#2) experiments. Red and blue lines correspond to the maximum and

minimum diameters, respectively. Black lines correspond to the average dispersion curves over

the whole DOF lengths. Insets show SEM images of the DOF cross sections at the maximum

diameters.
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Parameter Soliton Shock

β2 (ps2/km) −1.2 2.9

δβ2 (ps2/km) 1.2 1.2

β3 (ps3/km) 0.0716 0.0645

β4 (ps4/km) −1.1 · 10−4 −1.1 · 10−4

γ (W−1km−1) 10 10

α (dB/km) 5 7

Λ (m) 5 0.5

L (m) 150 50

TABLE I: Parameters of the fibers employed in the numerical simulations

III. NUMERICAL SIMULATIONS AND FIBER PARAMETERS

The parameters of the fibers that arise from fiber characterization and have been used

in numerical simulations are listed in table 1. In the illustrating example reported in Figs.

2 and 3 of the manuscript, only the elements which are essential for the description of the

basic phenomenon have been considered. In this case the simulations has been performed

by integrating the nonlinear Schrödinger equation (NLSE) reported in the method section,

i.e. the basic NLSE with additional perturbations due to third-order dispersion β3 and the

periodic GVD δβ2(z). For simplicity, the initial conditions have the following hyperbolic

secant shapes E(t, z = 0) =
√
P0sech

(

1.76t
T0

)

, with T0 = 150 fs and P0 = 15 W, for the

soliton configuration, and T0 = 280 and P0 = 100 W for the shock wave configuration. The

spectrograms [Fig. 3 in the paper] have been calculated by using a Gaussian pulse as a gate

with duration of 1.6 ps.

When comparing directly with the experimental results [see Fig. 4c,f in the paper] we

make use of the following extended NLSE [1], which accounts also additional effects such as

higher order dispersion effects, Raman effect, self-steepening, and fiber losses

∂E(z, t)

∂z
= −i

β2(z)

2

∂2E(z, t)

∂t2
+

β3

6

∂3E(z, t)

∂t3
+ i

β4

24

∂4E(z, t)

∂t4
− α

2
E(z, t)

+ iγ

(

1 + iτs
∂

∂t

)

×
(

E(z, t)

∫

R(t′)|E(z, t− t′)|dt′
)

, (20)

with βn the nth order dispersion terms, α the linear losses, τs = 1/ωp with ωp the central

pulsation of the pulse, R(t) the full nonlinear response function that includes the instanta-
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neous (Kerr) and delayed (Raman [3]) contributions with fractional weights fKerr = 0.82 and

fRaman = 0.18, respectively [1]. Here β2(z) = β2 +∆β2 sin(2πz/Λ) and we checked through

numerical simulations that all other parameters can be assumed to be constant along the

fiber length. Indeed, the modulation of the nonlinear coefficient for instance is about 10 %,

which is about one order of magnitude lower than the β2 one [4].

In this case we also use initial conditions that accurately describe the pulses injected in the

fiber, which has been experimentally characterized by means of the frequency resolved opti-

cal gating (FROG) system. In particular the best fit with FROG data gives slightly chirped

input pulses of the following form: E(t, z = 0) =
√
P0sech

(

1.76t
T0

)

exp(−iCt2

2T 2
0

) for the soliton

configuration with T0 = 150 fs and C = 0.35, and E(t, z = 0) =
√
P0 exp

(

−1.665(1+iC)t2

2T 2
0

)

for

the shock configuration with T0 = 280 fs and C = 1.24. The outcome of the numerical inte-

gration of Eq. (20) with such initial conditions are directly compared with the experimental

results in Fig. 4c,f of the paper.

Using the realistic simulation parameters given above, we have also simulated the spectral

output against pump peak power in both the soliton and dispersive shock wave configura-

tion, respectively. The results, displayed in Fig. 2a,b are directly comparable with the

experimental maps reported in Figs. 5b,e of the paper. In both cases the quantitative

agreement with experimental data is excellent and confirms the progressive excitation of

multiple resonances induced the periodic driving with increasing peak power.

Finally, we emphasize that we have compared the experimental results with the simu-

lations of the full model [Eq. (20)] in order to have a better accuracy over all the details.

However, we have verified that no significant difference arises when integrating the simpler

NLSE reported in methods, since the additional terms (steepening, Raman effect, losses,

fourth-order dispersion) are indeed negligible in our regime. In particular the parametric

excitation of the resonances that we observe in the experiments and in the numerics are

indeed quantitatively and accurately explained on the basis of this simpler NLSE.
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FIG. 2: Colormap of the output spectrum against the input power obtained by means of numerical

integration of Eq. (20): a. soliton configuration; b. shock configuration. The dashed vertical lines

indicates the average zero dispersion wavelength (ZDW). The maps in panels a and b are directly

comparable with the experimental results in Figs. 5b and 5e of the paper, respectively.



9

[1] Agrawal, G. P. Nonlinear Fiber Optics, Academic Press (5th edition, 2012).

[2] Conforti, M., Baronio, F. & Trillo, S. Resonant radiation shed by dispersive shock wave, Phys.

Rev. A 89, 013807 (2014).

[3] Hollenbeck, D. & Cantrell, C. D. Multiple-vibrational-mode model for fiber-optic Raman gain

spectrum and response function, J. Opt. Soc. Am. B 19, 2886 (2002).

[4] Droques, M., Kudlinski, A., Bouwmans, G. , Martinelli, G. & Mussot, A. Experimental demon-

stration of modulation instability in an optical fiber with a periodic dispersion landscape, Opt.

Lett. 37, 4832 (2012).


