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Fundamental physical phenomena such as laser-induced ionization, driven quantum tunneling, Faraday
waves, Bogoliubov quasiparticle excitations, and the control of new states of matter rely on time-periodic
driving of the system. A remarkable property of such driving is that it can induce the localized (bound) states
to resonantly couple to the continuum. Therefore experiments that allow for enlightening and controlling
the mechanisms underlying such coupling are of paramount importance. We implement such an
experiment in a special optical fiber characterized by a dispersion oscillating along the propagation
coordinate, which mimics ‘‘time’’. The quasi-momentum associated with such periodic perturbation is
responsible for the efficient coupling of energy from the localized wave-packets (solitons in anomalous
dispersion and shock fronts in normal dispersion) sustained by the fiber nonlinearity, into free-running
linear dispersive waves (continuum) at multiple resonant frequencies. Remarkably, the observed resonances
can be explained by means of a unified approach, regardless of the fact that the localized state is a soliton-like
pulse or a shock front.

O
ur experimental set-up realizes a platform for studying the coupling of localized states of a nearly
conservative (Hamiltonian) system into radiation modes induced by periodic driving. A sketch of the
physical principle is depicted in Fig. 1. Time periodic driving of the system rules fundamental physical

phenomena such as laser-induced ionization1, driven quantum tunneling2, Faraday waves3–6, Bogoliubov quasi-
particle excitations7, and the control of new states of matter8–11. The localized states that we exploit are nonlinear
(non-spreading) wavepackets of optical fibers, namely temporal solitons12,13 and dispersive shock waves
(DSWs)14–16. They share the property to have a well-defined wavenumber and group-velocity which are crucial
for determining their resonances. Their excitation is readily accessible by operating with opposite group-velocity
dispersion (GVD, b2 5 d2k/dv2): anomalous (b2 , 0) for solitons in order to balance nonlinearity, whereas DSWs
emerge from a gradient catastrophe occurring in the normal GVD (b2 . 0). Despite such difference, both are
essentially described by a Hamiltonian model, namely the nonlinear Schrödinger equation (NLSE)12,13, where the
propagation distance plays the role of evolution variable (usually time). This allows us to introduce periodic
driving by employing photonic crystal fibers whose flexibility to engineer dispersion is fully exploited to have a
longitudinal periodic GVD, thus realizing dispersion oscillating fibers (DOFs)17. We report clear evidence that
this built-in and tailorable periodicity of the dispersion is responsible for the parametric excitation of radiation
modes which are amplified out of quantum fluctuations at multiple resonant frequencies (even for a spatially
harmonic variation). This thus constitutes a novel implementation of quasi-phase-matching18. This is in marked
contrast with radiation caused by standard perturbations such as third-order (or higher) dispersion19–24, which
usually feature isolated resonances. Our results also clearly show that the parametric excitation of resonances is
neither a prerogative of solitons nor of systems with periodic injection or extraction of energy such as fiber
lasers25, passive cavities26 or lumped amplifier links27,28 where dissipative resonances lead to the generation of so-
called Kelly sidebands.

Results
Theory. Perturbation theory allows us to predict the frequency detunings vRR of the resonant radiations (RR) that
can be parametrically excited in a DOF. They turn out to be given by the roots of the following expression (see
Supplementary information for a detailed derivation):

D̂(vRR){knl~
2p

L
m, m~0,+1,+2, . . . ð1Þ
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where D̂(v)~{Dk1vzb2v2=2zb3v3=6z . . . is the average
linear dispersion in the pump reference frame.
b3 ; d3k/dv3 and Dk1 arises from the deviation of the actual
group-velocity from the natural one22). In Eq. (1), knl is a well
defined nonlinear wavenumber fixed by power. For a bright

soliton knl 5 cP/2, where P and c are the soliton peak power and
the fiber nonlinearity, whereas for a shock wave knl 5 2cPb, being Pb

the power of the background field over which the RR propagates23.
Equation (1) generalizes previously proposed formulas31,32 and
expresses momentum conservation: it states that the difference
between the momentum of the linear waves and the momentum
generated by the nonlinear pump must be equal to the virtual
momentum carried by the periodic modulation of the dispersion.

We verified that Eq. (1) describes accurately the parametric excita-
tion of RR in both GVD regimes. A clear illustration of this phenom-
enon is provided in Fig. 2, which shows the simulated evolution of a
hyperbolic secant pulse (150 fs duration, peak power P) based on the
NLSE with included periodic GVD and dispersion slope b3 (see
methods). Figure 2a displays the time domain evolution of a pulse
with P 5 15 W, corresponding to a nearly fundamental soliton
launched in a 150 m long DOF of period L 5 5 m. Strong radiation
traveling slower than the soliton becomes visible beyond the activa-
tion distance za , 20 m, corresponding to maximum pulse compres-
sion. In the spectral domain, the radiation modes correspond to
several distinct and well defined frequencies [see Fig. 2b,c] that agree
with the prediction based on Eq. (1)(vertical green lines). The peak
detuned by ,9 THz from the pump turns out to be the standard RR
[m 5 0 in Eq. (1)], whereas other twelve peaks originate from the
periodic perturbation [m ? 0 in Eq. (1)].

Figure 1 | Sketch of physically equivalent phenomena. (a) coupling of

bound states to continuum induced by generic potential which is

oscillating in time. (b) fiber with oscillating diameter (dispersion) which

induces wavepackets that are localized in time thanks to a self-induced

potential given by the nonlinearity to couple into the radiation continuum

at characteristic resonant frequencies.

Δ

 

 

 

 

Δ

Figure 2 | Parametrically excited multiple resonances at fixed power (numerical modeling). Left panels a,b,c refer to the soliton pumped configuration,

whereas right panels d,e,f refer to the shock configuration. (a,d) colormap of the temporal evolution of power (log scale) along the fiber; (b,e) output

spectra superimposed on the dispersion relation D̂(v){knl (red curve). The vertical green lines correspond to the resonances determined by the graphical

solution of Eq. (1), i.e. the crossing between the dispersion curve and the dashed horizontal lines that corresponds to integer multiples of quasi-

momentum 2p/L; (c,f) colormap evolution of the spectrum along the fiber. All the results are obtained by numerical simulation of the NLSE (see

methods), with periodic GVD and b3 as additional parameter.
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When pumping in the normal GVD regime, we selected a higher
peak power and duration (P 5 100 W, 280 fs) in order to access
wave-breaking, and a shorter modulation period (L 5 0.5 m) in
order to have resonances in a realistic frequency span. In this case,
the localized state is the shock front that emerges over the pulse
leading edge after the breaking and activation distance z , 8 m,
which is clearly visible in Fig. 2d. Also in this regime, we identify a
first spectral peak at 215 THz in the anomalous GVD region [see
Fig. 2e,f] as the standard RR (m 5 0 mode) due to b3, while other five
peaks are clearly visible. These are parametrically excited resonant
modes that correspond to m 5 61, 62, 3 which position are also well
predicted by Eq. (1)(see vertical green lines).

We emphasize that in both configurations, the m 5 0 isolated
resonance lies in the opposite GVD regime with respect to the loca-
lized wavepackets that generate it, and disappear for b3 5 0.
Conversely, the parametric resonances with m ? 0 lie in both normal
and anomalous GVD regimes. They also survive the absence of
higher-order dispersion (bn 5 0, n $ 3), and their number is infinite
for a harmonic perturbation. In practice, their actual number is
limited because their amplitude decreases with the frequency shift
and they become weaker than the pulse spectrum envelope and/or
the noise background. Note also that it is important to take into
account the group-velocity deviation Dk1 [see Fig. 2a,d] in the D̂
term of Eq. (1) in both configurations, in order to accurately predict
the actual values of the resonances.

The nature of coupling process is further clarified by the spectro-
grams corresponding to Fig. 2, which are displayed in Fig. 3. In both
cases, the pump wave-packets remain clearly localized in both tem-
poral and spectral domains, while shedding energy into radiation
modes, which disperse in time while remaining at the frequencies
predicted by the resonances in Eq. (1). We have found that the
localized pumps experience temporal and spectral breathing with
the period of the perturbation and refill the radiation at each cycle
of spectral broadening (see multimedia files). In spite of this transfer
of energy the radiation damping of the pump is small, thus confirm-
ing the metastable nature of these wave-packets33.

Experiments. We have designed two experiments in order to observe
the parametrically excited resonances from both solitons and DSWs.
The experiment, sketched in Fig. 4 and detailed in methods, simply
consists of a femtosecond laser pulse launched in DOFs, whose

parameters are close to those used in the illustration examples in
Figs. 2–3. Due to experimental constraints, only the initial pulses
were slightly different. In a first experiment, a 150 fs pulse
centered at 1075 nm was launched in a 150 m-long DOF with a
modulation period of 5 m. Figure 5a shows the longitudinal profile
of the fiber diameter measured during the draw process (left axis) and
the corresponding calculated zero dispersion wavelength (ZDW,
right axis). At the pump wavelength of 1075 nm, the average
dispersion is slightly anomalous, so that the pump pulse is able to
excite a near-fundamental soliton for peak powers in the order of a
few tens of watts. An experimental power map, representing the
output spectrum recorded for increasing pump peak power, is
plotted in Fig. 5b. It shows that, for increasing pump peak power,
the spectrum rapidly evolves from a hyperbolic secant shape to a
much more structured and highly asymmetric one containing
more and more sharp spectral resonances. More precisely, these
discrete spectral sidebands corresponds to the parametric
excitation of the RR that stems from the periodic variation of the
second order dispersion. Numerical simulations of the generalized
NLSE (see methods and supplementary information), without any
free parameter, also reproduce these features with an excellent
quantitative agreement. This can be seen in Fig. 5c, where the
experimental spectrum obtained for a pump peak power of 25 W
(red line) is compared with the simulated one (blue line). In addition,
it is worth noting that the theory is quite robust since the observed
peaks are accurately predicted by solutions of Eq. (1) (green vertical
lines) in these experiments.

The second experiment presented here is devoted to investigating
radiating DSWs. The DOF is shorter (50 m) as well as the modu-
lation period (0.5 m, see longitudinal profile in Fig. 5d). It has been
pumped with 280 fs pulses. The pump wavelength was tuned to
1037 nm so that it lies in the normal average dispersion region
required to generate a shock wave from a few hundreds of watts of
peak power (see additional experimental details in supplementary

Figure 3 | Spectrograms corresponding to evolutions in Fig. 2 (numerical modeling). (a) soliton configuration. (b) shock wave configuration. The

spectrograms represent the spectra over gated time intervals and are computed at the output of each fibers (for the evolution along the fibers, see the

additional multimedia files). ZDW: zero-dispersion wavelength.

Figure 4 | Experimental set-up P: polarizer; HWP: half-wave plate.
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information). Figure 5e shows the experimental power map. Starting
at about 50 W, a RR peak is generated across the average zero dis-
persion wavelength. For increasing pump peak powers, additional
discrete spectral sidebands corresponding to parametrically excited
RR appear, similarly to the soliton case. The DOF period L being 10
times shorter in this case, the spacing between two adjacent peaks isffiffiffiffiffi

10
p

times larger than in the soliton case, as expected from Eq. (1).
These results are again in excellent agreement with numerical simu-
lations using a generalized NLSE and with Eq. (1), as shown in Fig. 5f
and in supplementary information.

Conclusions
To summarize, we have demonstrated that localized states (either a
soliton or a dispersive shock wave) can efficiently transfer energy to
multiple resonant radiations at different frequencies, as a result of the
quasi-momentum associated to a DOF. Our experimental results,
supported by numerical simulations and by the perturbative analysis
that leads to Eq. (1), prove that a DOF is a very simple and highly

tailorable platform allowing to study the periodicity-induced coup-
ling of nonlinear bound states to the radiation continuum, which is a
general feature in systems driven by a time-periodic Hamiltonian.
The DOF platform can also be successfully used to study how this
coupling process due to higher order dispersion develop in the pres-
ence of a train of random solitons arising from spontanous modu-
lation instability or in driven-damped deformations of Hamiltonian
systems such as those describing passive ring resonators.

Methods
Simulation. The results illustrated in Figs. 2–3 have been obtained from numerical
integration of the following NLSE for the electric field envelope E 5 E(z,t)
propagating along the fiber12

i
LE
Lz

{
b2(z)

2
L2E
Lt2

z
b3

6
L3E
Lt3

zcjEj2E~0, ð2Þ

Equation 2 is well known to maintain conservative (Hamiltonian) structure despite
the periodic perturbation embedded in the term b2(z) 5 b2 1 db2sin(2pz/L) (where

 

 

 

Figure 5 | Parametrically excited multiple resonances from a fundamental soliton (left panels) and from a DSW (right panels): experimental results.
(a,d): Longitudinal evolution of the DOF diameter (left vertical axis) and consequent zero-dispersion wavelength (ZDW, right vertical axis) used for the

soliton (a) and dispersive shock waves (d) experiments. (b,e): Experimental power maps showing the development of asymmetric sidebands with

increasing pump peak power. (c,f): Comparison between experimental (red lines) and simulated spectra (blue lines) for a pump peak power of 26.4 W in

the soliton case (c) and of 234 W in the dispersive shock wave case (f). Vertical green lines depict the resonance from Eq. (1).
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db2 is the perturbation amplitude around the average GVD b2), and the third-
order dispersion b3 (which plays a significant role in experiments performed by
pumping close to the ZDW, as in our case). We have employed the following
values of the parameters that arise from fiber characterization: c 5 10 (W km)21,
db2 5 1.2 ps2/km, b2 5 21.2 ps2/km and b3 5 0.0716 ps3/km for the soliton
configuration, whereas b2 5 22.9 ps2/km and b3 5 0.0645 ps3/km for the DSW
configuration. The nonlinear term in Eq. (2) acts as a self-induced potential that
allows for the existence of localized states in the form of bright solitons for b2 , 0
(anomalous dispersion) or dispersive shock waves for b2 . 0 (normal GVD),
whose leading front is, in the unperturbed case, locally a dark soliton23. The
radiating soliton excited in Fig. 2a,b,c is characterized by a soliton number

N~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

0 cP=jb2j
q

slightly higher than 1, so that the pulse undergoes temporal

compression and hence spectral broadening. It thus acts as an effective seed for
the parametric excitation of RR. We emphasize that the periodic perturbation is
nearly resonant with the soliton period (^10:5 m), which distinguishes our
regime from non-radiating guiding-center or average solitons29,30, which are
normally seen when the periodic perturbation is much faster than the soliton

period. In the shock case, the equivalent quantity N~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

0 cP=b2

q
is much larger

than unity (N?1) so that the nonlinearity drives the pulse towards the gradient
catastrophe that causes the formation of the shock front15.

Numerical simulations of Eq. (2) have been performed by using the split step
Fourier method with a temporal resolution of 5 fs, 214 points and a spatial resolution
ranging from 0.025 m to 0.1 m for the shock and the soliton configurations,
respectively.

When directly comparing the numerics with the experimental data (results in
Fig. 5), we have accounted also for secondary effects in the fiber such as losses, Raman
scattering, self-steepening, and fourth-order dispersion by making use of a general-
ized NLSE (Eq. (2.3.36) in Ref. 12, also reported explicitly in the Supplemental
information). However, we have verified that the impact of such effects on the pulse
evolution over the length and temporal scales involved in the experiment is really
minor, and most of all does not affect the resonances.

Experiments. Experiments have been performed exploiting a Ti:Sa oscillator
delivering 140 fs full width at half maximum (FWHM) near transform limited pulses.
They are sent into an optical parametric oscillator (OPO) allowing to generate tunable
slightly chirped femtosecond pulses. The output beam then passes through a
combination of two polarizers and two half-wave plates in order to carefully adjust the
polarization state and pump power simultaneously. It is launched in the DOF with an
aspherical lens. The pulses were characterized with a frequency resolved optical
gating (FROG) system, before being injected into the DOF. For the soliton
experiment, the OPO was bypassed so that pulses directly coming from the Ti:Sa
oscillator were used. They were centred at 1075 nm, and they were measured at 150 fs
FWHM at the DOF input (i.e. after the launch lens) with a small chirp C 5 0.35 (as
defined in Ref. 12). For the dispersive shock wave experiment, the OPO was used and
tuned to 1037 nm. The pulses at the DOF input were measured at 280 fs FWHM,
with a chirp C 5 1.24. Spectra out of the DOF were acquired with an optical spectrum
analyzer with a resolution of 0.2 nm. The output power was measured with a power-
meter and the input power was deduced knowing the DOF total attenuation. It was
cross-checked by cutting the DOF at the end of the experiment and measuring the
power out of the 0.5 m DOF initial section.
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