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We study the existence and properties of rogue-wave solutions in different nonlinear wave evolution models
that are commonly used in optics and hydrodynamics. In particular, we consider the Fokas-Lenells equation, the
defocusing vector nonlinear Schrödinger equation, and the long-wave–short-wave resonance equation. We show
that rogue-wave solutions in all of these models exist in the subset of parameters where modulation instability
is present if and only if the unstable sideband spectrum also contains cw or zero-frequency perturbations as a
limiting case (baseband instability). We numerically confirm that rogue waves may only be excited from a weakly
perturbed cw whenever the baseband instability is present. Conversely, modulation instability leads to nonlinear
periodic oscillations.
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I. INTRODUCTION

Many nonlinear wave equations associated with different
physical systems exhibit the emergence of extreme high-
amplitude events that occur with low probability, and yet may
have dramatic consequences.

Perhaps the most widely known examples of such processes
are the giant oceanic rogue waves [1] that unexpectedly grow
with a great destructive power from the average sea level fluc-
tuations. This makes the study of rogue waves a very important
problem for ocean liners and hydrotechnic constructions [2,3].
Hence, it is not surprising that the phenomenon of rogue waves
has attracted the ample attention of oceanographers over the
past decade. Although the existence of rogue waves has been
confirmed by multiple observations, uncertainty still remains
on their fundamental origins [4].

In recent years, research on oceanic rogue waves has also
drawn the interest of researchers in many other domains of
physics and engineering applications, which share similar
complexity features: In particular, consider nonlinear optics
[5]. The ongoing debate on the origin and definition of rogue
waves has stimulated the comparison of their predictions and
observations in hydrodynamics and optics since analogous
dynamics can be identified on the basis of their common
mathematical models [6].

So far, the focusing nonlinear Schrödinger equation (NLSE)
has played a pivotal role as a universal model for rogue-wave
solutions, both in optics and in hydrodynamics. For example,
the Peregrine soliton, first predicted as far as 30 years ago [7],
is the simplest rogue-wave solution of the focusing NLSE. This
rogue wave has only recently been experimentally observed in
optical fibers [8], water-wave tanks [9], and plasmas [10].

For several systems the standard focusing NLSE turns
out to be an oversimplified description: This fact pushes the
research to move beyond this model. In this direction, recent
developments consist of including the effect of dissipative
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terms. In fact, a substantial supply of energy (for instance,
from the wind in oceanography or from a pumping source
in laser cavities) is generally required to drive rogue-wave
formation [11]. Because of their high amplitude or great
steepness, rogue-wave generation may be strongly affected
by higher-order perturbations, such as those described by the
Hirota equation [12], the Sasa-Satsuma equation [13], and the
derivative NLSE [14].

The study of rogue-wave solutions to coupled wave systems
is another hot topic where several advances were recently
reported. Indeed, numerous physical phenomena require mod-
eling waves with two or more components. When compared
to scalar dynamical systems, vector systems may allow for
energy transfer between their different degrees of freedom,
which potentially yields rich and significant new families of
vector rogue-wave solutions. Rogue-wave families have been
recently found as solutions of the vector NLSE (VNLSE) [15–
18], the three-wave resonant interaction equations [19], the
coupled Hirota equations [20], and the long-wave–short-wave
(LWSW) resonance [21].

As far as rogue-wave excitation is concerned, it is generally
recognized that modulation instability (MI) is among the
several mechanisms which may lead to rogue-wave excitation.
MI is a fundamental property of many nonlinear dispersive
systems, that is associated with the growth of periodic
perturbations on an unstable continuous-wave background
[22]. In the initial evolution of MI, sidebands within the
instability spectrum experience an exponential amplification
at the expense of the pump. The subsequent wave dynamics
is more complex, and it involves a cyclic energy exchange
between multiple spectral modes. In fiber optics, MI seeded
from noise results in a series of high-contrast peaks of random
intensity. These localized peaks have been compared with
similar structures that are also seen in studies of ocean rogue
waves [5]. Nevertheless, the conditions under which MI may
produce an extreme wave event are not fully understood.
A rogue wave may be the result of MI, but conversely not
every kind of MI necessarily leads to rogue-wave generation
[18,23–25].
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In this paper, our aim is to show that the condition for
the existence of rogue-wave solutions in different nonlinear
wave models, which are commonly used both in optics and in
hydrodynamics, coincides with the condition of baseband MI.

We define baseband MI as the condition where a cw
background is unstable with respect to perturbations having
infinitesimally small frequencies. Conversely, we define pass-
band MI as the situation where the perturbation experiences
gain in a spectral region not including ω = 0 as a limiting case.
We will consider here the Fokas-Lenells equation (FLE) [14],
the defocusing VNLSE [18], and the LWSW resonance [21].
As we will see, in the baseband-MI regime multiple rogue
waves can be excited. Conversely, in the passband regime, MI
only leads to the birth of nonlinear oscillations.

We point out that, in this paper, we consider as a rogue wave
a wave that appears from nowhere and disappears without
a trace. More precisely, we take as a formal mathematical
description of a rogue wave a solution that can be written in
terms of rational functions with the property of being localized
in both coordinates.

II. FOKAS-LENELLS EQUATION

The FLE is a partial differential equation that has been
derived as a generalization of the NLSE [26,27]. In the
context of optics, the FLE models the propagation of ultrashort
nonlinear light pulses in monomode optical fibers [27].

For our studies, we write the FLE in a normalized form

i(1 + iκ∂τ )ψξ + 1
2ψττ + σ |ψ |2(1 + iκ∂τ )ψ = 0, (1)

where ψ(ξ,τ ) represents the complex envelope of the field;
ξ,τ are the propagation distance and the retarded time, respec-
tively; each subscripted variable in Eq. (1) stands for partial
differentiation. σ (σ = ±1) denotes a self-focusing (σ = 1)
or self-defocusing (σ = −1) nonlinearity, respectively. The
real positive parameter κ (κ � 0) represents a spatiotemporal
perturbation. For κ = 0, Eq. (1) reduces to the NLSE.

Soliton, multisolitons, breathers, and rogue-wave solutions
have been recently found for Eq. (1). Let us examine the
existence condition for these rogue waves. The rogue-wave
solutions may be expressed as [14]

ψ = ψ0

[
1 − 2iK3(ξ + 2κτ ) + σK/a2)

D + iκKγ

]
, (2)

where ψ0 = aei(ωτ−βξ ) represents the background solution of
Eq. (1), a is the real amplitude parameter (a > 0), ω is the
frequency; moreover β = ω2/2K − σa2, K = 1 − ωκ, γ =
K2τ + (K2 − 1)ξ/(2κ), D = (σγ + a2κKξ )2 + a2α2ξ 2 +
σK/(4a2), and α = ±√

σK − a2κ2K2.
The rogue-wave solutions (2) depend on the real parameters

a and ω for fixed σ and κ . In the focusing regime (σ = 1), ratio-
nal rogue waves exist for ω in the range [1/κ − 1/(a2κ3),1/κ].
Whereas in the defocusing regime rogue waves exist for ω in
the range [1/κ,1/κ + 1/(a2κ3)]. Figure 1 shows the domains
of rogue-wave existence in the plane (ω,κ) for either the
focusing or the defocusing regime. Surprisingly, exponential
soliton states exist in the complementary region of the (ω,κ)
plane (see Ref. [14] for details on the properties of these
nonlinear waves). Figure 2 illustrates a typical example of
rogue-wave solution (2).
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FIG. 1. (Color online) Existence domains of rogue waves in the
plane (κ,ω) with a = 1 in the focusing regime (σ = 1) and defocusing
regime (σ = −1). The red dotted line denotes ω = 1/κ + 1/κ3; the
green dashed line denotes ω = 1/κ; the black solid line denotes ω =
1/κ − 1/κ3.

Let us turn our attention now to the linear stability analysis
of the background solution of Eq. (1). A perturbed nonlinear
background can be written as ψp = [a + p]ei(ωτ−βξ ), where
p(ξ,τ ) is a small complex perturbation that satisfies a linear
differential evolution equation. Whenever p is τ periodic with
frequency �, i.e., p(ξ,τ ) = ηs(ξ )ei�τ + ηa(ξ )e−i�τ , such an
equation reduces to a set of 2 × 2 linear ordinary differen-
tial equations η′ = iMη with η = [ηs,η

∗
a]T (here the prime

stands for differentiation with respect to τ ). For any given
real frequency �, the generic perturbation η(ξ ) is a linear
combination of exponentials eiwj ξ where wj, (j = 1,2) are
the two eigenvalues of the matrix M = {Mij }, whose elements

FIG. 2. (Color online) Typical rogue soliton states. Top, focus-
ing regime σ = 1, κ = 0.5 and a = 1, ω = 0. Bottom, defocusing
regime σ = −1, κ = 0.5 and a = 1, ω = 4.
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read as

M11 = − 1
2�2 + σa2K − �(ω + βκ + σa2κ)

(K − κ�)
,

M12 = σa2K

(K − κ�)
,

M21 = − σa2K

(K + κ�)
,

M22 =
1
2�2 − σa2K − �(ω + βκ + σa2κ)

(K + κ�)
.

Since the entries of matrix M are all real, the eigenvalues
wj are either real, or they appear as complex-conjugate pairs.
The eigenvalues of matrix M are the roots of its characteristic
polynomial,

B(w) = B2w
2 + B1w + B0,

B2 = K2 − κ2�2,

B1 = �(2βκK + κ�2 + 2Kω),

B0 = 1

4
�2[4σa2K + ω2(1 + 1/K)2 − �2]. (3)

MI occurs whenever M has an eigenvalue w with a
negative imaginary part. Indeed, if the explosive rate is
G(�) = −Im{w} > 0, perturbations grow exponentially, such
as exp(Gξ ) at the expense of the pump wave.

MI is well depicted by displaying the gain G(�) as a
function of a, ω, σ, κ , and �. The resulting MI gain spectrum
is illustrated in Figs. 3 and 4.

These figures show the MI gain in the focusing and
defocusing regimes, respectively. In both cases, baseband MI
is only present in a certain subset of the ω,κ parameters. Since
the gain band [where G(�) �= 0] can be written as 0 � �1 <
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FIG. 3. (Color online) Maps of logarithmic MI gain (10 log10 G)
in the focusing (σ = 1) FLE (1). Top, MI on the (�,κ) plane,
calculated for the case of a = 1, ω = 1. Bottom, MI on the (�,ω)
plane, calculated for the case of a = 2, κ = 0.5.

FIG. 4. (Color online) Maps of logarithmic MI gain (10 log10 G)
in the defocusing (σ = −1) FLE (1). MI on the (�,κ) plane,
calculated for the case of a = 2, ω = 1.

� < �2 (and its symmetric counterpart with respect to � = 0),
baseband MI is obtained if �1 = 0, whereas passband MI
occurs for �1 > 0.

We proceed next by focusing our attention on the MI gain
spectrum by evaluating the sign of the discriminant � of the
characteristic polynomial (3): This leads to

sgn{�} = sgn{�2 − 4a2σK3(1 − a2κ2σK)}. (4)

If the discriminant � is positive, the characteristic polyno-
mial has two real roots, and there is no MI. On the other
hand if the discriminant � is negative, the characteristic
polynomial B has two complex conjugate roots, and Eq. (1)
exhibits baseband MI. It is clear from Eq. (4) that for FLE if
there is MI, it is of baseband type only: Either the system
is modulationally unstable for � → 0, or there is no MI
at all. The interesting finding is that the sign constraint on
the discriminant, which determines the presence of baseband
MI, leads to the condition that ω should be in the range
[1/κ − 1/(a2κ3),1/κ] in the focusing regime (σ = 1) and in
the range [1/κ,1/κ + 1/(a2κ3)] in the defocusing regime (σ =
−1). These conditions exactly coincide with the constraints
that are required for the existence of the rogue-wave solution
(2).

These results are important since they show that, for both the
focusing and the defocusing regimes, rogue-wave solutions of
Eq. (1) only exist in the subset of the parameter’s space where
also baseband MI is present.

We checked the results of our analysis by extensive
numerical solutions of Eq. (1). These simulations indeed
confirm that, in the baseband MI regime, multiple rogue waves
can be generated from an input plane-wave background with
a superimposed random noise seed (see Fig. 5).

III. DEFOCUSING VNLSE

The defocusing VNLSE constitutes another model that has
been thoroughly exploited for the description of fundamen-
tal physical phenomena in several different disciplines. In
oceanography, for instance, it may describe the interaction
of crossing currents [28]. In the context of nonlinear optics,
it has been derived for the description of pulse propagation in
randomly birefringent fibers [29] or coupled beam propagation
in photorefractive media [30].
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FIG. 5. (Color online) Color plot of |ψ(ξ,τ )|2 from the numerical
solution of the focusing FLE (1) in the baseband MI regime. The
initial condition is a plane wave perturbed by a random noise seed
with parameters: a = 2, ω = 1, κ = 1.15, and σ = −1.

For our studies, we write the defocusing VNLSE in the
following dimensionless form:

iψ
(1)
ξ + ψ (1)

ττ − 2(|ψ (1)|2 + |ψ (2)|2)ψ (1) = 0,
(5)

iψ
(2)
ξ + ψ (2)

ττ − 2(|ψ (1)|2 + |ψ (2)|2)ψ (2) = 0,

where ψ (1)(ξ,τ ),ψ (2)(ξ,τ ) represent complex wave envelopes;
ξ,τ are the propagation distance and the retarded time,
respectively; each subscripted variable in Eq. (5) stands for
partial differentiation. Note that Eq. (5) refers to the defocusing
(or normal dispersion) regime. Unlike the case of the scalar
NLSE, rational rogue solutions of the defocusing VNLSE do
exist as was recently demonstrated [18]. These rogue-wave
solutions can be expressed as

ψ (j ) = ψ
(j )
0

[
p2τ 2 + p4ξ 2 + pτ (αj + βθj )−iαjp

2ξ+βθj

p2τ 2 + p4ξ 2 + β(pτ + 1)

]
,

(6)

with j = 1,2. ψ
(j )
0 = aj e

i(ωj τ−βj ξ ) represents the background
solution of Eq. (5), aj are the real amplitude parameters (aj >

0), ωj are the frequencies, and βj = ω2
j + 2(a2

1 + a2
2).

Moreover, αj = 4p2/(p2 + 4ω2
j ), θj = (2ωj + ip)/

(2ωj − ip), β = p3/χ (p2 + 4ω1ω2), p = 2 Im(λ + k),ω1 +
ω2 = 2 Re(λ + k), ω1 − ω2 = 2ω, and χ = Im k. The
evaluation of the complex values of λ and k should be
performed as follows. The parameter λ is the double solution
of the polynomial A(λ) = λ3 + A2λ

2 + A1λ + A0 = 0
with A0 = −k3 + k(ω2 + a2

1 + a2
2) + ω(a2

2 − a2
1), A1 =

−k2 − ω2 + a2
1 + a2

2 , and A2 = k. Moreover, the constraint on
the double roots of A(λ) is satisfied whenever the discriminant
of A(λ) is zero, which results in the fourth-order polynomial
condition D(k) = k4 + D3k

3 + D2k
2 + D1k + D0 = 0 with

D0 = (ω2 − a2
1 − a2

2)3/(24ω2) − (3/4)3(a2
2 − a2

1)2,D1 = −9
(a2

2 − a2
1)(2ω2 + a2

1 + a2
2)/(24ω), D2 = −[8q4 − (a2

1+a2
2)2

+ 20ω2(a2
1 + a2

2)]/(24ω2), and D3 = (a2
2 − a2

1)/(2ω). Thus,
λ is the double solution of the third-order polynomial A(λ),
and k is any strictly complex solution of the fourth-order
polynomial D(k) (see Ref. [18] for details on nonlinear wave
calculations and characteristics).

FIG. 6. (Color online) Rogue-wave envelope distributions
|ψ (1)(τ,ξ )| and |ψ (2)(τ,ξ )| of expression (6). Here, a1 = 3,

a2 = 1, and ω = 1. k = 2.369 54 + 1.1972i and λ = −1.691 62
− 1.797 21i.

The rogue waves (6) depend on the real parameters a1, a2,
and ω which originate from the backgrounds: a1,a2 represent
the amplitudes, and 2ω represents the frequency difference of
the waves. Figure 6 shows a typical dark-bright solution (6).

In the defocusing regime, it has been demonstrated [18] that
rogue waves exist in the subset of parameters a1,a2,ω where

(
a2

1 + a2
2

)3 − 12
(
a4

1 − 7a2
1a

2
2 + a4

2

)
ω2

+ 48
(
a2

1 + a2
2

)
ω4 − 64ω6 > 0. (7)

Figure 7 illustrates two characteristic examples of the existence
condition for rogue waves. In particular, Fig. 7 shows that for
a fixed ω, the background amplitudes should be sufficiently
large in order to allow for rogue-wave formation.

Let us turn our attention now to the linear stability
analysis of the background solution of Eq. (5). A per-
turbed nonlinear background may be written as ψ

(j )
p =

[aj + pj ]eiωj τ−iβj ξ , where pj (ξ,τ ) are small complex per-
turbations that obey a linear partial differential equation.
Whenever pj (ξ,τ ) are τ periodic with frequency �, i.e.,
pj (ξ,τ ) = ηj,s(ξ )ei�τ + ηj,a(ξ )e−i�τ , their equations reduce
to the 4 × 4 linear ordinary differential equation η′ = iMη

with η = [η1,s ,η
∗
1,a,η2,s ,η

∗
2,a]T . For any given real frequency

�, the generic perturbation η(ξ ) may be expressed by a
linear combination of exponentials exp(iwj ξ ) where wj, j =
1, . . . ,4 are the four eigenvalues of matrix M = {Mij },

M11 = −�2 − 2�ω1 − 2a2
1,

M22 = �2 − 2�ω1 + 2a2
1,

M33 = −�2 − 2�ω2 − 2a2
2,
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FIG. 7. (Color online) Rogue-wave existence condition. (a)
(ω,a1) plane with a2 = 3. (b) (a2,a1) plane with ω = 4.

M44 = �2 − 2�ω2 + 2a2
2,

M12 = −M21 = −2a2
1,

M13 = M14 = M31 = M32 = −2a1a2,

M41 = M23 = M24 = M42 = 2a1a2,

M43 = −M34 = 2a2
2 .

Since the entries of matrix M are all real, the eigenvalues
wj are either real, or they appear as complex-conjugate
pairs. These eigenvalues are the roots of the characteristic
polynomial B(w) of matrix M ,

B(w) = w4 + B3w
3 + B2w

2 + B1w + B0,

B0 = (�2 − 4ω2)
[
4
(
a2

1 + a2
2 − ω2) + �2]�4,

B1 = 16ω
(
a2

1 − a2
2

)
�3,

B2 = −2
[
2
(
a2

1 + a2
2 + 2ω2

) + �2
]
�2,

B3 = 0.

MI occurs whenever M has an eigenvalue w with a negative
imaginary part Im{w} < 0. Indeed, if the explosive rate is
G(�) = −Im{w} > 0, initial perturbations grow exponen-
tially as exp(Gξ ) at the expense of the pump waves. Typical
shapes of the MI gain G(�) are shown in Fig. 8.

Figure 8(a) corresponds to the case where the nonlinear
background modes have opposite frequencies (ω1 = −ω2 =
ω). The higher ω, the higher G. In the special case of
equal background amplitudes a1 = a2 = a, the marginal sta-
bility conditions can be analytically found: �2 = 4ω2, �2 =
max{4ω2 − 8a2,0}. Thus, for a2 > ω2/2 a baseband MI,
which includes frequencies that are arbitrarily close to zero,
is present (i.e., 0 < �2 < 4ω2). Instead, for a2 � ω2/2, MI
only occurs for frequencies within the passband range (4ω2 −

Ω

ω

−10 −5 0 5 10
0

2

4

6
b)

BASEBAND MI

PASSBAND MI

Ω

a 1

−10 −5 0 5 10
0

2

4
BASEBAND MI

PASSBAND MI

FIG. 8. (Color online) Maps of MI gain 2G of the VNLSE (5).
(a) MI on the (�,ω) plane, calculated for the cases of a1 = 3, a2 = 3,
and ω1 = −ω2 = ω. Dotted (green) curves represent the analytical
marginal stability condition � = 2ω, �2 = max{4ω2 − 8a2,0}. (b)
MI on the (�,a1) plane, calculated for the cases of a2 = 3, ω1 =
−ω2 = 4.

8a2) < �2 < 4ω2. We may point out that the rogue waves (6)
necessarily exist for a2 > ω2/2. Thus, rogue waves (6) and
baseband MI coexist.

Figure 8(b) illustrates the case of different frequencies
(ω1 = −ω2 = ω) and input amplitudes a1 �= a2 for the non-
linear background modes. For low values of a1, only passband
MI is present. By increasing a1, the baseband MI condition is
eventually attained.

In order to analytically represent the condition
for the occurrence of baseband MI, let us consider
the limit � → 0. To this aim, we may rewrite the
characteristic polynomial as B(�v) = �4b(v) and
consider the polynomial b(v) at � = 0, namely, b(v) =
v4 + b3v

3 + b2v
2 + b1v + b0, b0 = −16ω2(a2

1 + a2
2 − ω2),

b1 = 16ω(a2
1 − a2

2), b2 = −4(a2
1 + a2

2 + 2ω2), and b3 = 0.
Let us evaluate now the discriminant of the characteristic
polynomial B: If the discriminant is positive, B has four real
roots, and no MI occurs. Whereas if the discriminant of B is
negative, there are two real roots and two complex conjugate
roots, and Eq. (5) exhibits baseband MI. Again, the interesting
finding is that the constraint on the sign of the discriminant of
the characteristic polynomial B, which leads to the baseband
MI condition, turns out to exactly coincide with the sign
constraint (7) that is required for rogue-wave existence.

Thus we may conclude that in the defocusing regime, rogue-
wave solutions (6) only exist in the subset of the parameter
space where MI is present and in particular if and only if
baseband MI is present.

Figures 9 and 10 show two different numerically computed
nonlinear evolutions, obtained in the case of baseband MI
(leading to rogue-wave generation) and of passband MI,
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FIG. 9. (Color online) Color plot of (a) |ψ (1)(τ,ξ )| and (b)
|ψ (2)(τ,ξ )| from the numerical solution of the defocusing VNLSE.
The initial condition is a plane wave perturbed by weak random noise.
Parameters: a1 = 2, a2 = 1, and ω = 1. A rogue wave is highlighted
by a surrounding box.

respectively. These evolutions permit highlighting that the
nonlinear evolution of baseband MI leads to rogue-wave
solutions of the VNLSE (5). Figure 9 shows the numerically
computed evolution of a plane wave perturbed by a small

FIG. 10. (Color online) Color plot of (a) |ψ (1)(τ,ξ )| and (b)
|ψ (2)(τ,ξ )| from the numerical solution of the defocusing VNLSE.
The initial condition is a plane wave perturbed by weak random
noise. Parameters: a1 = 2, a2 = 1, and ω = 3. No rogue waves are
generated in this case.

random noise in the baseband MI regime. After a first initial
stage of linear growth of the unstable frequency modes, for
ξ > 5 the nonlinear stage of MI is reached. As we can see, MI
leads to the formation of multiple isolated peaks (dips) that
emerge at random positions. By carefully analyzing one of
these peaks, for example, the peak near the point (τ = 0, ξ =
9), we may clearly recognize the shape of a rogue wave as it
is described by the expression (6). Conversely, Fig. 10 shows
the numerically computed evolution of a plane wave perturbed
by a small random noise in the passband MI regime. After a
first initial stage of linear growth of the unstable frequency
modes, for ξ > 2 the nonlinear stage of MI is reached. In this
case, we may observe the generation of a train of nonlinear
oscillations with wave numbers corresponding to the peak of
MI gain (�max = 5). As was expected, no isolated peaks (dips)
emerge from noise in this case, given that the condition for the
existence of rogue waves is not verified.

IV. LWSW MODEL

The last model we consider in our survey is the LWSW
resonance. It is as well a general model that describes the inter-
action between a rapidly varying wave and a quasicontinuous
one. In optics the LWSW resonance rules wave propagation
in negative index media [31] or the optical-microwave inter-
actions [32], whereas in hydrodynamics the LWSW resonance
results from the interaction between capillary and gravity
waves [33].

For our studies, we write the LWSW equations in the
dimensionless form

iψ
(S)
ξ + 1

2ψ (S)
ττ + ψ (L)ψ (S) = 0,

(8)
ψ

(L)
ξ − |ψ (S)|2τ = 0,

where ψ (S)(ξ,τ ) represents the short-wave complex envelope
and ψ (L)(ξ,τ ) represents the long-wave real field; ξ and τ are
the propagation distance and the retarded time, respectively;
each subscripted variable stands for partial differentiation.

The fundamental rogue-wave solution of Eq. (8) has
recently been reported in Ref. [21] and reads as

ψ (S) = ψ
(S)
0

[
1 −

iξ + iτ
2m−ω

+ 1
2(2m−ω)(m−ω)

(τ − mξ )2 + n2ξ 2 + 1/4n2

]
,

(9)

ψ (L) = b + 2
n2ξ 2 − (τ − mξ )2 + 1/4n2

[(τ − mξ )2 + n2ξ 2 + 1/4n2]2
,

where ψ
(S)
0 = aei(ωτ−βξ ) represents the background solution of

the short wave, defined by the amplitude a (a > 0), frequency
ω, and wave number β = ω2/2 − b; the amplitude b (b � 0)
defines the background solution of the coupled long-wave
real field. The parameters m and n are real, defined by
m = 1

6 [5ω −
√

3(ω2 + l + υ/l)], n = ±√
(3m − ω)(m − ω)

with υ = 1
9ω4 + 6ωa2, ρ = 1

2ω6 − 1
54 (27a2 + 5ω3)2. l =

−(ρ −
√

ρ2 − υ3)1/3 for ω � −3(2a2)1/3 and l =
(−ρ +

√
ρ2 − υ3)1/3 for −3(2a2)1/3 < ω � 3

2 (2a2)1/3.
LWSW rogue waves (9) depend on the real parameters
a, ω, and b (see Ref. [21] for details on nonlinear wave
characteristics). Figure 11 shows a typical LWSW rogue
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FIG. 11. (Color online) Rogue-wave envelope distributions
|ψ (S)(τ,ξ )| and |ψ (L)(τ,ξ )| corresponding to expression (8). Here,
a = 1, ω = 0, and b = 0.5.

solution. Importantly, the existence condition for rogue waves
of the LWSW model is that ω � 3

2 (2a2)1/3.
Let us turn our attention now to the linear stability analysis

of the background solution of Eq. (8). Here a perturbed non-
linear background can be written as ψ (S)

p = [a + pS]eiωτ−iβξ

and ψ (L)
p = b + pL where pS(ξ,τ ),pL(ξ,τ ) are small complex

perturbations that obey linear partial differential equations.
Whenever the perturbations pS,pL are τ periodic with fre-
quency �, i.e., pS(ξ,τ ) = ηs(ξ )ei�τ + ηa(ξ )e−i�τ and re-
calling that ψ (L)

p is real, pL(ξ,τ ) = g(ξ )ei�τ + g∗(ξ )e−i�τ ,
the perturbation equations reduce to a 3 × 3 linear ordinary
differential equation η′ = iMη with η = [ηs,η

∗
a,g]T (here the

prime stands for differentiation with respect to τ ). For any
given real frequency �, the generic perturbation may be
expressed as a linear combination of exponentials exp(iwj ξ )
where wj, j = 1, . . . ,3 are the three eigenvalues of the matrix,

M =
⎡
⎣− 1

2�2 − ω� 0 a

0 1
2�2 − ω� −a

�a �a 0

⎤
⎦. (10)

Since the entries of matrix M are all real, the eigenvalues
wj are either real, or they appear as complex-conjugate pairs.
These eigenvalues are obtained as the roots of the characteristic
polynomial B(w) of matrix M ,

B(w) = B3w
3 + B2w

2 + B1w + B0, B0 = a2�3,
(11)

B1 = ω2�2 − �4/4, B2 = 2ω�, B3 = 1.

MI occurs whenever M has an eigenvalue w with
a negative imaginary part, i.e., Im{w} < 0. Indeed, if
the explosive rate is G(�) = −Im{w} > 0, perturbations
grow larger exponentially, such as exp(Gξ ) at the ex-
pense of the pump waves. By calculating the discriminant
of the polynomial B, one finds � = �6[ 1

16�6 − 1
2�4ω2 −

ω(9a2−ω3)�2+4a2ω3 − 27a4]. If the discriminant � is

FIG. 12. (Color online) Maps of MI gain 2G of the LWSW Eq.
(8). MI on the (�,ω) plane, calculated for the case of a = 1. Dashed
(green) curves represent the analytical marginal stability condition
�6[ 1

16 �6 − 1
2 �4ω2 − ω(9a2 − ω3)�2 + 4a2ω3 − 27a4] = 0.

positive, the polynomial B has real roots, and no MI occurs.
Conversely if the discriminant � is negative, the polynomial
B has two complex conjugate roots, which means that
MI is present for Eq. (8). The marginal stability curves,
corresponding to � = 0, can thus be calculated. Figure 12
shows a typical MI gain spectrum of the LWSW Eq. (8): As
one can see, there exist regions of either baseband or passband
MI.

As in previous sections, let us proceed now to discuss the
MI behavior in the limit situation where � → 0, a condition
which characterizes the occurrence of baseband MI. In this
regime, the discriminant of the polynomial B reduces to � =
4a2ω3 − 27a4, which leads to the MI condition ω < 3

2 (2a2)1/3.
Again, the baseband MI condition turns out to exactly coincide

FIG. 13. (Color online) Color plot of (a) |ψ (S)(τ,ξ )| and (b)
|ψ (L)(τ,ξ )| from the numerical solution of the LWSW equation.
The initial condition is a plane wave perturbed by weak seed.
Parameters: a = 1, b = 0.5, and ω = 0. A rogue wave is highlighted
by a surrounding box.
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FIG. 14. (Color online) Color plot of (a) |ψ (S)(τ,ξ )| and (b)
|ψ (L)(τ,ξ )| from the numerical solution of the LWSW equation.
The initial condition is a plane wave perturbed by weak random
noise. Parameters: a = 1, b = 0.5, and ω = 2.5. No rogue wave is
generated in this case.

with the condition for the existence of rogue-wave solutions
of Eq. (8).

Figure 13 shows a numerical solution of LWSW, obtained
in the case of baseband MI (leading to rogue-wave generation),
showing the evolution of a plane wave perturbed by a small
random noise. After a first initial stage of linear growth of the
unstable frequency modes, for ξ > 8 the nonlinear stage of MI
is reached. As we can see, MI leads to the formation of multiple
isolated peaks that emerge at random positions. By carefully

analyzing one of these peaks, we may clearly recognize the
shape of a rogue wave as it is described by the expression (9).
Conversely, Fig. 14 shows that, in the passband regime, a train
of nonlinear oscillation is generated from noise.

V. CONCLUSIONS

In this paper we studied the existence and the properties
of rogue-wave solutions in different integrable nonlinear wave
evolution models which are of widespread use, both in optics
and in hydrodynamics. Namely, we considered the Fokas-
Lenells equation, the defocusing vector nonlinear Schrödinger
equation, and the long-wave–short-wave resonance.

We found out that in all of these models, rogue waves,
which can be modeled as rational solutions, only exist in the
subset of parameters where MI is present but if and only if the
MI gain band also contains the zero-frequency perturbation as
a limiting case (baseband MI).

We have numerically confirmed that in the baseband-MI
regime rogue waves can indeed be excited from a noisy input
cw background. Otherwise, when there is passband MI we
only observed the generation of nonlinear wave oscillations.
Based on the above findings, we are led to believe that
the conditions for simultaneous rogue-wave existence and
of baseband MI may also be extended to other relevant,
integrable, and nonintegrable physical models of great interest
for applications, for instance, consider frequency conversion
models [34,35] where extreme wave events and complex
breaking behaviors are known to take place [36,37].
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