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Abstract

This article presents a new numerical method for facial reconstruction. The problem is the
following: given a dry skull, reconstruct a virtual face that would help in the identification of
the subject. The approach combines classical features as the use of a skulls/faces database and
more original aspects: (i) an original shape matching method is used to link the unknown skull
to the database templates; (ii) the final face is seen as an elastic 3d mask that is deformed
and adapted onto the unknown skull. In this method the skull is considered as a whole surface
and not restricted to some anatomical landmarks, allowing a dense description of the skull/face
relationship. Also, the approach is fully automated. Various results are presented to show its
efficiency.
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Introduction

Facial reconstruction aims at recovering the fa-
cial appearance of an individual from the sole
datum of the underlying skull. The facial re-
construction problem arises in various applica-
tion fields like forensics, anthropology, archeol-
ogy or history. In forensic science, facial recon-
struction comes in the process of identification of
deceased people. When all the usual methods of
identification have failed and the skeletal remains
are the sole data available for leading to a posi-
tive identification, facial reconstruction might be
considered as an enhancing tool for ’recognition’,
producing a short list of candidates from which
the individual may be identified by other en-
dorsed methods of identification, see Wilkinson
[1]. In archeological investigations, facial recon-
struction is employed with the purpose of identi-
fying skeletal remains of famous people from the
past.

The creation of the face from the skull is a pro-
cedure of approximation: from the observation
of the cranium, one will not be able to recover
a large amount of face features (eyes, hair, lips,
ears). Moreover the facial likeness of a given in-
dividual changes considerably depending on fac-
tors like nutrition or aging. This flexibility may
not be fully reflected on the subjacent skull. Any
facial reconstruction tool is expected to account
for the uncertainty related to the ill-posedness
of the problem, no matter what method is em-
ployed (artistic, parametric, statistic, mechani-
cal, etc.). From a mathematical point of view,
this issue leads to at least two important difficul-
ties: on the one hand, it raises the question of
how to correctly characterize the solution, which
might be a continuum spectrum of all the faces
that are ’consistent’ with a given skull rather
than a single exemplar; on the other hand, it
poses the problem of how to rigorously assess
the accuracy of the result. Despite the intrinsic
difficulty of the problem, the media are full of
facial images that have been constructed on the
basis of a single given skull. A fascinating survey
of such cases can be found in the book of Prag
and Neave [2]. The work presented in this paper
is part of the ongoing multi-disciplinary project
***.

The traditional facial reconstruction methods
are based on manual procedures, producing 2d

portraits or 3d sculptures. These methods basi-
cally consist of three common steps: (i) equip
(a replica of) the raw skull with a sparse set
of anatomical landmarks; (ii) apply an average
soft tissue thickness to each skull landmark in or-
der to estimate a corresponding landmark on the
face; (iii) draw up or sculpt a face fitting the esti-
mated landmarks. Most practitioners add a face
muscle model in order to enrich the anatomical
accuracy of the reconstruction, leading to the so-
called Manchester method described in Wilkin-
son [1]. The results obtained from forensic art
are often quite plausible, as the medical artists
may take anatomical, historical, archaeological
or other types of expertise into account, giving
the observer a feeling of coherence. However,
the final result of a manual reconstruction de-
pends on the subjectivity of the artist. Addition-
ally, one single reconstruction requires several
days of work of a well-experienced forensic artist,
making impracticable the realization of multi-
ple instances and feature variations. In order
to alleviate these difficulties, several computer
graphic software packages have been developed.
These animation software packages use the same
methodology as manual methods, allowing the
expert to tune some modeling parameters and
combine the human expertise with the flexibility
of the software, as in Miyasaka et al. [3]. How-
ever, this approach does not eliminate the sub-
jectivity in the reconstruction. During the last
30 years a large amount of work has been devoted
to the conception of objective fully-automated
methods. The common pipeline of modern fa-
cial reconstruction software is described in Claes
et al. [4]. First, an expert examines the un-
known skull in order to determine anthropolog-
ical parameters like age, gender and ethnicity.
Then a virtual replica of the dry skull is pro-
duced and represented according to the model-
ing parameters. A craniofacial template encod-
ing face, skull and soft tissue information is de-
rived from a head database. Then an admissible
geometric transformation drives the adaptation
of the craniofacial template onto the unknown
skull, according to the ’proximity’ between the
skulls. As a result, the template face is deformed
onto the predicted face associated with the un-
known skull, linking together information com-
ing from both the database and the examination
of the unknown skull. Finally a skin texture and
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hairiness are added to the reconstructed face.
The approach proposed in this article com-

bines classical features - as the anthropological
expertise for classifying the unknown skull and
the use of a head database - with mathematical
and computational skills as 3d geometric mod-
eling. The contribution of this work is three-
fold. First, a method for generating a closed
surface mesh model of the skull template is in-
troduced. The method relies on an original mesh
evolution technique. A template shape is itera-
tively deformed, producing a sequence of shapes
that get ’closer and closer’ to the source skull.
Second, the elastic shape matching method first
introduced in *** [5] is used. This technique
is used to link skulls (or faces) with each other
and learn about their similarities. This proce-
dure is the heart of the reconstruction method
and its most original feature. In particular it
allows the method to be fully-automated by re-
moving the need of landmarks. Third, the shape
matching tool is combined with soft tissue defor-
mation techniques from computational surgery
for transporting the skull/face templates onto
the unknown skull. The common denominator
of the three parts is the use of elasticity equa-
tions for driving the shape deformation.

The paper is organized as follows: Section 1
deals with the acquisition and the construction of
the database; Section 2 describes the representa-
tion of the skull templates; Section 3 presents the
method for matching skull and face templates;
Section 4 describes the process of reconstruction
of the unknown face. In Section 5 some facial
reconstructions are presented to prove the effi-
ciency of the approach. Figure 1 summarizes the
various steps of the procedure.

1 Data acquisition

Some recent numerical facial reconstruction
methods rely on the a priori information con-
tained in a database of coupled skull and face
templates. The acquisition of both skull and
face is accomplished by head CT scans of liv-
ing subjects, allowing a good visualization of
hard tissues. Standard segmentation tools and
3d reconstruction algorithms lead to the defi-
nition of dense surfaces of both skull and face
from CT data. Unfortunately the invasiveness

of this technique causes serious legal and ethical
problems, preventing the constitution of a large
database of healthy subjects. Due to this dif-
ficulty, several studies have proposed to exploit
the relationship between soft and hard tissues by
means of average soft tissue thickness measure-
ments, for example Tilotta et al. [6], Hwang et
al. [7] and De Greef et al. [8].

Soft tissue depth tables are usually used in
combination with a large database of face tem-
plates as in Claes et al. [4]. Facial templates can
be acquired by non-invasive techniques such as
stereophotogrammetry, Grewe et al. [9], making
the constitution of a large database painless and
easy. However, despite the acquisition of dense
surface templates for describing the outer face,
the average values of soft tissue thickness are
systematically measured on a sparse set (< 53)
of (manually positioned) anatomical landmarks.
See Vezzetti et al. [10] for a review of recent
3D landmark-based facial reconstruction meth-
ods. Since the manual measurement is time con-
suming and requires expertise in correctly iden-
tifying the landmarks, it is actually infeasible to
extend these measurements to a dense distribu-
tion of points. See Kustar et al. [11] for a discus-
sion about the use of sparse soft tissue measure-
ments for facial reconstruction purposes. Several
authors have claimed the importance of using a
dense representation of the soft tissue informa-
tion, for example by describing the intra-subject
correlation in terms of the volume between the
two boundary surfaces representing the face and
the underlying skull, Nelson and Michael [12],
Quatrehomme et al. [13]. The results presented
in this study are based on a collection of 26 head
CT scans of female healthy subjects aged be-
tween 20 and 40 years. The CT images used
have been provided by the Statistical Facial Re-
construction project of Paris Descartes Univer-
sity presented in Tilotta et al. [19]. The 3d
reconstruction from tomographic data described
in this section, combined with an original wrap-
ping method (see Section 2), allowed us to define
closed surface models of both face and skull.

Image segmentation

Data segmentation consists in identifying the
bone and soft tissues on stacked 2d gray-level
images. This procedure has been carried out
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head CT scan acquisition

3d mesh model of skulls and faces

closed surface model of the skull

level set description of shapes

dense surface matching

segmentation and 3d reconstruction

wrapping algorithm

computation of the signed distance function

minimization of a shape functional

Figure 1 – From CT scans to densely matched surface templates (see Sections 1, 2 and 3).
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in a semi-automated way with the help of the
software Amira developed by Stalling et al.
[20]. First, the CT slices are automatically pre-
segmented using a multi-threshold technique.
This step consists in partitioning the original im-
ages into subdomains whose boundaries are iden-
tified by given intensity values. The bone and
soft tissues threshold values used are described
in Tilotta et al. [19]. From the pre-segmentation
step, two sets of binary images -respectively for
bone and soft tissues- are obtained. By stack-
ing these slices one can essentially detect the 3d
structures. However the intensity-based segmen-
tation is not enough to ensure a correct separa-
tion of the tissues of interest, due to the presence
of noise on the data and artefacts occurring dur-
ing the acquisition process. The binary images
are then cleaned by removing the so-called is-
lands (very small structures whose contours are
defined by only a few pixels). These structures
can be external to the tissues of interest (noise
added during the acquisition process) or very
thin internal structures (small bones inside the
cranium). This action helps denoising the im-
ages. Moreover in most of the subjects, large
artefacts due to dental filling are observed on
the images. These defects need to be manually
removed on each affected slice (see Figure 2).

Geometric mesh processing

From the segmented 2d slices, 3d mesh models of
the skull and the face are generated by a march-
ing cube algorithm, Stalling et al. [20]. These
initial meshes contain, in general, a prohibitive
number of elements that are redundant and over-
sampled to correctly describe the geometry of the
model. These dense meshes are simplified thanks
to the surface remeshing tool mmgs, developed
by Dapogny et al. [21] by a local modification
approach. The remeshing procedure aims at pro-
viding (i) a correct and accurate geometric ap-
proximation of the underlying 3d model (geomet-
ric mesh) and (ii) a computational mesh of high
quality elements suitable for finite elements sim-
ulations (computational mesh). To ensure vicin-
ity between the original and the remeshed tri-
angulations, the remesher controls the discrete
Hausdorff distance between the two sets of tri-
angles. The element size of the simplified mesh
is locally adapted to the surface curvatures, en-

suring a correct approximation of the surface ge-
ometry. As illustrated in Figures 3 and 4, this
procedure also removes the ’staircase’ artefacts
due to the spatial discretization and connectiv-
ity.

2 Generation of surface
model of the skull

The human skull is characterized by a complex
structure, showing small details that are difficult
to both acquire and handle numerically. Due
to these difficulties, several authors opt for de-
scribing the skull through underlying anatomical
or geometrical substructures. The most popular
choice leads to the definition of a sparse set of
anatomical landmarks, possibly coupled with a
dense representation of the skull, see Claes et al.
[14], Vandermeulen et al. [22] or Knyaz et al.
[23]. Some authors use automatically detected
continuous crest-lines, Quatrehomme et al. [13].
The process of matching skull templates is then
driven by the outlined feature structures, by re-
quiring their best alignment.

The purpose of this section is to characterize
the skull template in terms of a bounded
domain, known by a closed mesh of its bound-
ary. This issue is related to the more general
problem of surface reconstruction from sample
points. Surface reconstruction methods have
been extensively investigated in the context of
interface evolution via level set methods (see
Claisse and Frey [24] and references therein)
or via deformable surfaces, as in Duan et al.
[25] or Miller et al. [26]. The specific task,
already evoked in Jones [27], Tilotta et al. [6],
is to define a closed surface of the skull. In
order to achieve this goal an original wrap-
ping algorithm based on mesh deformation
techniques is proposed. First, a (possibly
invalid) source triangulation TS of the skull
geometry is generated by standard segmentation
and 3d reconstruction tools (see Section 1).
Then, a closed surface, for example a sphere,
is iteratively deformed, producing a sequence
of surfaces that are ’closer and closer’ to the
source triangulation TS . The final deformed
surface partitions the ambient space into two
sub-regions defining unambiguously an interior
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Figure 2 – Left: reference gray-level image. Middle: pre-segmentation of the bone using a threshold
technique (red). Right: segmentation of the bone after denoising and artefact removal (red).

Figure 3 – Left: 3d mesh of the skull after segmentation (2 179 332 triangles). Right: 3d mesh of
the skull after geometric remeshing (15 6301 triangles).

Figure 4 – Left: 3d mesh of the face after segmentation (1 286 542 triangles). Right: 3d mesh of
the face after geometric remeshing (90 949 triangles).
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(resp. exterior) domain. This preliminary step
is of crucial importance for matching shapes
among the head database (see Section 3).

Presentation of the method

Let Γ0 (resp. Γ0) be the sphere of radius r > 0
(resp. R > r) and let Ω0 be the volume between
Γ0 and Γ0. Suppose that Ω0 encircles TS and
is filled with a linear elastic material whose de-
formation is driven by the Elasticity equations
recalled in the box below.

Elasticity equations The displacement
field of a shape Ω clamped at a part ΓD of
its boundary Γ and deflated under the ef-
fect of internal pressure p ∈ H−1/2(ΓN ) on
ΓN = Γ \ ΓD is achieved as the unique so-
lution u ∈ H1

ΓD (Ω)3 := {w ∈ H1(Ω)3, w =
0 on ΓD} of the following variational prob-
lem:∫

Ω

σ(u) : ε(v) dx =

∫
ΓN

pv · n ds, (2.1)

for all v ∈ H1
ΓD

(Ω)3, where the stress ten-
sor σ follows the Hooke’s law:

σ(u) = 2µε(u) + λ tr(ε(u))I,

with λ, µ the Lamé coefficients and
ε(u) = 1

2 (∇u + ∇uT ) the linearized strain
tensor.

Hence, starting from Ω0 deflated on its inte-
rior boundary Γ0, a sequence of shapes Ωk - with
interior boundaries Γk - is produced. Points of
Ωk are advected according to Equation (2.1) un-
til they intercept the triangulation TS . Doing
so, at each step k the intersection between the
vector displacement and the triangulation TS is
checked. In case of multiple intersection points,
the closest point is retained. Whenever a contact
between the advecting shape and the source tri-
angulation occurs, the first is clamped and forced
not to cross the boundary of the latter.

The advecting sequence of internal boundaries
Γk gets closer and closer to the source mesh TS
thanks to the strict inequality:

dH(Γk+1, TS) < dH(Γk, TS),

where dH(·, ·) is the Hausdorff distance between
the two surfaces. Finally, for k sufficiently large,
Γk defines a closed boundary that wraps the
source triangulation TS .

Numerical issues

From the numerical point of view, the solution
of the Elasticity equations (2.1) is computed by
the Finite Elements Method on a volume mesh,
that is Ω0 is filled with tetrahedra. For its part
the boundary Γ0 is discretized as a surface mesh
T0. The iterative algorithm is performed in order
to get a sequence Tk of meshes with decreasing
values of dH(Tk, TS). Given a fixed integer N ,
the procedure ends if all the points in Tk have
reached TS or if N iterations of the process oc-
cur without registering a new intersection. The
latter condition deals with the potential presence
of holes in TS .

Figures 5 and 6 depict the wrapping of a skull
triangulation. The parameters used for Equation
(2.1) correspond to a very soft and compressible
material. The procedure ends after 35 iterations
with N = 5, running in a few minutes on a stan-
dard laptop computer. About 85% of points on
the triangulation T35 are clamped on the surface
mesh TS .

3 Inter-subject shape match-
ing

Shape morphing or matching arises in a wide va-
riety of situations in areas ranging from biomed-
ical engineering to computer graphics. Beyond
the specific stakes to each particular application,
the general issue is to find one transformation
from a given ‘template’ shape Ω0 into a ‘target’
ΩT (see Figure 7). Such a transformation may
be used as a means to appraise how much Ω0

and ΩT differ from one another - for instance in
shape retrieval, classification or recognition - or
to achieve physically the transformation from Ω0

to ΩT (in shape registration, reconstruction, or
shape simplification). See for instance Veltkamp
[28] and references therein for an overview of
several related applications. In the facial recon-
struction context, shape matching is a key ingre-
dient for studying the shape database, making
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Figure 5 – Left: initial surface Γ0. Middle: advecting surface Γ10. Right: final surface Γ35.

Figure 6 – Top: 3d model of the skull. Bottom: wrapped skull.
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Figure 7 – Elastic shape matching allowing to deform a shape onto another.

possible the generation of average shapes - pos-
sibly weighted according to their ’similarity’- as
well as for driving the registration of the cranio-
facial template onto the unknown skull.

The problem is stated as follows: given a ‘tem-
plate’ shape Ω0 and a ‘target’ shape ΩT , the aim
is to deforme the mesh of Ω0 onto a computa-
tional mesh of ΩT .

To achieve this purpose, a method that has
much in common with that of Bajcsy and Ko-
vacic [29] is proposed, borrowing techniques from
shape optimization, and more generally optimal
control. Under the assumption that Ω0 and ΩT

share the same topology, the desired transfor-
mation from Ω0 to ΩT is obtained through a
sequence of elastic displacements, which are ob-
tained by minimizing an energy functional based
on the distance between Ω0 and ΩT . In this sec-
tion, the mathematical framework and some nu-
merical issues related to the method are briefly
presented. Refer to *** [5] for more details and
for 2d and 3d numerical examples.

Presentation of the method

The discrepancy between a reference shape Ω
and a target shape ΩT is measured by the fol-
lowing functional J(Ω) of the domain:

J(Ω) =

∫
Ω

dΩT
(x)dx, (3.1)

which involves the Euclidean signed distance
function dΩT

to ΩT , defined as:

dΩT
(x) =


−d(x, ∂ΩT ) if x ∈ ΩT ,

0 if x ∈ ∂ΩT ,
d(x, ∂ΩT ) if x ∈ cΩT .

In the above formula, d(·, ∂ΩT ) denotes the usual
Euclidean distance function to the boundary
∂ΩT .

In order to decrease the value of J(Ω), the
domain Ω must expand in the regions of the am-
bient space where dΩT

is negative (that is, in the
regions comprised in ΩT ), and to retract in those
where it is positive. Note that the functional
J(Ω) has a unique, global minimizer Ω = ΩT ,
and no extra local minimum point provided ΩT

is connected. It is then expected that an iterative
algorithm for minimizing J(Ω), starting from Ω0,
will lead to an interesting way to transform Ω0

into ΩT . This paves the way for an iterative
algorithm, producing a sequence (Ωk)k=0,... of
shapes, which are ‘closer and closer’ to ΩT : at
each step, Ωk is updated according to

Ωk+1 = (I + u)(Ωk), (3.2)

where u is a suitable descent direction for J(Ω).
Now, imagine that all the considered shapes

Ω are filled with a linear elastic material. One
can compute the unique solution u of the elastic-
ity equations (2.1) where the pressure p is taken
equal to −dΩT

. This vector field u is naturally
a descent direction for J(Ω) since, by a classi-
cal calculation (see *** [5] for more details), the
shape derivative of the function J(Ω) satisfies

J ′(Ω)(u) ≤ 0.
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Numerical issues

For numerical implementation, on the one hand
the template shape Ω0 is filled with tetrahedra
and the Elasticity equations are solved on this
volume mesh by the Finite Element Method. On
the other hand the target shape ΩT is only sup-
plied through its signed distance function, e.g.
as a piecewise affine function on a large compu-
tational box.

Starting from the template shape Ω0, a gradi-
ent descent algorithm with adaptive step size is
performed in order to get a sequence (Ωk)k=0,...

of domains with decreasing values of J(Ωk). The
algorithm stops when the step size is smaller
than a fixed tolerance. The global mapping from
Ω0 to ΩT is easily recovered by the composition
of the local displacements between each itera-
tion.

In the proposed examples, the calculation of
the signed distance function to ΩT is performed
using the algorithm described in Dapogny and
Frey [30]. The error is computed as the L2-norm
of the distance dΩT

calculated on the boundary
of the final shape.

Figure 8 depicts the matching of two skull
shapes. The convergence of the gradient descent
procedure is obtained in 300 iterations and the
final error equals 0.1 mm (much smaller than
the minimal mesh size), revealing an excellent
matching of Ω300 with ΩT .

Next, a face example is considered; see Fig-
ure 9. 400 iterations of the gradient descent
algorithm have been performed to achieve con-
vergence, running in a few minutes on a stan-
dard laptop computer. The error calculated on
the boundary of the final shape Ω400 is 0.2 mm
(again, much smaller than the minimal mesh
size).

Remark 3.1. The ears are not included in the
face-matching process, since these structures are
not linked with the underlying skull morphology.
This procedure is simply done by defining patches
on the face template and including only the in-
teresting patches in the minimization of J(Ω).

4 Registration of the cran-
iofacial template onto the
unknown skull

The parametrization of skull, face and soft tis-
sue information depends strongly on the nature
of the database. Using CT scans of living sub-
jects allows a dense representation of the cran-
iofacial information. If closed surface models of
both skull and face are available (see Section 2),
then the craniofacial template may be described
in terms of the 3d domain delimitated by the
outer face and the inner skull boundaries, gen-
erating a 3d ’mask’ that incorporates the soft
tissue information. A single craniofacial tem-
plate may be used for producing templates of
all individuals in the database. The procedure
relies on the shape matching technique (see Sec-
tion 3), generating a set of vector fields, one for
each individual, each of them allowing to deform
the template shape onto a specific shape of the
database.

Various methods have been proposed for de-
forming the craniofacial template onto the un-
known skull. On the one hand, template defor-
mation methods use generic mathematical trans-
formations such as radial basis functions (Qua-
trehomme et al. [13]). Care has to be taken be-
cause no knowledge of facial anatomy is incorpo-
rated in these transformations leading sometimes
to awkward looking faces. On the other hand
face-specific methods (Claes et al. [14], Paysan
et al. [15], Berar et al. [16], Bai et al. [17], Duan
et al. [18]) use Principal Component Analysis on
a facial database to generate a statistical shape
model. The advantage is that faces are then de-
formed in a face-specific manner within statis-
tical boundaries. The disadvantage is that the
deformations are dependent on the database and
can be too restrictive in case of small databases.

Here the method lies on the ’physical’ defor-
mation of the craniofacial template onto the un-
known skull. This approach allows to overcome
the drawbacks which affect existing template de-
formation methods. The mask is deformed ac-
cording to a displacement field prescribed on the
skull boundary, measuring the deformation of
the skull template onto the unknown skull. Un-
der the effect of boundary changes, the mask is
allowed to deform as an elastic material, result-
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(a) (b) (c)

Figure 8 – (a) Template shape Ω0 and discrepancy with respect to the target shape. (b) Deformed
shape Ωk for k = 300 and discrepancy w.r.t. the target shape. (c) Target shape.

(a) (b) (c)

Figure 9 – (a) Template shape Ω0 and discrepancy with respect to the target shape. (b) Deformed
shape Ωk for k = 400 and discrepancy w.r.t. the target shape. (c) Target shape.
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(a) (b)

Figure 10 – (a) Target shape ΩT as the zero level set of the signed distance function; (b) Adaptive
remeshing of the computational box;

ing in a deformed face shape that is now adapted
to the unknown skull. The use of elasticity for
soft tissue deformation is largely customized in
the field of computational maxillofacial surgery,
Chabanas et al. [31], Zachow et al. [32].

Craniofacial template generation

Let (Si)i=0,··· ,N and (Fi)i=0,··· ,N be the collec-
tion of skulls and faces of the database. Thanks
to the procedure described in Section 2, theses
shapes can be at this point considered as closed
surfaces. Then, the volume between Si and Fi

can be defined, generating a 3d mask Mi (called
craniofacial template).

The craniofacial templates are first roughly
aligned by an Iterative Closest Point algorithm.
Then, a reference craniofacial template, say
M0, is chosen and filled with an elastic ma-
terial (see Figure 11). It is matched onto
all the M1, · · · ,MN (with global displacements
u1, · · · , uN ) thanks to the shape matching pro-
cess described in Section 3, that is:

Mi = (I + ui)(M0) for all i = 1, · · · , N.

See Figure 13.
Note that this process generates meshes for

all the craniofacial templates M1, · · · ,MN that
share the same number of elements (vertices,
tetrahedra) and the same connectivity. The com-
putation of average shapes therefore turns into
trivial average of the vector fields. Any convex

combination w of the form:

w =

N∑
i=1

αiui, with αi ∈ [0, 1] and
N∑
i=1

αi = 1,

defines a new shape W through the mapping:

W = (I + w)(M0).

See Figure 12 for an example of generation of new
shapes as a convex combination of three tem-
plates.

Face-to-skull mapping via skull matching

Now let u0 be the global displacement mapping
the reference skull S0 onto the target skull ST .
The 3d mask Mi is elastically deformed under
the effect of the boundary changes (see Figure
14). The deformation of the template Mi is
achieved as the solution Ui of an elastic prob-
lem similar to (2.1), in which the displacement
condition Ui = −ui + u0 is imposed on the skull
boundary and zero traction conditions on the
face boundary. The soft tissue deformation step
produces N new faces, each one of them ob-
tained by linking a specific craniofacial template
Mi with the unknown skull. These facial items
are then combined together to predict the most
plausible face associated to the unknown skull.

5 Results and discussion
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Figure 11 – Generation of a 3d mask encoding soft tissue information.

Figure 12 – The corners of the triangle display three faces in the database. The top template
is chosen as reference shape and matched onto the bottom right template and the bottom left
template. The middle of the triangle and the mid-edges display the ’barycenter’ faces computed by
averaging the displacement fields.
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unknown skull ST

u0

reference shape M0

u1 u2 u3

target shapes
M1 M2 M3

Figure 13 – Matching skull and face templates within the database

(a) Initial (b) Final

Figure 14 – Elastic deformation of the mask under the effect of skull changes.
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Use of facial reconstruction techniques in
Forensic Science

An essential deal of the work of a forensic sci-
entist regards the identification of post-mortem
bodies. In the special case in which the facial
remains are no longer available, the forensic sci-
entist can resort to various techniques to achieve
a positive identification of the dead: DNA as-
sessment, dental record analysis, the identifica-
tion of a tattoo, the serial number of a prosthe-
sis, and other accepted methods of identification.
All these techniques are based on a principle of
comparison (with respect to a sample or to a
database) and can indeed fail in absence of com-
parative elements. For instance, at the Forensic
Medicine Institut in Paris, this situation shows
up for 2 up to 5 cases per year. In this context,
a facial reconstruction is then the last resort for
reaching a positive identification. The key idea
is to scan the skeletal remain to generate a vir-
tual replica of the dry skull and to use a facial
reconstruction method to produce a virtual esti-
mation of the victim’s face. Then, the produced
output is compared with a pool of facial photos
which contains the actual target and other in-
dividuals of similar age and ethnicity. Then, a
group of volunteers is asked to choose which face
of the pool is the most resemblant to the recon-
struction (face pool assessment). In the context
of a murder investigation, a call for witnesses
can also be demanded. Indeed the reconstructed
face should sufficiently resemble to the original
victim’s face to allow a recognition and enhance
a positive identification. For examples of foren-
sic cases which have employed facial reconstruc-
tion techniques see the book [2] or the reviews
[4, 33]. Actually in France, forensic facial re-
constructions are produced using 2d reconstruc-
tion techniques and are rarely successful. Since
a few years our multidisciplinary team works on
the conception and development of a open-source
software, based on the 3d deformation techniques
presented in this paper, which will be used dur-
ing criminal investigations in addition to other
endorsed methods. The main concern of this
project is to develop a software fully-automatic,
usable even by non trained users, and allowing
to produce with short time consuming a facial
output (or a range of possible outputs) starting
from the scan of the unknown skull.

Validation

The validation of a method for facial reconstruc-
tion is of tremendous importance to legitimate
its use during a criminal investigation. The natu-
ral way to address this problem is the "leave-one-
out scheme". One individual is removed from
the database and the method is employed to re-
construct his/her face given the sole skull. Then
the predicted face is compared with the available
"unknown face". The discrepancy between the
two shapes can be evaluated mathematically by
computing distances between them (see below).
However, since the final purpose of the method is
a positive identification, a recognition test can be
also employed for revealing the power of predic-
tion of the method, as it is done in Claes et al.
[4]. A recognition test consists in showing the
predicted face together with a sample of faces
that contains the unknown face. Then the hu-
man volunteer indicates the face (or faces) that
is (are) closest to the predicted one. The posi-
tive outcome will then correspond to the identi-
fication of the unknown face among the sample.
Such a study for the method proposed in this
article is under process and results will be pub-
lished in a forthcoming paper.

Hereafter three examples of reconstruction
are presented. According to the leave-one-out
scheme, one individual is removed from the
database and a prediction of his face is gener-
ated. Figures 15, 16 and 17 show the results
obtained by computing the mean of all the faces
transported onto the unknown skull. Figure 18
shows the distribution of the error (signed dis-
tance function) over the surface for the three
reconstructions. Remark that in the regions of
interest, excluding ears, neck and eyes in partic-
ular, the error is less than 1 millimeter for most
points. Also notice that in these regions, the
thickness of the tissue is underestimated or over-
estimated. Using the information coming from
the BMI of the individuals in the database could
be a way to propose different reconstructed faces
corresponding to different BMI of the unknown
individual.

The discrepancy D between a surface Γ and a
reference surface Γ0 can also be evaluated by the
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(a) (b)

Figure 15 – Test case 1: (a) Original face. (b) Reconstructed face.
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(a) (b)

Figure 16 – Test case 2: (a) Original face. (b) Reconstructed face.
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(a) (b)

Figure 17 – Test case 3: (a) Original face. (b) Reconstructed face.
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(a)

(b)

(c)

Figure 18 – Discrepancy between the reconstructed and the original faces (a) for the test case 1 of
Figure 15; (b) for the test case 2 of Figure 16; (c) for the test case 3 of Figure 17.
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following mean error:

D =

(
1

|Γ|

∫
Γ

d2(x,Γ0)dx

) 1
2

,

where |Γ| is the measure of Γ and d(·,Γ0) is the
Euclidean distance to Γ0. This error estimator
is used for evaluating the vicinity between:

1. the skull templates of the database and the
unknown skull;

2. the face templates of the database and the
unknown face associated with the unknown
skull;

3. the face templates after deformation onto
the unknown skull and the unknown face
associated with the unknown skull;

4. the face templates of the database and the
reconstructed average face.

The minimal, maximal and mean values of D for
the 25 templates of the database are reported in
Table 1 in each of the third cases. In particular,
the discrepancy between a face template and the
unknown face is smaller after deformation for all
the individuals. Thus, the elastic transformation
used in the method seems to be a good tool to
transport the faces close to the unknown face.
Moreover, the discrepancy between the unknown
face and the predicted face is smaller than the
discrepancy with any individual in the database,
so this measure D can be used for an automatic
numerical identification.

Comparison with previous works

A comparison with previous facial reconstruction
methods is a quite hard task. The reliability of
two methods should be compared starting from
the same database and the same test cases, to
avoid the dependencies of the methods on the
data. Such a comparison is out of the scope of
this paper. Here we limit ourselves to compare
the results of the test cases with the outcomes
of some statistical facial reconstruction methods
referenced in the literature [14, 6, 22]. In Claes
et al. [14] a statistical method is developed for
the purpose of estimating a facial outcome using
landmarks. The experiment is carried out from

a database of 118 individuals. The mean recon-
struction error registered equals 1.4 millimeters,
with a standard deviation of 1.04 millimeters.
In Vandermeulen et al.[22] a statistical method
based on implicit surfaces was employed for the
facial reconstruction test using a database of 20
individuals. The mean error registered equals
1.9 mm with a standard deviation of 1.7 mm.
In Tilotta et al. [6] a local technique based on
surface patches is used for statistically predict-
ing some facial regions. The experiment is car-
ried out using a database of 47 individuals. For
both chin region and nasal region, the mean re-
construction equals 0.99 mm, ranging from 0.58
millimeters to 1.83 millimeters for the nose, and
from 0.21 millimeters to 2.41 millimeters for the
chin. The mean error registered with the method
proposed in this paper is reported in Table 1.
Note that most of the error is concentrated on
the ears, the neck, the eyes and lips regions.
The distribution map of Figure 18 shows that
for the three studied test cases the mean error
over the remaining regions is smaller than 1 mil-
limeter. The result is similar to the one reported
in Tilotta et al. [6] (which only deals with the re-
construction of two facial regions) and improves
the outcomes of Claes et al. [14] and Vander-
meulen et al.[22], at least when considering the
regions of interest. Also, note that all the experi-
ments were conducted on a smaller database and
with no need of landmarks, resulting in a signif-
icant improvement in the fastness and feasible-
ness of the overall process, and avoiding manual
intervention.

Conclusion

The proposed reconstruction method lies on the
’physical’ deformation of templates of coupled
faces and skulls onto the unknown target skull.
In practice, the acquisition of full head scans of
healthy subjects is still a difficult process. Most
of the time one can have access to clinical data,
meaning that the patients present morphological
anomalies or that the scans are only partial (in
the case of maxillo-facial examination for surgery
purposes). The access to an adequate database
of full heads of healthy subjects would enor-
mously improve the final product of the method.
Even if the experiments were carried out on a
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Test case 1: Discrepancy between · · · min mean max
(1) skulls of the database and the unknown skull 5.44 mm 7.86 mm 13.46 mm
(2) faces of the database and the unknown face 5.02 mm 8.94 mm 15.69 mm
(3) faces after deformation and the unknown face 2.93 mm 5.8 mm 10.35 mm
(4) faces of the database and the predicted face 4.54 mm 7.03 mm 11.28 mm

Test case 2: Discrepancy between · · · min mean max
(1) skulls of the database and the unknown skull 4.01 mm 7.01 mm 11.1 mm
(2) faces of the database and the unknown face 4.41 mm 7.16 mm 11.4 mm
(3) faces after deformation and the unknown face 2.6 mm 5.3 mm 8.69 mm
(4) faces of the database and the predicted face 3.5 mm 7.65 mm 13.39 mm

Test case 3: Discrepancy between · · · min mean max
(1) skulls of the database and the unknown skull 4.46 mm 9.57 mm 17.3 mm
(2) faces of the database and the unknown face 4.92 mm 7.82 mm 13.5 mm
(3) faces after deformation and the unknown face 3.04 mm 5.01 mm 10.6 mm
(4) faces of the database and the predicted face 3.63 mm 8.2 mm 15.15 mm

Table 1 – Discrepancy between shapes for the test cases 1, 2 and 3 of Figures 15, 16 and 17.

small collection of 26 individuals, the prelimi-
nary results produced are very promising. The
proposed method for shape matching allows an
accurate registration. The method is simple to
implement and does not require any a priori
landmark correspondence, allowing for an auto-
matic processing of the database.
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