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A NOTE ON HYPOCOERCIVITY FOR KINETIC EQUATIONS WITH

HEAVY-TAILED EQUILIBRIUM

NATHALIE AYI, MAXIME HERDA, HÉLÈNE HIVERT, AND ISABELLE TRISTANI

Abstract. In this paper we are interested in the large time behavior of linear kinetic equations
with heavy-tailed local equilibria. Our main contribution concerns the kinetic Lévy-Fokker-
Planck equation, for which we adapt hypocoercivity techniques in order to show that solutions
converge exponentially fast to the global equilibrium. Compared to the classical kinetic Fokker-
Planck equation, the issues here concern the lack of symmetry of the non-local Lévy-Fokker-
Planck operator and the understanding of its regularization properties. As a complementary
related result, we also treat the case of the heavy-tailed BGK equation.
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1. Introduction

We consider a distribution function f ” fpt, x, vq which depends on time t ě 0, position x P T
d

and velocity v P R
d and satisfies the fractional kinetic Fokker-Planck equation

(1) Btf ` v ¨ ∇xf “ ∇v ¨ pvfq ´ p´∆vqα{2f .

Here we assume α P p0, 2q and the fractional Laplacian ´p´∆vqα{2 is such that for any Schwartz

function g : Rd Ñ R, one has Fpp´∆vqα{2gqpξq “ |ξ|αFpgqpξq where Fp¨q denotes the Fourier
transform. There are many equivalent definitions of the fractional Laplacian (see [11]). Among
them we shall use (here, P.V. stands for the principal value)

(2) p´∆vqα{2gpvq “ Cd,α P.V.

ż

Rd

gpvq ´ gpwq

|v ´ w|d`α
dw ,

1
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where the constant Cd,α is given by Cd,α “ 2αΓpd`α
2

q{pπd{2|Γp´α
2

q|q where Γp¨q is the Gamma
function. In the following we drop the principal value in the notations. We denote the Lévy-
Fokker-Planck operator appearing on the right-hand side of (1) by

Lαg “ ∇v ¨ pv gq ´ p´∆vqα{2g .

By passing to Fourier variables one has FpLαgqpξq “ ´ξ ¨ ∇ξ ĝpξq ´ |ξ|αĝpξq, where ĝ “ Fpgq.
From this formula, one sees that the function

µαpvq “ Z´1
d,αF

´1
´
e´|ξ|α{α

¯

with Zd,α chosen such that
ş
µα “ 1 is a probability distribution such that Lαµα “ 0. Observe

that away from the origin, the Fourier transform of µα is smooth and rapidly decaying at
infinity. The singularity at ξ “ 0 behaves like |ξ|α at principal order which yields that µαpvq
should decay as |v|´α´d when |v| Ñ 8. Actually, one has the following more precise bounds
(see [1] and references therein). There exist some positive constants C1 “ C1pα, dq ą 0 and
C2 “ C2pα, dq ą 0 such that for all v P R

d one has

(3) C´1
1 ď p|v|d`α ` 1qµαpvq ď C1 ,

and

(4) C´1
2 |v| ď p|v|2`d`α ` 1q|∇vµαpvq| ď C2|v| .

In the following, given some measurable non-negative function ν ” νpvq we denote by L2
vpνq

and L2
x,vpνq the spaces of measurable functions g of respectively the v and the px, vq variables

such that |g|2ν is integrable. We endow these spaces with their canonical scalar product and
norm. We also introduce the corresponding Sobolev space H1

x,vpνq associated with the norm

}g}2H1
x,vpνq “ }g}2L2

x,vpνq ` }∇xg}2L2
x,vpνq ` }∇vg}2L2

x,vpνq .

Finally given an integrable function g, we denote xgy “
ť

TdˆRd gpx, vqdv dx the global mass of
g. The main result of this paper is the following.

Theorem 1.1. Let f be a solution of the kinetic Lévy-Fokker-Planck equation (1) with initial

data f in P H1
x,vpµ´1

α q. Then, for all t ě 0 one has

}fptq ´
@
f in

D
µα}

H1
x,vpµ´1

α q ď C }f in ´
@
f in

D
µα}

H1
x,vpµ´1

α q e
´λt

for some constant C ě 1 and λ ą 0 depending only on d and α.

Let us mention that these results have been obtained as a preliminary step towards the con-
ception and analysis of numerical schemes preserving the long-time behavior of these equations.
This topic is an ongoing work [2] in the spirit of what has previously been done in [7, 3] in the
case of the classical Fokker-Planck equation. The compatibility of our schemes with anomalous
diffusion limit will also be investigated (see [6] for more details).

Before going into the analysis of our problem, let us recall that results on large time behavior of
solutions to the homogeneous version of (1), namely Btfpt, vq “ Lαfpt, vq, have been obtained
in [8] in spaces of type L2

vpµ´1
α q (among others) and later in [12] in larger Lebesgue spaces.

Notice that the presence of the transport operator in our equation (1) makes the analysis more
intricate and requires the use of hypocoercivity techniques. In the present note, we use H1 type
hypocercivity as presented in [13] or [9] for example. Note also that fractional hypocoercivity
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has already been studied recently in [4]. However, the framework is quite different from ours
since the phase space is Rd ˆ R

d and a L2-hypocoercivity approach is developed.
In the same spirit of our work, let us also mention the paper [10] in which some hypoelliptic

estimates are obtained on the non homogeneous fractional Kolmogorov equation (there is no
drift term in the studied equation). The method of proof is quite close (based on the use of
weighted Lyapunov functional) but the final goal is different in the latter since the main concern
is about regularization properties of the equation and not convergence towards the equilibrium.

In the present study we focus on a good understanding of the structure of the Lévy-Fokker-
Planck operator since we endeavour to carry out our computations as simply as possible in order
to adapt our analysis to a discrete framework in [2]. In particular let us point out that we do not
need fractional derivatives in our Lyapunov functionals and our proof does not rely on Fourier
transform. In this sense our method differs completely from that of [10] and the recent [4] in
which a mode by mode analysis is developed.

Outline of the note. From Section 2 to Section 4, we carry out the analysis of the properties
of the Lévy-Fokker-Planck operator that will be useful for proving our main result. Then, the
proof of Theorem 1.1 is done in Section 5. In the last section we state and prove the equivalent
of Theorem 1.1 for the BGK equation with heavy-tailed equilibrium.

Notations. For simplicity, in the subsequent proofs, we denote by C a positive constant depend-
ing only on fixed numbers (including d and α) and its value may change from line to line.

2. The Lévy-Fokker-Planck operator as bilinear form

The following quite simple decomposition is actually one of the key elements of our hypocoer-
cive analysis carried out in Section 5. Compared to the non-fractional case, we here have a lack
of symmetry of our operator in L2

vpµ´1
α q and the following splitting is very helpful to simplify

the computations. Moreover, in the non-fractional case, there is a gain of weight in velocity
which comes from the particular form of the gradient of the Gaussian equilibrium. Even though
we no longer have such a gain in our case, we are still able to close our estimates thanks to the
following splitting.

Proposition 2.1. One has the decomposition

´ xLαf, gy
L2
vpµ´1

α q “ Svpf, gq ` Avpf, gq ,

where Sv and Av are bilinear forms that are respectively symmetric and skew-symmetric and

defined by

Svpf, gq “
Cd,α

2

ĳ

RdˆRd

“
pfµ´1

α qpvq ´ pfµ´1
α qpwq

‰ “
pgµ´1

α qpvq ´ pgµ´1
α qpwq

‰

|v ´ w|d`α
µαpvqdw dv ,

and

Avpf, gq “
Cd,α

2

ĳ

RdˆRd

pfµ´1
α qpwqpgµ´1

α qpvq ´ pfµ´1
α qpvqpgµ´1

α qpwq

|v ´ w|d`α
µαpvqdw dv

`
1

2

ż

Rd

pf v ¨ ∇vpgµ´1
α q ´ g v ¨ ∇vpfµ´1

α qqdv ,

where Cd,α is defined in (2).
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We skip the proof of this proposition since it is based on simple computations using the
formula (2), integration by parts and the fact that Lαµα “ 0.

Observe that a direct consequence of the Cauchy-Schwarz inequality is

(5) Svpf, gq ď Svpf, fq1{2
Svpg, gq1{2 ,

for f, g P DpLαq. Moreover, the symmetric form Sv is non-negative and Svpf, fq vanishes when
fµ´1

α is constant. This yields that the nullspace of Lα is exactly given by Rµα. From there the
orthogonal projection Π onto the nullspace of Lα is given by

pΠgqpvq “

ˆż

Rd

gpwqdw

˙
µαpvq .

3. Coercivity results for the Lévy-Fokker-Planck operator

One has the following coercivity result taken from [8, Theorem 2] and originating from [5].

Lemma 3.1 ([8]). There is a constant CP ” CP pα, dq ą 0 such that for all f P DpLαq,

(6) }f ´ Πf}2
L2
vpµ´1

α q
ď CP Svpf, fq .

We now show that the dissipation Svpf, fq also provides some fractional Sobolev regularity.
We introduce the fractional Sobolev space Hs

v with s P p0, 1q with norm defined by } ¨ }2Hs
v

“

} ¨ }2
L2
v

` } ¨ }2
9Hs
v

where the homogeneous Sobolev norm is given by }g}2
9Hs
v

:“ }p´∆qs{2g}2
L2
v
. One

can prove that there exists a positive constant rCd,s such that

(7) }g}29Hs
v

“ rCd,s

ĳ

RdˆRd

|fpvq ´ fpwq|2|v ´ w|´pd`2sq dw dv .

Lemma 3.2. There exists CR ” CRpα, dq ą 0 such that for all f P DpLαq,

Svpf, fq ě C´1
R

´
}fµ´1{2

α }2
9H
α{2
v

´ }fµ´1{2
α }2L2

v

¯
.

Proof. Using that pa ` bq2 ě a2{2 ´ b2, we have

Svpf, fq ě
Cd,α

2

ĳ

|v´w|ď1

|pµ´1
α fqpvq ´ pµ´1

α fqpwq|2

|v ´ w|d`α
µαpvqdw dv ě

Cd,α

2

ˆ
1

2
I1 ´ I2

˙
.

The first term is

I1 “

ĳ

|v´w|ď1

|pµ
´1{2
α fqpvq ´ pµ

´1{2
α fqpwq|2

|v ´ w|d`α
dw dv

“ rC´1
d,α

2

}µ´1{2
α f}2

9H
α{2
v

´

ĳ

|v´w|ě1

|pµ
´1{2
α fqpvq ´ pµ

´1{2
α fqpwq|2

|v ´ w|d`α
dw dv

ě rC´1
d,α

2

}µ´1{2
α f}2

9H
α{2
v

´ C}µ´1{2
α f}2L2

v



HYPOCOERCIVITY WITH HEAVY-TAILED EQUILIBRIUM 5

where rCd,α
2

is defined in (7) and for the last inequality, we used twice the integrability of |v ´

w|´d´α
1|v´w|ě1, once in v and once in w. The second term is

I2 “

ĳ

|v´w|ď1

|µ
1{2
α pvq ´ µ

1{2
α pwq|2

|v ´ w|d`α
|fpwq|2|µ´1

α pwq|2 dw dv .

To treat I2, we use Taylor formula to write

I2 “

ĳ

|w|ď1

ˇ̌
ˇ
ş1
0
∇pµ

1{2
α qpv ´ θwq ¨ w dθ

ˇ̌
ˇ
2

|w|d`α
µ´1
α pv ´ wq|fpv ´ wqµ´1{2

α pv ´ wq|2 dw dv .

Performing now the changes of variables v Ñ v ´ θw and then θ Ñ 1 ´ θ, we get:

I2 ď

ĳ

|w|ď1

ż 1

0

|∇pµ
1{2
α qpvq|2

|w|d`α´2
µ´1
α pv ´ θwq|fpv ´ θwqµ´1{2

α pv ´ θwq|2 dθ dw dv .

Notice that, using (3) and since |w| ď 1, we have µ´1
α pv ´ θwq ď Cp1` |v|d`αq. Then, using (4),

one can prove that |∇pµ
1{2
α qpvq|2µ´1

α pv ´ θwq ď C. Consequently, we obtain

I2 ď C

ĳ

|w|ď1

ż 1

0

1

|w|d`α´2
|fpv ´ θwqµ´1{2

α pv ´ θwq|2 dθ dw dv

and thus performing a change of variable I2 ď C}fµ
´1{2
α }2

L2
v
. This ends the proof. �

Proposition 3.3. There is CF ” CF pα, dq such that for all f P DpLαq,

(8) }pf ´ Πfqµ´1{2
α }2

H
α{2
v

ď CF Svpf, fq .

Proof. Let us now summarize the estimates that we have obtained in the two previous lemma.
We have

Svpf, fq ě C´1
P }f ´ Πf}2

L2
vpµ

´1{2
α q

and Svpf, fq ě C´1
R

`
}fµ´1{2

α }2
9H
α{2
v

´ }fµ´1{2
α }2L2

v

˘
.

Moreover, one can notice that Svpf, fq “ Svpf ´Πf, f´Πfq. As a consequence, an appropriate
convex combination of the two previous inequalities shows (8). �

4. An interpolation inequality

In this section we prove an interpolation result which is crucial in the proof of Theorem 1.1.

Proposition 4.1. For all ε ą 0, there is Kpεq ” Kpε, α, dq ą 0 such that

(9) }∇vf}2
L2
vpµ´1

α q
ď Kpεq

´
Svpf, fq ` }Πf}2

L2
vpµ´1

α q

¯
` εCF Svp∇vf,∇vfq

where the constant CF is defined in Proposition 3.3.
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Proof. One can use the chain rule and an interpolation of 9H1
v between 9H

α{2
v and 9H

1`α{2
v (easily

shown in Fourier variables) to get

}p∇vfqµ
´1{2
α }2

L2
v

ď 2}∇vpfµ
´1{2
α q}2

L2
v

` 2}fp∇vµ
´1{2
α q}2

L2
v

ď Kpεq }fµ
´1{2
α }2

9H
α{2
v

` ε }∇vpfµ
´1{2
α q}2

9H
α{2
v

` 2}fp∇vµ
´1{2
α q}2

L2
v

ď Kpεq }fµ
´1{2
α }2

H
α{2
v

` ε }p∇vfqµ
´1{2
α }2

H
α{2
v

` C }fµ
´1{2
α }2

L2
v

ď Kpεq }fµ
´1{2
α }2

H
α{2
v

` ε }p∇vfqµ
´1{2
α }2

H
α{2
v

up to changing the value of Kpεq and where we used the fact that |p∇vµαqµ´1
α | P L8pRdq to

bound the third term. Now observe that

}fµ´1{2
α }2

H
α{2
v

ď 2

ˆ
}pf ´ Πfqµ´1{2

α }2
H

α{2
v

` }pΠfqµ´1{2
α }2

H
α{2
v

˙
,

and that }pΠfqµ
´1{2
α }

H
α{2
v

“ }Πf}L2
vpµ´1

α q}µ
1{2
α }

H
α{2
v

with }µ
1{2
α }

H
α{2
v

ď C since µ
1{2
α P H1

v

from (3) and (4). Moreover, one has ∇vf “ ∇vf ´ Π∇vf . One can conclude by using (8)
twice. �

5. Proof of Theorem 1.1

Up to changing f in by f in ´
@
f in

D
µα, we assume that

ť
TdˆRd fpt, x, vqdv dx “ 0 at initial

time t “ 0, so that by conservation it also holds for all time t ą 0. We introduce a new norm
on the weighted Sobolev space H1

x,vpµ´1
α q. It is defined by

(10) ~f~2 “ }f}2
L2
x,vpµ´1

α q
` a}∇xf}2

L2
x,vpµ´1

α q
` b }∇vf}2

L2
x,vpµ´1

α q
` 2 c x∇xf,∇vfyL2

x,vpµ´1
α q ,

where a, b and c are positive constants to be determined later on. Observe that as soon as c2 ă
ab, one has that ~ ¨ ~ is equivalent to } ¨ }H1

x,vpµ´1
α q. Let us note that the commutators r∇x, v ¨∇xs

and r∇x, Lαs vanish while r∇v, v ¨ ∇xs “ ∇x and r∇v, Lαs “ ∇v. Also observe that v ¨ ∇x is
skew-symmetric in L2

x,vpµ´1
α q.

Let us estimate the evolution of each term appearing in the new norm defined in (10) for f
a solution of (1) with initial data f in satisfying

@
f in

D
= 0. In the following the notation Sx,v

denotes the integral of Sv in the x variable. One has

1

2

d

dt
}f}2

L2
x,vpµ´1

α q
“ ´Sx,vpf, fq ,

1

2

d

dt
}∇xf}2

L2
x,vpµ´1

α q
“ ´Sx,vp∇xf,∇xfq ,

1

2

d

dt
}∇vf}2

L2
x,vpµ´1

α q
“ ´Sx,vp∇vf,∇vfq ` }∇vf}2

L2
x,vpµ´1

α q
´ x∇xf,∇vfy

L2
x,vpµ´1

α q ,

d

dt
x∇xf,∇vfy

L2
x,vpµ´1

α q “ ´}∇xf}2
L2
x,vpµ´1

α q
´ 2Sx,vp∇xf,∇vfq ` x∇xf,∇vfy

L2
x,vpµ´1

α q .
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Notice here that the keystone of the proof of the last equality is the splitting obtained in
Proposition 2.1. By gathering all the previous estimates one gets

1

2

d

dt
~f~2 “ ´Sx,vpf, fq ´ aSx,vp∇xf,∇xfq ´ bSx,vp∇vf,∇vfq ´ c}∇xf}2

L2
x,vpµ´1

α q

` b}∇vf}2
L2
x,vpµ´1

α q
´ b x∇xf,∇vfy

L2
x,vpµ´1

α q

´ 2cSx,vp∇xf,∇vfq ` c x∇xf,∇vfyL2
x,vpµ´1

α q .

The first four terms are dissipation terms and the last four terms are remainder terms. Let us
control the latter by the former ones. By integrating (5) in x and using Young’s inequality one
gets

|2cSx,vp∇xf,∇vfq| ď
2 c2

b
Sx,vp∇xf,∇xfq `

b

2
Sx,vp∇vf,∇vfq .

Then since
ş
∇vfdv “ 0, one has

b
ˇ̌
ˇx∇xf,∇vfy

L2
x,vpµ´1

α q

ˇ̌
ˇ “ b

ˇ̌
ˇx∇xf ´ Πp∇xfq,∇vfy

L2
x,vpµ´1

α q

ˇ̌
ˇ

ď bC
1{2
P Sx,vp∇xf,∇xfq1{2}∇vf}L2

x,vpµ´1
α q

ď
bCP

2
Sx,vp∇xf,∇xfq `

b

2
}∇vf}2

L2
x,vpµ´1

α q
,

where we used (6). Similarly

c

ˇ̌
ˇx∇xf,∇vfy

L2
x,vpµ´1

α q

ˇ̌
ˇ ď

c2CP

2b
Sx,vp∇xf,∇xfq `

b

2
}∇vf}2

L2
x,vpµ´1

α q
.

For the last remainder term we use (9) integrated in x, namely

}∇vf}2
L2
x,vpµ´1

α q
ď Kpεq

´
Sx,vpf, fq ` }Πf}2

L2
x,vpµ´1

α q

¯
` εCF Sx,vp∇vf,∇vfq .

We can use the Poincaré inequality on the torus (since f is mean-free) and the Jensen inequality

to get }Πf}2
L2
x,vpµ´1

α q
ď rCP }∇xf}2

L2
x,vpµ´1

α q
where rCP ” rCP pdq is the Poincaré constant of the

d-dimensional torus. Thus eventually, one has

(11)
1

2

d

dt
~f~2 ` Dpf, fq ď 0 ,

where the dissipation is given by

Dpf, fq “ p1 ´ 2 bKpεqqSx,vpf, fq `

ˆ
a ´

c2

b

ˆ
2 `

CP

2

˙
´

bCP

2

˙
Sx,vp∇xf,∇xfq

`

ˆ
b

2
´ 2bεCF

˙
Sx,vp∇vf,∇vfq `

´
c ´ 2b rCPKpεq

¯
}∇xf}2

L2
x,vpµ´1

α q
.

Now choose consecutively ε, b, c and a such that 0 ă ε ă 1{p4CF q, 0 ă b ă 1{p2Kpεqq,

c ą 2b rCPKpεq and finally a large enough so that a ą c2 p2 ` CP {2q {b`bCP {2. It yields that the
dissipation is non-negative and even that there is a constant λ ą 0 (depending on a, b, c, ε) such
that Dpf, fq ě λ~f~2. By a Gronwall type argument we have that ~fptq~ decays exponentially
to 0 when t Ñ 8. �
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6. The case of the heavy-tailed BGK equation

In this last section we consider another simple kinetic model

(12) Btf ` v ¨ ∇xf “ ΠMf ´ f , with pΠMfqpt, x, vq “ Mpvq

ż

Rd

fpt, x, wqdw ,

for which the local equilibrium satisfies the following assumptions

(13) Mpvq ą 0 ,

ż

Rd

M “ 1 , and ∇v lnpMq P L8 .

This allows for heavy-tailed distributions, namely M such that Mpvq „|v|Ñ8 |v|´d´α with
α P p0, 2q.

Theorem 6.1. Assume that (13) holds and let f solve the BGK equation (12) starting from

the initial data f in P H1
x,vpM´1q. Then, for all t ě 0 one has

}fptq ´
@
f in

D
M}H1

x,vpM´1q ď C }f in ´
@
f in

D
M}H1

x,vpM´1q e
´λt

for some constant C ě 1 and λ ą 0 depending only on d and }∇v lnpMq}L8 .

The proof is similar and simpler than that of Theorem 1.1. We skip many details as the
reader may go back to the proof of Theorem 1.1 in order to recover them.

Proof of Theorem 6.1. Consider f a solution to (12) with initial data f in satisfying
@
f in

D
“ 0.

Let us observe that the commutators r∇x, v ¨∇xs and r∇x,ΠM s vanish while r∇v, v ¨∇xs “ ∇x

and also r∇v,ΠM s “ ∇v lnpMqΠM . Now with this in mind, and defining the triple norm of f
as in (10) with µα replaced by M , one gets

1

2

d

dt
~f~2 “ ´}f ´ ΠMf}2L2

x,vpM´1q

´ a}∇xf ´ ΠM∇xf}2L2
x,vpM´1q ´ b}∇vf}2L2

x,vpM´1q ´ c}∇xf}L2
x,vpM´1q

` b x∇v lnpMqΠMf,∇vfyL2
x,vpM´1q ´ b x∇xf,∇vfyL2

x,vpM´1q

´ 2c x∇xf,∇vfyL2
x,vpM´1q ` c x∇v lnpMqΠMf,∇xfyL2

x,vpM´1q .

First, we notice that x∇xf,∇vfyL2
x,vpM´1q “ x∇xf ´ ΠM∇xf,∇vfyL2

x,vpM´1q to deal with the

third and fourth remainder terms with Cauchy-Schwarz inequality. The last remainder term
requires some special care. Indeed, observe that since x∇v lnpMqΠMf,ΠMgy vanishes for any g,
one thus has

x∇v lnpMqΠMf,∇xfyL2
x,vpM´1q

ď }∇v lnpMq}L8 }ΠMf}L2
x,vpM´1q }∇xf ´ ΠM∇xf}L2

x,vpM´1q .

We also have that

x∇v lnpMqΠMf,∇vfyL2
x,vpM´1q ď }∇v lnpMq}L8 }ΠMf}L2

x,vpM´1q }∇vf}L2
x,vpM´1q .
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Finally, we recall that }ΠMf}L2
x,vpM´1q ď rCP }∇xf}L2

x,vpM´1q with rCP the Poincaré constant of

the d-dimensional torus. Then using four times Young’s inequality with well chosen weights,
one obtains (11) with the dissipation

Dpf, fq “ }f ´ ΠMf}2L2
x,vpM´1q `

`
a ´ b ´ 4c2{b ´ CMc{2

˘
}∇xf ´ ΠM∇xf}2L2

x,vpM´1q

` pb ´ b{4 ´ b{4 ´ b{4q }∇vf}2L2
x,vpM´1q ` pc ´ bCM ´ c{2q }∇xf}L2

x,vpM´1q

with CM “ }∇v lnpMq}2L8
rC2
P . One concludes as in Theorem 1.1 after choosing any b ą 0,

c ą 2 bCM and finally a ą 4c2{b ` b ` Cd,Mc{2. �
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[7] Guillaume Dujardin, Frédéric Hérau, and Pauline Lafitte. Coercivity, hypocoercivity, exponential time decay
and simulations for discrete fokker-planck equations. arXiv preprint arXiv:1802.02173, 2018.
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PSL Research University, 45 rue d’Ulm, 75005 Paris, France

E-mail address: isabelle.tristani@ens.fr


