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In this paper, we focus on the joint calibration and estimation of direction of arrivals in a data aided scenario, i.e., presence of one or more calibrators. The considered context has the following specifications: i) the antenna sensors are characterized by an unknown complex gain, ii) the array is composed of small sub-arrays largely spaced leading to a sparse noise covariance matrix and iii) observations may contain outliers or non homogeneities. Numerical simulations assess that the proposed algorithm is robust to such disturbances while performing an accurate joint calibration and direction of arrival estimation and out preforms the state of the art.

Introduction

Direction of arrivals (DOA) estimation is an important topic with a plethora of applications, e.g., wireless communication, radio-interferometer, radio-astronomy, RADAR/SAR/STAP applications, EEG localization, to cite a few [START_REF] Krim | Two decades of array signal processing research: the parametric approach[END_REF][START_REF] Vantrees | Detection, Estimation and Modulation Theory: Radar-Sonar Signal Processing and Gaussian Signals in Noise[END_REF][START_REF] Haardt | Subspace methods and exploitation of special array structures[END_REF]. In order to achieve high resolution, large systems are commonly considered. A typical example is the LOFAR (low frequency array) which consists of several thousands of elementary sensors forming a very large radiointerferometers [START_REF] Van Haarlem | LOFAR: The LOw-Frequency ARray[END_REF]. Specifically, such instrument is decomposed of several sub-arrays (50 stations for the LOFAR) each containing several antennas. In this context, the whole array is characterized by i) its geometry, leading to a sparse block diagonal noise covariance matrix. This is naturally due to the decorrelation between the noise components between sub-arrays or stations (temporally and spatially decorrelation due to the large spacing between two distinct sub-arrays) [START_REF] Pesavento | Maximum-likelihood direction-of-arrival estimation in the presence of unknown nonuniform noise[END_REF][START_REF] Ollier | Joint ML calibration and DOA estimation with separated arrays[END_REF][START_REF] Vorobyov | Maximum likelihood direction-of-arrival estimation in unknown noise fields using sparse sensor arrays[END_REF]. ii) the presence of complex gain which is due to the individual distortions of sensor outputs [START_REF] Yatawatta | On the interpolation of calibration solutions obtained in radio interferometry[END_REF][START_REF] Brossard | Parallel multiwavelength calibration algorithm for radio astronomical arraysk[END_REF]. iii) finally, the possible presence of data aided sources or calibrators is taken into account (this is a typical scenario in wireless communication [START_REF] Li | Maximum likelihood angle estimation for signals with known waveforms[END_REF][START_REF] Stoica | Training sequence design for frequency offset and frequency-selective channel estimation[END_REF] as well in radio imaging [START_REF] Van Der Veen | Signal processing tools for radio astronomy[END_REF])

Apart from the specifications listed above, it is worth-mentioning that in a high resolution scenario the Gaussian assumption of the noise is generally violated [START_REF] Yao | A representation theorem and its applications to spherically invariant random processes[END_REF]. Typical examples are high resolution radar systems, the recent large radio-interferometers and high resolution SAR imaging systems to cite a few [START_REF] Conte | Adaptive matched filter detection in spherically invariant noise[END_REF]. Recently, an interesting alternative to Gaussian noise modeling appears: the so-called compound Gaussian noise modeling [START_REF] Pascal | Covariance structure maximum likelihood estimates in compound gaussian noise: Existence and algorithm analysis[END_REF][START_REF] Zhang | MIMO radar target localization and performance evaluation under SIRP clutter[END_REF][START_REF] Breloy | Clutter subspace estimation in low rank heterogeneous noise context[END_REF]. A compound Gaussian, known also as spherically invariant random process, is composed of two component random variables: the texture parameter, a positive random variable which represents a local variation of the non homogeneities, and the speckle parameter which follows a zero mean complex Gaussian process. The multiplication of these two random parameters leads to a compound Gaussian random variable. The compound Gaussian process is known to be heavy tailed [START_REF] Yao | A representation theorem and its applications to spherically invariant random processes[END_REF] (meaning that it takes into account the presence of outliers and non homogeneities) and it encompass several well known distributions, e.g., the Gaussian distribution, the K-distribution, the student't distribution, the Weibell distributions ect. The aforementioned specification of the compound Gaussian process makes it a perfect candidate for noise modeling in a high resolution context [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF].

Consequently, in this paper we aim at designing scalable robust joint calibration and DOA estimation. The robustness is ensured by considering the compound Gaussian noise modeling. In addition, a block coordinate descent approach is considered in order to alleviate the computational complexity cost.

Finally, it is worth-mentioning that the proposed algorithm unifies the existing work related to the calibration and/or DOA estimation in the context of sparse arrays. Specifically, i) the proposed algorithm can be considered as a robust version of the so-called modified iterative maximum likelihood algorithm designed under Gaussian assumption [START_REF] Ollier | Joint ML calibration and DOA estimation with separated arrays[END_REF] and ii) it generalizes the maximum likelihood DOA estimation in unknown noise fields using sparse sensor arrays [START_REF] Vorobyov | Maximum likelihood direction-of-arrival estimation in unknown noise fields using sparse sensor arrays[END_REF] to the case of un-calibrated sparse arrays.

The paper is organized as follows: Section 2 focuses on the data model and the noise modeling, in section 3 we expose the design of the proposed algorithm. Section 4 presents the numerical simulation results and finally, the conclusion is drawn in Section 5. Regarding the notations, scalars, vectors and matrices are represented by italic lower-case, boldface lower-case and boldface upper-case symbols, respectively. The transpose, the complex conjugate, the hermitian, the pseudo-inverse, the trace and determinant operator are represented, respectively, by (.) T , (.) * , (.) H , (.) † , tr{.} and |.|. The operators bdiag{.} and diag{.} represent a block-diagonal and a diagonal matrix, respectively.

Data Model

Model description

In the following we consider an antenna with M sensors decomposed into L small and largely spaced sub-arrays (possibly non linear). This scenario is common in radio astronomy and interferometer systems. Each sub-array is composed of M l sensors, such that L l=1 M l = M (cf. Fig. 1). The whole antenna is exposed to D far field signal sources. Part of these sources are known as calibrator sources, meaning that their positions and emitted signal sources are known (this is also known as data aided sources in the context of wireless communication [START_REF] Stoica | Training sequence design for frequency offset and frequency-selective channel estimation[END_REF]). Let us denote D K as the number of calibrator sources and D U as the number of the unknown sources, with D = D K + D U . Finally, we assume that the array (and consequently, the L sub-arrays) is not calibrated. This is mainly due to the instrumentation perturbations such as phase shifts which introduce difference between sensors gains leading to a dramatic performances loss. In this context, an accurate calibration need to be done in order to avoid the aforementioned loss.

In the next subsection, we represent mathematically the adequate parametric model associated with the above description.

Model representation

The observation vector, y(t) ∈ C M , for the t-th snapshot is then given by

y(t) = GA(θ)s(t) + n(t) (1) 
where n(t) denotes the noise component which is explicated below, θ represents the DOA parameters, the steering matrix

A(θ) = [A(θ U ), A(θ K )], the signal sources s(t) = [s T U (t), s T K (t)
] T , the matrix gain G = diag(g) in which the subscripts K and U represent the known (calibrator) and unknown components, respectively. The explicit steering matrix model depends on the considered case : azimuth only estimation or elevation and azimuth estimation. This can be found in classical textbooks as [START_REF] Krim | Two decades of array signal processing research: the parametric approach[END_REF][START_REF] Vantrees | Detection, Estimation and Modulation theory: Optimum Array Processing[END_REF].

Noise statistic

In an array processing context, it is commonly assumed to model the noise as a Gaussian process. This assumption is motivated by the central limit theorem. Nevertheless, with the crowing use of high resolution systems, the Gaussian assumption shows it limits due to the non applicability of the central limit theorem. Furthermore, the presence of outliers and the non homogeneity of observations clearly breaks the use of the Gaussian assumption. An interesting alternative is the so-called compound Gaussian modeling (known also as spherically invariant random process modeling). The latter generalizes a large number of distributions (possibly heavy tailed), e.g., Student's t-distribution, k-distribution, Gaussian distribution, Weibull distribution, to cite just a few. This means that considering a compound Gaussian modeling leads to a robust estimation w.r.t. to outliers (due to the consideration of heavy tailed distributions) as well being robust to all distributions represented by compound Gaussian.

A compound Gaussian process, n l (t), for the l-th sub-array, can be represent by

n l (t) = τ l (t)x l (t) (2) 
where the positif random variable τ l (t) ∼ p τ l (a l , b l ), in which a and b denote hyperparameters characterizing the pdf p τ and x l (t) ∼ CN (0, Σ l ). Specific considerations need to be take into account regarding the above noise modeling -The sparse array structure, i.e., the presence of L sub-arrays, leads to specific structure of the noise covariance matrix Σ. Specifically, due to the large inter sub-array distances w.r.t. the signal wavelength, the noise is typically considered as independent from a subarray to a sub-array. This leads to a block-diagonal structure of the Σ as

Σ = bdiag(Σ 1 , . . . , Σ L ) (3) in which Σ l ∈ C M l ×M l with L l=1 M l = M .
the random variable τ l (t) follows a pdf p τ l (a l , b l ). Taking into account the true distribution of τ l leads to a complex algorithm (due to the need to estimate the hyper parameters a l and b l ) and limits the robustness efficiency (since, we have to specify the pdf, which may be unknown in some applications are in radio-astronomy and radar.) An interesting alternative is to consider deterministic but unknown realizations of τ l (t) to be estimated. -From (3) we can notice that an ambiguity exists. Consequently, we impose that Tr(Σ) = 1. This assumption does not affect the estimation accuracy of the parameter of interest which are contained in the parameterized mean [START_REF] Zhang | Maximum likelihood and maximum a posteriori direction-of-arrival estimation in the presence of SIRP noise[END_REF]. 

Vector of unknown parameters

Now, we are ready to specify the vector of unknown parameters, η, which is considered for the algorithm design. Specifically,

η = θ T U , s T U (1), . . . , s T U (T ), g T , τ T (1), . . . , τ T (T ), {[Σ 1 ] p 1 ,q 1 } p 1 ≥q 1 , . . . , {[Σ L ] p L ,q L } p L ≥q L T (4) with τ (t) = [τ 1 (t), . . . , τ L (t)] T .

Proposed algorithm

From ( 1) and ( 2), the likelihood function reads p(y(1), . . . , y(T

)|η) = T t=1 -exp(β(t) H Σ(t) -1 β(t)) |πΣ(t)| (5) 
in which we define

Σ(t) = bdiag(τ 1 (t)Σ 1 , . . . , τ L (t)Σ L ) and β(t) = y(t) -GA(θ U )s U (t) - GA(θ K )s K (t).
Consequently, the optimization problem to be considered is

arg min η Λ(η) (6) 
s.t. Λ(η) T t=1 β(t) H Σ(t) -1 β(t) -log |Σ(t)| τ (t) > 0, [Σ] p,p > 0
Maximizing (6) w.r.t. η is infeasible due to the non convexity of the objective function. In the following we propose to use a block coordinate descent algorithm in which we minimize the objective function (log likelihood) w.r.t. to a subset of η while fixing the other parameters/subsets at their previously estimated values. Then, we iterate until convergence.

Theoretical study of the convergence of such algorithm is beyond the scope of this paper and is considered as a future work.

Update of τ (t) and Σ

Equating ∂Λ ∂τ l (t) to zero and after some calculus, we obtain

τl (t) = 1 M l β H l (t)Σ -1 l β l (t) (7) 
with

β l (t) = [y(t) -GA(θ U )s U (t) -GA(θ K )s K (t)] l-1 i=1 M i +1: l i=1 M i
In the same manner, equating ∂Λ ∂Σ l to zero and using [START_REF] Vorobyov | Maximum likelihood direction-of-arrival estimation in unknown noise fields using sparse sensor arrays[END_REF], we obtain after some calculus

Σl = M i T T t=1 β l (t)β l (t) H β l (t) H Σ-1 l β l (t) (8) 
The fixed point equation above [START_REF] Yatawatta | On the interpolation of calibration solutions obtained in radio interferometry[END_REF], and due to its G-convexity, it is known to have a unique solution whatever is the starting point.

Update of g

We can notice that

∂Λ ∂[g] i = T t=1 y H (t)Σ -1 (t)e i e T i A(θ)s(t) + s(t)A H (θ)G H Σ -1 (t)e i e T i A(θ)s(t) (9) 
in which e i is a zero element vector except the i-th element which is equal to one. Equating the above equation to zero leads to

z i = M m=1 g * m [X (i) ] m,m (10) 
in which

z i = T t=1 y(t) H Σ(t) -1 e i e T i A(θ)s(t)
and

X (i) = T t=1 Σ -1 (t)e i e T i A(θ)s(t)s H (t)A(θ) H
Considering the diversity of (10) w.r.t. sensor elements, we obtain after some calculus

g = (B * ) † z * (11) 
with z = [z 1 , . . . , z M ] T and [B] i,j = [X (i) ] j,j , ∀i, j = 1, . . . , M 3.3 Update of s U (t)
Again, equating ∂Λ ∂s U (t) to zero and after some calculus, we obtain

s U (t) = A(θ U ) H G H Σ(t) -1 GA(θ U ) -1 (GA(θ U )) H Σ(t) -1 (y(t) -GA(θ K )s K (t)) = ( ĀH U (t) ĀU (t)) -1 ĀH U (t) ỹ(t) (12) 
in which the whitened steering matrix of the unknown and known sources are given respectively, by ĀU (t) = Σ(t) -1

2 GA U and ĀK (t) = Σ(t) -1

2 GA K , whereas, the whitened residuals reads ỹ(t) = ȳ(t) -ĀH K (t)s K (t) in which ȳ(t) = Σ(t) output : η

Numerical simulations

In the following simulations, we consider two equally powered far field sources, θ U = 30 • and θ K = 10 • , impinging on a full array composed of L = 3 linear sub-arrays. Each sub-array is uniformly linear array composed of, respectively, 5, 4 and 5 sensors with half-wavelength spacing. The inter-sub-array space is about five to six wavelengths spacing, respectively. The texture parameter is generated as Gamma distribution with a l = 0.5 and b l = 1, ∀l and we considered 20 snapshots. The amplitude and phase gain are generated uniformly on [0.5, 1.5] and [0, 2π] and the noise covariance matrix of each sub-array follows the model given in [START_REF] Zhang | MIMO radar performance analysis under K-distributed clutter[END_REF], i.e., [Σ l ] p,q = 0.9 |p-q|e j π

(p-q)

. In Fig. 1, we consider the accuracy of the direction of arrival using algorithms based on the context of sparse arrays. Specifically, [START_REF] Vorobyov | Maximum likelihood direction-of-arrival estimation in unknown noise fields using sparse sensor arrays[END_REF] considers the implementation of the maximum likelihood DOA estimation in unknown noise fields using sparse sensor arrays assuming perfectly calibrated arrays. This algorithm shows its limits due to the effect of the miscalibration represented by the calibration matrix G. Furthermore, we consider the modified iterative maximum likelihood algorithm designed under Gaussian assumption for non calibrated arrays [START_REF] Ollier | Joint ML calibration and DOA estimation with separated arrays[END_REF]. The aforementioned algorithm behaves well under Gaussian assumption but shows it limits in the case of non Gaussian environment or in the presence of outliers as shown in Fig. 1. Finally, the proposed algorithm shows it usefulness in the case of uncalibrated or mis-calibrated sparse arrays in the context of non Gaussian environment. This is also validated by a closer look at the mean square error of the calibration parameters represented in Fig. 2 (we omit the algorithm proposed in [START_REF] Vorobyov | Maximum likelihood direction-of-arrival estimation in unknown noise fields using sparse sensor arrays[END_REF] since it does not take into account the estimation of G). 

Conclusion

In this paper, we proposed a novel robust algorithm that, jointly, calibrate the sensors and estimate the direction of arrival in a context of sparse arrays. The proposed algorithm is based on a relaxed version of the maximum likelihood in a non Gaussian environment. To reduce the computational cost, a block coordinate descent approach has been used in which we managed to obtain closed form updates for most of the parameters. Finally, numerical simulations assess the usefulness of the proposed algorithm regarding an accurate joint calibration and direction of arrival estimation by out preforming the state of the art. 
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