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Abstract

To avoid false colors, classical color sensors cut infrared
wavelengths for which silicon is sensitive (with the use of an in-
frared cutoff filter called IR-cut). However, in low light situation,
noise can alter images. To increase the amount of photons re-
ceived by the sensor, in other words, the sensor’s sensitivity, it
has been proposed to remove the IR-cut for low light applica-
tions.

In this paper, we analyze if this methodology is beneficial
from a signal to noise ratio point of view when the wanted result
is a color image. For this aim we recall the formalism behind
physical raw image acquisition and color reconstruction.

A comparative study is carried out between one classical
color sensor and one specific color sensor designed for low light
conditions. Simulated results have been computed for both sen-
sors under same exposure settings and show that raw signal to
noise ratio is better for the low light sensor. However, its recon-
structed color image appears more noisy.

Our formalism illustrates geometrically the reasons of this
degradation in the case of the low light sensor. It is due on one
hand to the higher correlation between spectral channels and on
the other hand to the near infrared part of the signal in the raw
data which is not intrinsically useful for color.

Introduction

The most of image sensors are made in CMOS technol-
ogy containing silicon photodiodes that convert light into elec-
tronic signal. They are sensitive to radiations with wavelengths
in the visible domain up to near-infrared (NIR) domain (400nm
to 1000nm) which corresponds to the absorption range of silicon.
To adapt these sensors for color sensing, color filters (RGB) are
placed in front of photodiodes to select respectively red, green
and blue wavelengths. Unfortunately, common color filters are
made of resins which are transparent to NIR requiring to add an
infrared cutoff filter (IR-cut) in the sensor’s structure.

Photons from a scene are converted in electrons which are
stored in an electronic capacity before being converted in read-
able voltage up to a saturation value. Photon shot noise and read-
out noise of the sensor are the main sources of uncertainties when
we can neglect the dark current. Signal to noise ratio (SNR) is an
important criterion when evaluating performances of a sensor.
The signal value depends on intrinsic physical parameters of the
sensor which can depend on wavelengths A:

e spectral quantum efficiency of photodiodes (QE,;(4))
e transmittance spectra of optical elements including color
filters (T7(2))
: 2
e Area of pixels (apix)
It also depends on other parameters that can be tuned by the user
of the camera:

e Integration time or exposure time (#;)
e Aperture of the optics in front of the sensor (fi)

Signal to noise ratio becomes a critical parameter in low light
conditions where integration time and aperture tuning might
not be sufficient to increase signal values without altering the
image with motion blur. To collect more signal for identical
exposure setting (#; and fx), the sensitivity must be increased.
This can be done using larger pixels (spatial widening) but
it decreases resolution of the sensor. Another solution is to
remove the IR-cut (spectral widening) to take benefit from
NIR sensitivity of the silicon[1]-[3]. Color information is then
reconstructed computationally from raw data polluted by NIR
using a dedicated color conversion matrix (CCM). An example
of a sensor specialized for low light contains RGB and W
channels (W is a “white” pixel, with no color filter) and no
IR-cut, we call it RGBW,, (Figure 1).

RGB + |IR-cut

RGBW,

Figure 1: Example of classical RGB color sensors with IR-cut
(left), example of RGBW,, low light sensor (right).

In this paper we compare performances in term of SNR of
a classical RGB sensor (with IR-cut) and a RGBW,, sensor de-
signed for color sensing under low light conditions [4]. We first
recall formalism about signal acquisition, noise nature and color
conversion. Next we carry out a quantitative study for both sen-
sors with same physical parameters (except color or infrared fil-
ters). An algebraic interpretation of noise propagation helps us to
understand why reconstructed color image is dramatically more
noisy than raw image for the RGBW,, sensor.

Model of signal acquisition and color image
formation

Color image formation can be separated in several key
steps. Raw signals are acquired all over the color filter array
covering the sensor implying physical parameters mentioned in
the introduction [S]. Then raw data are spatially interpolated
through the demosaicing algorithm which is not under scope
here [6][7]. Finally, the interpolated raw image is converted in
a color image using a color conversion matrix (CCM) which
maps the intrinsic input spectral space given by the camera to
an output color space. We choose CIE-XYZ 1931[8]-[10] as
reference for output space because one can then easily convert



XYZ coordinates in any display space such as sSRGB. The image
formation flow is schemed Figure 2.

Color conversion:
CIE XYZ

Raw i
Acquisition “

Figure 2: Image processing flow.
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Analytical formalism:

A scene contains for each location different objects with an
associated reflectance spectrum p(A) which is illuminated by a
light source I(A) that we decompose such as I(A) = Ny,,.i(A)
where i(A) is the spectral distribution of I(A) normalized to 1
lux and N, a factor representing the illumination level in lux.
For each pixel the number of collected electrons can be written
as follows[5]:
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This value is altered by an uncertainty mainly due to the photonic
shot noise (variance GI% = #,_) dominant at high light levels,

and readout noise (constant variance 62,) of the sensor, dominant
at low light level.

Algebraic formalism:

The goal of this section is to rewrite equation 1 in term
of matrix and vectors. We start defining a function containing
the input light information: L(A) = Ny,,.i(A).p(A) and another
containing effective quantum efficiencies of spectral channels
QE(A) = QEp;(A).Tf(A). Then we define a small wavelength
sampling step A and discretise curves in a n number of wave-
lengths (for sensitivity of silicon, it is not zero on the range 400 -
1050 nm, 64 = (1050 —400)/(n—1) in nm). L and QE are now
column vectors containing the n samples (in R") of L(A) and
QE(A)[11]. Equation 1 can be rewritten in an algebraic form as:
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So the signal M,_ is proportional to the orthogonal projection of
L on QE (scalar product). In this equation the ”.” operator is a
classical matrix product.

Now we assume that for any sensor, its spectral sensi-
tivities generate a free family of vectors which are generally
not orthogonal. For p different spectral channels, the family
k x (QEq,...,QEp) is a basis of a p dimensions vector space
in R" (p < n) so, for writing simplification, we note measure-
ment vectors f; = k x QE; with i = {1,..., p}. Similarly, we write
M,_ ; the values associated to the signals in the f; basis. These
values are the orthogonal projections of light vector L in the sen-
sor’s spectral space. A geometric illustration of the measurement
process for a simple bi-dimensional (p = 2) case is proposed in
Figure 3.

Color conversion

A color conversion matrix is a linear operation that trans-
forms color information extracted from raw data acquired by a
sensor to the output color space. It is mathematically built as a
composition of operators dedicated respectively to spectral infor-
mation extraction and then color data computation.

Figure 3: Illustration of the measurement of L in the sensor’s
space for a two-dimensional case.

Spectral content of the raw measurement

From light spectrum L € R”, the spectral content L of the
measurement is the projection of L in the sensor’s space. To get
the explicit form of L in R”, we can write it as a sum vector
of f; which are known elements in R”. However, as the sen-
sor’s basis is usually not orthogonal, L+ Zf’lee_’i.fi. These
measured coordinates are called “covariant”. We must find the
associated so called "contravariant” coordinates M’ [12] to write
L=Y"  M'f (see Figure 4).

Figure 4: Illustration of the position of the contravariant coordi-
nates in a two-dimensional case.

Let’s define a n X p measurement operator F with F =
[fy...£p] such as [M,_; ... M, ,]T = FT.L [13]. Contravariant
coordinates can be found by applying the inverse of the corre-
lation matrix of the basis vectors on the covariant coordinates
[11]012]:

M mP)T = (FYF) M,y M )T 3)

Explicitly the total operation of spectral information extraction
can be written using F,[14][15]:

L=F.F"F) LM .. M_p" “4)

Color component

The chosen color space is CIE-XYZ 1931 which is defined
by the color matching functions (CMF) displayed Figure 5. CMF
can be sampled over the same wavelengths as previous data and
putin a3 x n operator H= [x y z] [16]. CIE XYZ coordinates of
the measured input light vector L can be determined by applying
H on L. The same way as the measurement done by the sensor,
this corresponds to an orthogonal projection of L. on the “color
axes” (scalar products).

X¢27T=H"L 5)
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Figure 5: Color matching functions.
The projection of the light vector measured by a sensor on a color
axis is illustrated Figure 6.

Figure 6: Illustration of the projection of the measured vector on
a color axis (y) denoted Y for a two-dimensional case.

Finally a 3 x p matrix operator which applies on covariant
coordinates (raw measurements) can be derived from equations 5
and 4, we call this operator color conversion matrix (CCMp,pe1)
which is explicitly written in equation 6 [17]:

CCMornes = HY F.(FT.F)~! (6)

This operator is called "kernel” because it does not take in con-
sideration neither display space (sSRGB, Adobe RGB,...) which
requires other next linear combination, nor normalization which
is necessary when we consider acquisition and display digital
range. Nevertheless, as the main objective of this paper is to
analyse noise propagation through color reconstruction process,
we may skip these linear and normalization steps.

Noise propagation: computational data and
interpretation

To illustrate the impact of noise, we chose two distinct sen-
sors : a standard RGB sensor (with IR-cut) and a four channel
sensor (RGBW,, without IR-cut). The only changing parameter
between these sensors are the spectral sensitivity shapes due to
color filters and IR-cut. Table 1 summarizes common physical
parameters.

Table 1: Physical parameters of the sensor

1. Pixel size (apix) 10 um
2. Optics aperture (fx) 1.8

3. Saturation (Syax) 10000 e-
4. Readout noise (o) 10 e-

Spectral sensitivities of the investigated sensor are the same as
those of the Onyx sensor manufactured by Teledyne E2V which

is an RGBW,, sensor without IR-cut designed for low light con-
ditions [4]. We will compare performances of such a sensor with
a classical RGB sensor (actually based on the same spectral re-
sponses but attenuated with an infrared cutoff filter and without
W channel). Spectral sensitivities of those sensors are shown in
Figure 7.

We arbitrary consider a relatively low light level at N;,, =
10 Iux. For a white reflectance (flat spectrum) seen under the
equal-energy illuminant CIE-E (extended to 1050 nm), 99% of
the saturation limit of the W pixel (which is the most sensi-
tive channel) is reached to an integration time about #; = 12ms.
This value will be kept to perform a fair comparison between
RGBW,, and RGB sensors. However note that for this sensor,
the red channel is the more sensitive and reaches its saturation at
t; = 59ms. For a more complete comparative study, we may have
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Figure 7: Spectral sensitivities of the RGBW,, low light sensor
(top) without infrared cutoff filter and a standard RGB sensor
equipped with the infrared cutoff filter (bottom).

chosen to also compare the case where RGB sensor does not have
the IR-cut or a RGBW one equipped with the IR-cut. However,
these two additional sensors both have poor performance making
them out of consideration of this paper. When IR-cut is removed
from RGB sensor, spectral properties are not well designed to
reconstruct spectra correctly. As a result, false colors from NIR
components imply a slight drop in term of color performance
for the CIE-XYZ 1931 output space. Alternatively, if we add
a white channel without removing the IR-cut, the W channel is
unfortunately very close to a linear combination of R,G and B
channels. So the correlation matrix depicted equation 3 is singu-
lar and hardly invertible leading to an high amplification of noise
in spectral reconstruction. For these reasons, we only keep the
classical RGB with IR-cut and the RGBW,, without IR-cut that
have similar performances in term of color rendering.

Comparative raw noise
Raw measurements include signal and noise. Signal is cal-
culated as in equation 2, and two sources of noise are considered.



Photon shot noise (G;h) and readout noise (O',Zn). For one single
pixel, signal to noise ratio can be computed using equation 7.
When signal is equal to 10000 e-, SNR = 39.95dB, correspond-
ing to shot noise limited SNR.

SNR=20x1log [ ————
var(S)

) =20xlog _ M- ™
\/ O+ O
Raw signal to noise ratio is evaluated at the output of the sensor
without color conversion. As shown in Table 2 the wider the
spectral bands, the higher the raw SNR.
Table 2: Raw signal to noise ratio for both sensors.

Channels| RGBW,, RGB (with | RGB (with
(no IR-cut) | IR-cut) IR-cut)

@1 12 ms 12 ms 59 ms

R 38.1dB 32.6 dB 39.8dB

G 36.8dB 32.8dB 39.8dB

B 36.4 dB 32.6dB 39.9dB

W 39.90dB

As expected, SNR are significantly better on each raw chan-
nel for the RGBW,, sensor compared to RGB sensor since spec-
tral sensitivities have been widened to NIR domain.

Noisy color image reconstruction

To compare the relative noise propagation between the two
sensors, RGB and RGBW,,, we simulate acquisitions using a hy-
perspectral reflectance image with the two considered sensors.
The hyperspectral image is picked up in our own database, con-
taining reflectance data of a scene over the range of wavelengths
from 400 nm to 1050 nm at a 20 nm step. Integration time and
illuminant (extended CIE-E) are the same and color images are
extracted using two color conversion matrices corresponding to
each sensor. These images are shown Figure 8.

Figure 8: Color image at saturation limit for RGB sensor (top)
and RGBW,, (bottom).

In both cases the calculated CCM is satisfactory as color
reconstruction seems correct but the image is more noisy in the
case of RGBW,, sensor than for the RGB classical sensor.

To quantify signal to noise ratio of the color converted
image, we use a Monte-Carlo approach. Many noisy raw
acquisitions are simulated in same conditions for a perfectly
flat reflectance spectrum under the considered illuminant.

Typically data are extracted statistically over 5000 simulated
acquisitions. For each sensor, the CCM is applied and we focus
on the ¥ component of the result [9],[18] (which is called the
“luminance” component of the color image). Signal value is
the mean value of the projected ¥ points, noise is their standard

deviation. Quantitative results are summarized in Table 3.
Table 3: SNR on Y channel for RGB and RGBW,, sensors.

Sensors | RGBW,, RGB (with | RGB (with
(no IR-cut) IR-cut) IR-cut)

@5 12 ms 12 ms 59 ms

SNRy 26.1dB 32.4dB 39.4dB

In opposite to the SNR of raw signal, SNR on color ex-
tracted information is far more noisy in the case of the RGBW,
low light sensor than in RGB classical one.

Geometrical interpretation

The loss of signal to noise ratio when converting raw im-
ages into color images can be related to two main reasons that
can be graphically illustrated. First reason is correlation between
channels which is higher in the case of RGBW,, sensor than in
classical RGB (see Figure 7). The second is linked to the NIR
part of the acquisition (case of RGBW,, sensor) which is not a
useful part of the acquired raw information for color reconstruc-
tion.

Effect of correlations between channels

From a geometrical point of view, the more the channels
are correlated, the smaller are the angles between measurement
vectors. As each measurement point is altered by an uncertainty
on measurement axes, the zone of uncertainty given by two cor-
related channels is larger than the zone of the uncertainty given
by two less correlated channels. The impact of uncertainty and
correlation is illustrated on Figure 9 for a two-dimensional case.

Figure 9: Uncertainty of spectrum locus (grey area) due to noise
in the case of weakly correlated channels (top) and highly corre-
lated channels (bottom).

In Figure 9, weak correlation corresponds to RGB sensor



whereas strong correlation represents RGBW),, sensor. As il-
lustrated, the spectrum locus uncertainty is larger in the case of
strongly correlated channels (grey area) as in RGBW,, sensor.

As an indicator of this spectral uncertainty, we can quantify
SNR on the contravariant coordinates corresponding to each
sensor. As previously, we use a Monte-Carlo approach to
compute these results: many noisy measurements are simulated
(equation 1), then, corresponding contravariant coordinates of
each measurement is computed (equation 3). For each channel,
we extract mean measurement and its corresponding standard
deviation. Graphically this is equivalent to project the grey area
of Figure 9 alongside sensor axes (see Figure 4). Table 4 shows
that SNR in contravariant coordinates are dramatically decreased
in the case of RGBW,, sensor compared to RGB sensor when
they are considered under same conditions.

Table 4: Signal to noise ratio of contravariant coodinates for
RGBW,, and RGB sensors

Channels| RGBW,, RGB (with | RGB (with
(no IR-cut) | IR-cut) IR-cut)

@y 12 ms 12 ms 59 ms

MR 9.8dB 26.6 dB 34.1 dB

MY 8.8dB 19.8 dB 27.4 dB

MB 16.4 dB 25.0dB 32.4dB

MY 12.8 dB

Effect of joint visible and NIR acquisition

As explained earlier and shown in Figure 6, the ¥ value is
the orthogonal projection of I on the y axis which is only defined
on the visible domain (Figure 5). This uncertainty on the ¥ value
is the orthogonal projection of the L. uncertainty locus on the y
axis. The shape of the locus and the angle between y and mea-
surement axes can lead to a loss of SNR on ¥ especially when
these angles are wide. In our examples, RGBW), sensor acquires
both visible and NIR wavelengths, raw channels are less corre-
lated to color axes than in the case of the RGB sensors which
acquires only visible wavelengths. Then angles between mea-
surement vectors and color axes is wider for RGBW,, sensor. In
Figure 10, we illustrate a case where channels are highly corre-
lated between them, and more or less correlated to the y axis.

In Figure 10, the case of RGBW,, sensor is more accurately
represented by the top situation where color signal is diluted in a
raw signal containing visible and NIR at the same time.

As an illustration of this loss, we consider only the
two green channels of both sensors as mono-channel sensors
(denoted G with the IR-cut, G, without the IR-cut). As shown
previously, measurement points (corresponding to a perfect
white reflectance under extended CIE-E illuminant) are pro-
jected on the y axis. We still use the Monte-Carlo approach to
compute signal to noise ratios. Results are compiled in Table 5.

Table 5: Signal to noise ratio of the Y color information con-

tained in G and G, channels, 6, /, denotes the geometric angle

between the y color axis and the raw G axes of the two sensors

Channels| G, (no IR-cut) G (with IR-cut)
@ 12 ms 59 ms

0,/ 50.7 ° 18.1°

SNR 4y 39.95dB 39.95dB
SNR, 36.9dB 39.7 dB

Figure 10: Representation of ¥’ signal and uncertainty in the case
where sensor channels are correlated between each other, and
channels are weakly correlated to y axis (top), or highly corre-
lated (bottom)

Conclusion

Color image sensors have been optimized for low light con-
ditions by widening spectral sensitivities to acquire visible and
NIR information at the same time. Using this method, raw SNR
are higher but the corresponding color reconstructed image ap-
pears more noisy.

To understand how noise propagates, the algebraic model
of color reconstruction from raw data have been depicted to ge-
ometrically illustrate the raw measurement, the reconstruction of
the spectral information and color information. By representing
noise on raw acquisition, it is possible to understand why recon-
structed image is more noisy in the case of the RGBW,, sensor
compared to RGB sensor.

The loss is due on one hand to higher correlations between
spectral channels in the case of the RGBW,, sensor which widens
the uncertainty locus of the measured spectral data. On the other
hand it is due to the NIR part of the signal which is not bene-
ficial for color reconstruction because of the lack of correlation
between XYZ color axes and sensor’s basis. Considering the dif-
ferent simulations which has been computed, the effect of the
correlation between spectral channels seems to be the most criti-
cal when going from the RGB to the RGBW,, sensor.

Finally, widening spectral bands to NIR implies several
compromises between having high SNR on raw images or on
color images. Understanding the reasons of noise propagation
can lead to several prospects. From a physical point of view,
mathematical and geometrical models can guide physical opti-
mizations of sensors according to the wanted applications. From
signal point of view, the understanding of noise propagation can
be used to design more adapted algebraic operation for color cor-
rection. In addition, post-processing algorithms can be designed
to use the denoised raw image to help improving the correspond-
ing noisy color image. By the way, even if this study was re-
stricted to color sensing, all geometrical considerations can be



used for multispectral imaging.
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