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INO-CNR, via Branze 38, 25123 Brescia, Italy
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Abstract: We investigate multi-wave mixing associated with the strongly
pump depleted regime of induced modulation instability (MI) in optical
fibers. For a complete transfer of pump power into the sideband modes, we
theoretically and experimentally demonstrate that it is necessary to use a
much lower seeding modulation frequency than the peak MI gain value.
Our experiment shows that, at such optimal modulation frequency, a record
95 % of the output pump power is frequency converted into the comb
of sidebands, in good quantitative agreement with analytical predictions
based on the simplest exact breather solution of the nonlinear Schrödinger
equation.
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1. Introduction

As well known, MI in a nonlinear dispersive medium described by the nonlinear Schrödinger
equation (NLSE) leads to the exponential growth of periodic perturbations, at the expense of an
intense continuous wave (CW) pump background [1–7]. Since the very beginning of nonlinear
wave propagation studies (see [8] for a review), it has been realized that MI (known also under
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different names, e.g., Benjamin-Feir instability for deep water waves [3]) is a universal pattern
generation mechanism in different physical contexts such as plasma physics [1], fluidodynamics
[3], and optics [2, 7]. Despite fifty years of studies, the investigation of MI is still an extremely
active field of interdisciplinary research.

Initial MI studies essentially aimed at the observation of the early stage of exponential growth
of the wave perturbation spectrum. It is only recently that the main focus of the experiments
has been moved to the fully nonlinear (or long-term) evolution of MI [9–17]. In spite of the
valuable pioneering approaches [4–6], such problem remains open even theoretically, at least
in its most general formulation, thus continuing to require considerable efforts [18–20]. Indeed,
knowing the long-term evolution of MI is a key issue for the understanding of many complex
phenomena in physics, such as Fermi-Pasta-Ulam (FPU) recurrence [9–11, 14, 17], higher or-
der pulse-splitting [16,21,22], homoclinic structures [6,23,24], rogue wave formation [25–27],
the development of turbulence [28], and supercontinuum generation [29], and for optimising
frequency conversion applications [30–32]. Since optical pulse propagation in fibers is well
described by the NLSE, optical fibers provide a formidable test bed for the experimental inves-
tigation of all of these processes.

Whenever MI is induced in the anomalous dispersion regime of a fiber by means of a rela-
tively weak time-periodic perturbation with period 2π/Ω, the nonlinear evolution of MI leads,
via a cascade four-wave mixing (FWM) process, to the appearance of a comb of harmonics at
frequencies ω0 ±nΩ, n = 1,2,3, . . . (ω0 indicates pump frequency). Comb components exhibit
a monotonic growth at the expense of the pump, but only up to a characteristic distance, say,
Zd : at this point, the pump is maximally depleted. Further on, the power flow is reversed from
the sidebands back into the pump, and subsequent cycles of periodic power exchange among
the comb waves (or FPU recurrence) are typically observed.

For a given fiber, the actual degree of maximum pump power depletion is strongly affected
by the value of the initial modulation frequency Ω, as well as by the pump power P. The initial
rate of frequency conversion (or MI gain) is well known to peak at a certain frequency, say ΩPM .
At this frequency, nonlinear phase matching occurs, i.e. the pump power induced phase shift
cancels the linear dispersive mismatch: |β2|Ω2

PM = 2γP (β2 < 0 and γ are the fiber dispersion
and its nonlinear coefficient, respectively).

However, setting the initial modulation frequency equal to ΩPM cannot guarantee that op-
timal frequency conversion from the pump also occurs in a regime where the pump becomes
substantially depleted. Indeed, as the pump is depleted, the modulation frequency that satis-
fies the nonlinear phase matching condition progressively shifts to lower values. The latter
argument suggests that the maximum pump depletion may be increased, by setting the initial
modulation frequency to a value which is lower than ΩPM . In such situation, instead of imme-
diately mis-matching the mixing process, pump depletion may actually usefully drive the pump
and sidebands towards phase-matching, thus effectively increasing the overall conversion ef-
ficiency [33]. Despite the general fundamental and applicative interest of wave propagation
problems described by the NLSE, to our knowledge, the conditions that lead to the optimum
transfer of energy from the pump to the sidebands have not been properly clarified, neither
theoretically nor experimentally.

In this paper we show that this question can find a simple answer in terms of the so-called
Akhmediev breather (AB) solutions of the NLSE [5, 6, 12, 13, 15, 34]. Moreover, we present a
conclusive experimental evidence of this theoretical finding. As a matter of fact, ABs provide a
full analytical description of the frequency comb generation process in fibers. As we will show
below, cascaded multiple FWM is responsible for a quantitatively important discrepancy with
respect to the simple analytical prediction which arises from the truncated three-wave mixing
(TWM) approach [24, 33]. We discuss in details such a disparity between the two approaches
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in order to quantitatively assess the limitations of the three-mode truncation, which was also
previously used for the modelling of frequency conversion experiments in fibers, carried out in
the strongly pump depleted regime [31, 32].

In order to validate the AB approach, in this work we report a careful experimental character-
ization of the output FWM efficiency as the modulation frequency Ω is varied. We also perform
cut-back measurements, in order to portray the axial evolution of the pump and sidebands. This
allows us to demonstrate that a record pump depletion of 95 % can be achieved, provided that
MI is induced by a modulation frequency which is as much as 30% lower than the phase-
matching prediction for an undepleted pump, in excellent quantitative agreement with the AB
solution.

2. Theory

Let us consider first the optimal frequency conversion problem from a theoretical point of view.
Neglecting fiber loss, the dynamics of the depleted stage of MI in our experiments is well
described by the NLSE

i
∂u
∂ z

− β2

2
∂ 2u
∂ t2 + γ|u|2u = 0, (1)

where β2 is group velocity dispersion and γ is the nonlinear fiber coefficient. MI is induced by
adding a weak in-phase modulation to the CW input pump in Eq. (1)

u(z = 0, t) =
√

P [
√

η0 +
√

ηs exp(iωt)] . (2)

Here P is the total power, η0 and ηs = 1−η0 are the pump and the signal input power fractions,
and ω is the pump-signal frequency detuning. The central question that we want to address is
the following: what is the seed modulation frequency ω that guarantees the strongest (optimal)
coupling of the input pump power into the signal-idler harmonic pair? In order to express this
condition in universal form, it is convenient to employ dimensionless units, i.e., we assume in
Eq. (1) β2 =−1, γ = 1, P = 1. This means that distance z, time t, and the field u are measured
in units of the nonlinear length ZNL = (γP)−1, of the characteristic time T0 =

√|β2|ZNL, and of√
P, respectively. In this way, the solution of Eqs. (1)-(2) depends on a single parameter only,

namely, the dimensionless seed frequency ω = ΩT0 = Ω
√|β2|/(γP). It is well known that, in

these units, the linear stability analysis (LSA) of the CW solution of the NLSE (1) yields MI
gain for 0 ≤ ω ≤ 2, with a peak gain at ω = ωPM , ωPM = ΩPMT0 ≡

√
2 being the normalized

phase-matching frequency.
A simple answer to the problem of the optimal condition for frequency conversion from the

pump to the sidebands may be obtained by using the truncated (but fully nonlinear) TWM equa-
tions for the n = 0,±1 modes. By substituting the ansatz u(z, t) = u0(z)+ u1(z)exp(−iωt)+
u−1(z)exp(iωt) in Eq. (1), and neglecting higher-order sideband generation, leads to a self-
contained set of ordinary differential equations (ODEs) for the pump and the first-order side-
band amplitudes u0(z),u±1(z) [24,33]. As shown in [33], such equations can be further reduced,
in terms of the variables η = |u0|2 and φ = φ1+φ−1−2φ0, to a one-dimensional integrable non-
linear oscillator. The equivalent particle motion is described in the phase plane by the ODEs
dη/dz = ∂H/∂φ , dφ/dz =−∂H/∂η , with the Hamiltonian

H = 2η
√

(1−η)2 −α2 cosφ +(ω2 +1)η −3η2/2. (3)

Here α = |u−1|2 − |u1|2 is a Manley-Rowe conserved quantity, which reduces to α = ηs for
the initial condition Eq. (2). This model predicts that full conversion from the pump to the
sidebands occurs whenever the phase plane points corresponding to the the initial condition
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Fig. 1. (a) Predictions of the TWM truncated model: Distance zd and residual pump power
fraction η(zd) corresponding to maximally depleted pump versus modulation frequency
ω , for a fixed input signal fraction of 3 % (ηs = 0.03). The dashed vertical line stands for
ωopt

TWM from Eq. (4). (b,c,d) Full NLSE computation: (b) Evolution of Fourier modal frac-
tion of power at frequency ω = ωopt

AB ≡ 1; (c) Residual pump power fraction vs. ω: AB (Eq.
(6), solid line) compared with NLSE simulations (circles and crosses); (d) Corresponding
distance zd from NLSE simulations compared with approximation (dashed lines) from Eq.
(8).

and to a vanishing pump fraction η = 0 belong to the same level curve of the Hamiltonian, or
H(η0 = 1−ηs) = H(η = 0) in Eq. (3). This condition allows us to find a remarkably simple
expression for the optimum input modulation frequency (for any given value of the initial power
fraction of the signal ηs)

ωopt
TWM =

√
1
2
− 3

2
ηs. (4)

Equation (4) predicts that, in the limit case of a small input signal (ηs � 1), the modulation
frequency for maximum pump depletion is a factor two lower than the value obtained from the
LSA of the undepleted pump, ωPM =

√
2. Moreover, under the 3-mode approximation, com-

plete conversion is only asymptotically reached (that is, after an indefinitely long propagation
distance), since the point η = 0 is a saddle point of the Hamiltonian [33]. This situation is
summarized in Fig. 1(a): here we display the minimal pump fraction that is obtained at the
normalized distance zd = Zd/ZNL [i.e., ηmin ≡ η(zd)] when using the truncated TWM model.
The input power fraction of the signal is equal to 3 % (ηs = 0.03,η0 = 0.97). As it can be seen,
full pump depletion occurs at the frequency ωopt

TWM predicted by Eq. (4): the corresponding
maximum depletion distance zd diverges to infinity as ωopt

TWM is approached.
Equation (4) is qualitatively correct in predicting that, for obtaining maximum pump deple-

tion, it is necessary to use a modulation ω which is substantially lower than the peak LSA gain
value. However, this prediction is not quite in quantitative agreement with the NLSE solutions,
owing to the presence of higher-order sideband pairs (n ≥ 2). The coupling of power to the
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higher harmonics of the initial modulation becomes indeed stronger at modulation frequencies
lower than phase-matching frequency, thus affecting also the flow of power towards the primary
modes (n =±1).

The exact frequency comb dynamics is generally described by doubly periodic (in t and z)
solutions of the NLSE. However it has been shown that, for 1 ≤ ω ≤ 2, these general solu-
tions remain sufficiently close to the AB solution [5, 6] (see also Refs. [23, 25] for a derivation
following a different method). The latter is the simplest full one-parameter family solution of
the NLSE which is homoclinic to the background, i.e., its associated phase plane trajectory
connects the background to itself after a full cycle of evolution (strictly speaking, the AB is a
heteroclinic solution, since the trajectory connects two phase shifted background solutions). As
it occurs in the TWM model, this cycle of evolution has an infinite period in the longitudinal
coordinate z. At the apex of the cycle, the AB describes a fully developed train of pulses, which
corresponds to a maximally depleted background.

Although the spectrum of the AB solution is symmetric around the pump, recent studies
[12,13,15,34] have shown that ABs may be used to approximate with reasonably good accuracy
the nonlinear stage of induced MI with an asymmetric modulation seed, i.e., when a single
sideband input condition replaces Eq. (2). This typically requires a small input signal fraction
ηs � 1, and relatively large modulation frequencies (i.e., 1 ≤ ω ≤ 2, so that no harmonics fall
under the MI gain bandwidth).

Quite interestingly, we could derive from the AB solutions a simple analytical condition
for the optimum input modulation frequency, that leads to maximum pump depletion. Let us
expand the AB at its apex (corresponding to the distance zd) in a Fourier series

upeak
AB (t) =

(ω2/2−1)+
√

1−ω2/4cos(ωt)
√

1−ω2/4cos(ωt)−1
=

= ∑
n

ũnein 2π
ω t . (5)

Here ũn are the Fourier coefficients, which can be explicitly calculated. We obtain

|ũpeak
0 |2 = (ω −1)2, (6)

for the pump (n = 0), whereas for sideband modes ±n,

|ũpeak
n |2 = ω2

(
2−ω
2+ω

)n

. (7)

Equation (6) implies that the pump is totally depleted at ωopt
AB = 1. This is confirmed by the nu-

merical simulation of the NLSE (1) with initial condition (2): see Fig. 1(b), where we report the
evolution of the power fraction of the pump and the first four sideband pairs. Solving the NLSE
at different modulation frequencies ω confirms that the parabolic law of Eq. (6) indeed pro-
vides a quantitatively accurate description of the maximally depleted pump in the whole range
1 ≤ ω ≤ 2, regardless of the initial power fraction of the signal. This agreement is displayed in
Fig. 1(c), where we compare the results of NLSE simulations (with two different input signal
fractions ηs = 2× 10−4,300× 10−4, or pump fractions η0 = 0.9998 and η0 = 0.97), to the
analytical expression [Eq. (6)]. As it can be seen, slight discrepancies only appear for signifi-
cantly high input signal fractions (see crosses for ηs = 0.03), and in the range of modulation
frequencies well below the optimum value ωopt

AB = 1.
Note also that, although the input signal fraction does not significantly affect the amount of

maximum pump depletion (at least for 1 ≤ ω ≤ 2), ηs strongly affects the maximum pump
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depletion distance zd . The AB solutions also provide a reasonably good estimate for zd in terms
of the following formula [34] (an alternative formula is reported in [25])

zd =
1

ω
√

1−ω2/4
ln

⎛

⎝

√
ω(1−ω2/4)

ηs

⎞

⎠ . (8)

Figure 1(d) shows that Eq. (8) is indeed in good agreement with the numerical solution of Eqs.
(1-2).

In summary, based on the AB solutions, one predicts that total pump depletion occurs pre-
cisely at ωopt

AB = 1. Such modulation frequency is higher than the prediction of the 3-mode
truncation (i.e., ωTWM � 1/

√
2), but it is still substantially lower (by a factor

√
2) than the

phase-matching frequency ωPM =
√

2.
There is another difference between the results of the 3-mode truncation and the AB theory

which is worth to emphasize. In the former case, the condition for optimal pump depletion
necessarily coincides with the condition for maximum power in the sideband modes. Con-
versely, the AB solution implies that the optimum power conversion from the pump into, e.g.,
the primary sidebands occurs at the modulation frequency ωopt

n=1 =
√

5−1 � 1.24 	= ωopt
AB . This

frequency is obtained by maximizing the power fraction |ũ1|2 in Eq. (7) [in general each side-
band order n peaks at a different frequency, which can be easily calculated from Eq. (7)]. This
is because at ωopt

AB = 1 higher-order sidebands concur to the full depletion of the pump [even
if ∼ 96% of the power is contained in the modes with n ≤ 3, the fractional content of n = 2,3
modes is far from being negligible, see also Fig. 1(b)]. Viceversa, by slightly increasing the fre-
quency above ωopt

AB = 1, the AB spectrum narrows down (i.e. the sideband modes decay faster
for increasing n). In this case, even if the pump is not depleted completely, the fraction of power
in the n = 1 sideband pair may still reach its largest value.

3. Experimental results

In order to experimentally investigate the optimal conditions for pump depletion in the MI
process, we employed the set-up reported in Fig. 2. To allow for relatively large modulation
frequencies, we induced MI by an asymmetric seed. A strong CW-pump (λ = 1560 nm) and
a weak tunable CW-probe were combined and intensity modulated to generate 12 ns square
pulses at 5 MHz repetition rate. For increasing the pump pulse peak power, we used an erbium-
doped fiber amplifier (EDFA2) before launching the modulated pump into a 1.1 km long Corn-
ing SMF28 fiber. As we discuss below, for such a relatively short fiber length, the fiber loss has
a minor impact over the MI dynamics.

50%

50%

SMF

EDFA2EOM

Pattern
generator

PUMP

Power meter

99%

C1-PM

signal

C2

OSA

1%

ISOFilter

EDFA1

Fig. 2. Experimental set-up. C1-PM, polarization maintaining coupler; EDFA, erbium-
doped fiber amplifier; EOM, electro-optic modulator; C2, coupler; ISO, isolator; SMF,
Corning 1.1 km single mode fiber; OSA, optical spectrum analyzer.
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Δ

 MI Gain

 Max probe power

 Min pump power

Fig. 3. Symbols: experiments. MI gain (red triangles; right vertical scale), and residual
pump (blue squares) and signal (magenta circles) percentages at the output versus fre-
quency detuning Δ f = Ω/2π . Dashed curves: simulations (the same colour code has been
used for pump and signal).

In order to fully characterize the MI dynamics, we performed two different sets of exper-
iments. In the first set we measured at the fiber output the residual pump and signal power
fractions, as the seed frequency detuning (or modulation frequency) Δ f = Ω/2π was varied.
We compared such results with the measured MI gain curve. In the second set of experiments,
we performed cut-back measurements and recorded the full output spectra every 20 m.

Figure 3 illustrates the dependence of the fraction of total output power in the pump and in the
signal, respectively, vs. their frequency separation. By using an extremely weak signal, the (un-
depleted pump) MI gain curve (red triangles in Fig. 3) was also measured. The MI gain profile
shows that the phase matching frequency is Δ fPM � 80 GHz, in good agreement with the theo-
retical prediction (� 84 GHz). Next we kept the pump power (P = 2.83 W) unchanged, and we
increased the signal power in order to investigate the MI process in the strongly depleted pump
regime. In this case, the signal power was accurately adjusted, so that the fiber length was kept
nearly equal to the maximum depletion length Zd . As shown in Fig. 3, the data (blue squares)
clearly indicate that a minimum residual pump power at the fiber output of 5 % (95 % deple-

Table 1. Results summary
Optimal pump

conversion frequency
Perfect
phase

matching TWM AB

Optimal signal
conversion
frequency

Normalized units ωPM =
√

2 ωopt
TWM � 1√

2
ωopt

AB = 1 ωopt
n=1 � 1.24

Measured
(GHz)

80 55.7 67.8
Physical

Units Calculated
(GHz)

84 Δ fPM
2 = 42

Δ fPM√
2

= 59.4 67.7
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tion) was achieved at Δ f = 55.7 GHz. This frequency is in good quantitative agreement with the
estimate ωopt

AB = 1, which corresponds, in real world units, to Δ f = Δ fPM/
√

2 = 59.4 GHz. The
peak of the output signal fraction (magenta circles) was observed at Δ f = 67.8 GHz, a value
which agrees remarkably well with the predicted value ωopt

n=1 = 1.24, or Δ f =Δ fPM/1.24= 67.7
GHz. For the sake of clarity, all of our results are summarized in Table 1.

We point out that the additional depletion of the pump due to the 0.2 dB/km fiber loss (∼ 5%
total loss over the fiber length) contributes to further decreasing the optimal conversion fre-
quency. However, as NLSE simulation shows, this shift is limited, in the regime of the exper-
iment, to be only ∼ 2%. Therefore the losses account only partially for the deviation of the
observed optimal frequency compared with the theoretical value (-3.7 GHz, which corresponds
to ∼ 6%, see Table 1). We conjecture that the residual discrepancy of ∼ 4% may originate from
non-uniformities of fiber parameters along the propagation distance.

In order to fully validate our measurement results, we also compared them with numer-
ical solutions of the generalized NLSE (GNLSE, which is typically used to simulate broa-
band pulse propagation and supercontinuum generation [29]), using the available fiber data
(β2 = 24.3 ps2/km, third-order dispersion β3 = 0.14 ps3/km, γ = 1.2 (W km)−1, and the loss
coefficient α = 0.2 dB/km) plus a CW pump and seed pair. The outcome of our simulations is
superimposed (blue and magenta dashed lines) to the data in Fig. 3. As can be seen, an excellent
agreement is obtained for the value of the optimal maximum depletion frequency.
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Fig. 4. Observed spectra versus wavelength and distance, as reconstructed from cut-back
measurements: (a) Δ f = 80.3 GHz; (b) Δ f = 55.7 GHz.

However, at variance with the experimentally observed minimal residual pump of 5%, sim-
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ulations predict that full depletion should be observed (see also Fig. 1). Additional numerical
simulations matching the pulsed (as opposed to CW) input pump show that the small residual
pump fraction is due to the finite roll-off factor of the non ideal square pump pulses. Indeed, av-
eraging over the pump power profile is well known to lead to incomplete frequency conversion
in the MI process, as previously reported in, e.g., [10].

In our second set of experiments, we recorded the evolution along the fiber length of the
pump and signal power by means of a cut back experiment in steps of 20 m. In this case we are
launching a signal power 15 dB below the pump, which is maintained to the same level as in
the previous experiment. The results are displayed in Fig. 4 (log vertical scale) for two specific
values of the pump-signal frequency shift. The first value is close to the perfect phase matching
frequency (Δ f = 80.3 GHz, Fig. 4(a)), while the second value is close to the optimal conversion
frequency (Δ f = 55.7 GHz, Fig. 4(b)). As we can see, higher-order sidebands, that start to grow
at longer distances when compared with the primary sidebands (n = 1), play a non-negligible
role around the point of maximal depletion. In addition, Fig. 4(b) shows that pump depletion is
more pronounced around 1000 m.

To gain a clearer insight into the longitudinal variation of the pump and signal output power
fractions, Fig. 5 compares their variation for the two different modulation frequencies of Fig.
4. Figure 5 shows that, for Δ f = 80.3 GHz, a relatively large (i.e., 27%) residual pump power
fraction is observed at Zd � 1000 m. Conversely, data obtained at Δ f = 55.7 GHz show that
a marked enhancement of the maximal pump power depletion occurs at Zd � 980 m, in good
agreement with the theoretical prediction.

Δ
Δ

Fig. 5. Measured pump and signal fractions against distance obtained from cut-back
measurements, for frequencies Δ f = 80.3 GHz (close to peak linear gain) and Δ f = 55.7
GHz (optimum frequency for depletion), respectively.

Finally, we point out that, in the regime examined in our experiment, the amplification of the
seed-idler pair and the relative harmonics always prevails over the amplification of noise (spon-
taneous MI), which indeed turns out to be negligible. Conversely when the seed lies outside the
gain bandwidth, the spontaneous MI is expected to compete with FWM, leading to a different
dynamics, as discussed e.g. in [35].

4. Summary

In conclusion, we reported a clear experimental evidence that optimal power transfer from a
pump wave to its sideband modes, as described by the fully nonlinear stage of the MI process
in optical fibers, occurs for an initial modulation frequency Δ f = Δ fPM/

√
2 that is well below
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the nonlinear phase-matching frequency Δ fPM where the MI gain peaks. This result is important
as it establishes a fundamental property of the nonlinear evolution of modulation instabilities
in nonlinear dispersive media. Our observations have also widespread applications to optical
frequency conversion devices. Indeed, as it was earlier pointed out for vector MIs in birefrin-
gent fibers [36], and confirmed experimentally [37–39], the concept of the phase-matching of
parametric mixing processes is of limited use in the strongly depleted pump regime, unless it is
suitably extended by means of a fully nonlinear large-signal theory.
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