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In this paper, after a brief recall of the derivation of the unidirectional pulse propagation equation generalized
to structured media, a fast modal transform linking the spatiotemporal representation of the field and its modal
distribution is presented. This transform is used for solving the propagation equation by using a split-step
algorithm in an efficient way. As an example, we present, to the best of our knowledge, the first numerical
evidence of the generation of conical waves in highly multimodes waveguides.
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I. INTRODUCTION

Recent progresses in optical fibers technology have re-
newed strong attention on the possibility of using highly mul-
timodal waveguides to overcome limitations inherently linked
to monomode propagation [1–5]. In parallel, gas-filled hollow
waveguides are also of particular interest for their capacity
of carrying and exacerbating the nonlinear propagation of
ultraintense laser pulses without any risk of material damage
[6–8]. Contrary to free-space propagation, the use of external
waveguides allows us to design and tailor to some degree
the propagation medium properties experienced by the optical
modes (in particular, the frequency dispersion properties),
increasing in turn the variety and richness of the propagation
dynamics to explore. In a more fundamental point of view,
in analogy with the mesoscopic branch of condensed matter
physics, massively multimodal propagation can be viewed as
the transition between a purely quantized system in which
only one or a few states (i.e., modes) can be excited and the
purely continuous macroscopic physics in which the eigen-
states are dense in the energy space. Pushing forward this
analogy, the study of multimode waveguide could then be of
great interest to study, in tabletop experiments, the physics of
mesoscopic systems as optical black holes can be potentially
useful for studying the properties of black holes [9]. In this
context, it is then of prime importance to develop models able
to capture as close as possible the propagation dynamics in
such waveguiding structures in which potentially hundreds
of optical modes can be excited. As already mentioned in
Ref. [10], the nonlinear propagation in massively multimodal
optical waveguides are characterized by several properties
that are difficult to handle numerically at the same time.
First, the waveguide structure is characterized by a strong
refractive index contrast and can even potentially present a
discontinuity in its spatial distribution (for instance, in the
case of step-index or gas-filled hollow core fibers). Second,
most of the time, the propagation is inherently unidirectional
and over long distances, which can be very time consuming
in the context of numerical simulations. Finally, the electric
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field propagating within the guiding structure can experience
a strong reshaping in the time, spectral, and spatial domains.
Until now, most of the derived numerical models are not
suited for rendering all these characteristics at the same time.
Basically, there are two different approaches to tackle such
guided propagation problems [4]. The first one consists of
fully working in a modal representation of the electric field
[11]. This method has, however, two main drawbacks. First,
using a modal representation requires that the modes are
well known. While the ones of some “simple” architectures
are well known, it can become quite difficult to accurately
determine the transversal shape of the modes together with
their associated propagation constants in the case of complex
waveguiding structures. In fact, such propagation method is
very efficient in the linear regime. However, in the case of
nonlinear propagation during which there are many inter-
modal nonlinear couplings, such kind of calculation needs
to evaluate, prior to any propagation calculations, overlap
integrals between any modes combinations. While such pre-
liminary calculations are easily done in the case of weakly
multimodes waveguide, it becomes very demanding both in
terms of computing time and required memory if hundreds
of modes are at play. For instance, in the case of a nonlinear
propagation in which only a third-order nonlinearity is at play
(Kerr effect), the number of overlap integrals to calculate is
equal to the binomial coefficient ( N+4−1

4 ), where N is the
number of guided modes, and then scales approximatively
as the fourth power of the number of modes at play. The
second kind of calculations is based on a direct representation
in the space-time domain of the electric field. Basically, it
consists of solving a propagation equation originally derived
in the case of propagation in homogeneous media (such as the
generalized nonlinear Schrödinger equation or other similar
propagation equation), in which the spatial structure of the
waveguide is included a posteriori as a correction to the
source term in the Maxwell equations. This method leads
to a Gross-Pitaevskii equation, in which the refractive index
spatial structure acts as a potential term. As already noted in
Ref. [10], this artifice nevertheless automatically adds strong
approximations in the propagation equation as compared to
the exact case. In this paper, we propose an alternative method
that combines all advantages of the two kinds of methods. It
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consists of solving the exact generalized unidirectional pulse
propagation equation (gen-UPPE) written in the modal basis
by a split-step method in which each term composing the
propagation equation (linear propagator, nonlinear polariza-
tion, and free current in the case of propagation in a ionized
medium) is calculated in the representation in which there are
the most efficiently evaluated. For this, a fast modal numerical
transform (in analogy with the fast Fourier or the fast Hankel
transforms) is encoded, with which one can efficiently switch
between the spatiotemporal and the full modal representation
of the electric field for any waveguide geometry. We restrict
our studies to waveguides presenting a cylindrical symmetry
around the propagation axis, although our formalism can be
straightforwardly applied to more complex geometries. In the
first section, the derivation from the Maxwell equations of
the gen-UPPE is recalled in the scalar approximation. In the
second section, the fast modal transform is presented after
a description of the numerical method used to evaluate the
propagation modes. Finally, as an example, it is shown that
conical waves can be generated in multimodal waveguides, as
it is the case in bulk materials.

II. DERIVATION OF THE GENERALIZED
UNIDIRECTIONNAL PULSE PROPAGATION EQUATION

A. Generalities and hypothesis

Let us start from the well-known wave equation of the
electric field:

�−→
E − 1

c2
∂2

t
−→
E − −→∇ (

−→∇ · −→
E ) = μ0

(
∂t

−→
J + ∂2

t
−→
P
)
, (1)

where
−→
P and

−→
J are the medium polarization and free-

charges induced current, respectively. In the picosecond and
femtosecond regimes, even if atoms and molecules are ion-
ized, freed electrons do not have the time to move far from
their parent ions. Consequently, the medium remains neutral
even locally so that the global charge density ρT = 0 and−→∇ · −→

D = 0. Accordingly, one has:

−→∇ · −→
E =

−→∇ · −→
P

ε
. (2)

For weak nonlinearities, one has in good approximation
−→
P =

ε0εr
−→
E so that

−→∇ · −→
E = −

−→∇ (εr ) · −→
E

εr
. (3)

In practice, the refractive-index difference between core and
clad of practical fibers is of the order of 1%. In this case,
the variations of εr remain slower than the optical wave-
length. Accordingly, the contribution of

−→∇ (
−→∇ · −→

E ) remains
far smaller than the one of �−→

E so that the propagation
equation for the real electric field can be simplified in good
approximation:

�−→
E − 1

c2
∂2

t
−→
E = μ0

(
∂t

−→
J + ∂2

t
−→
P
)
. (4)

This simplification is known as the weakly guiding approxima-
tion. The associated modes are called linearly polarized (LP)

modes because the small longitudinal polarization component
of the electric field is neglected. A full vectorial derivation
of the unidirectional pulse propagation equation can be found
in Ref. [10]. Moreover, we limit our calculations to electric
fields linearly polarized along a transverse direction −→e s:

−→
E =

E−→e s but the generalization to an arbitrary transverse polar-
ization is straightforward. The scalar transverse component of
the electric field E then satisfies:

�E − 1

c2
∂2

t E = μ0
(
∂t J + ∂2

t P
)
. (5)

For the following, it will be useful to define the Fourier
transform f̃ (ω) of a temporal function f (t ) and the two-
dimensional Fourier transform f̂ (ω, kz ) of a function f (t, z)
that depends on both time and longitudinal direction z as:

f̃ (ω) =
∫

f (t )eiωt dt

f̂ (ω, kz ) =
∫∫

f (t, z)eiωt e−ikzzdtdz. (6)

Using a Fourier transform in both t and z, Eq. (5) becomes(
�⊥ + ω2

c2
− k2

z

)
Ê = μ0(−iωĴ − ω2P̂), (7)

where �⊥ = ∂2
r + 1

r ∂r is the transverse Laplacian when cylin-
drical symmetry around the propagation axis z is assumed.

B. Polarization

The polarization P can be written as the sum of a linear
and a nonlinear contribution: P = PL + PNL, where PL and PNL

account for the linear and nonlinear part, respectively.

1. Linear contribution

The calculation of PL is easier in the frequency domain:
P̃L(r, ω) = ε0χ

(1)(r, ω)Ẽ (r, ω), where χ (1)(r, ω) is linked
with the linear refractive index n of the material by the relation
n(r, ω) =

√
1 + χ (1)(r, ω) (assuming a cylindrical symmetry

with respect to the propagation axis). In the linear case (J = 0
and PNL = 0), the propagation equation then becomes[

�⊥ + n2(r, ω)ω2

c2
+ ∂2

z

]
Ẽ = 0. (8)

2. Nonlinear contribution

Even if the functional form of the nonlinear polarization
does not matter for the following derivation, one can think
to the instantaneous Kerr effect: PNL(r, t ) = ε0χ

(3)E3(r, t ),
where χ (3) is the third-order susceptibility of the medium. In
the case of molecular gases, one can have also a contribution
coming from the rotational Raman-induced nonlinear polar-
ization: PNL(r, t ) = ρmol(ᾱ + �α[< cos2θ > −1/3]) (for the
case of symmetric top molecules such as nitrogen or oxy-
gen), where ρmol is the molecular density, ᾱ = (2α⊥ + α‖)/3,
�α = α‖ − α⊥ with α‖ (respectively, α⊥) the first-order po-
larizability of the molecule along (respectively, perpendicular
to) its symmetry axis, and θ is the angle between the laser
polarization axis and the symmetry axis of the molecule,
which nonlinearly depends on the electric field amplitude. In
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the case of glasses or crystals, a vibrational Raman-induced
nonlinear polarization may also contribute to the materials
optical response.

C. Free charges induced current

When atoms or molecules are ionized, the freed electrons
(mass me and electric charge e) move with a velocity −→ve and
induce a current

−→
J = eρ−→ve , where ρ is the electrons’ density.

Using the continuity equation and the fundamental principle
of the dynamics, the induced current

−→
J follows the equation

of motion:

∂t
−→
J + νe

−→
J = e2ρ

me

−→
E + −→

�, (9)

with

−→
� = e

mec
−→
J ∧ −→

B −
[

(
−→∇ · −→

J )
−→
J

eρ
+ (

−→
J · −→∇ )−→v e

]
(10)

representing the ponderomotive forces. For intensities lower
than 1015 W/cm2, � can be safely neglected. Consequently,
in the frequency space,

−→
J verifies:

J̃ = e2(νe + iω)

me
(
ν2

e + ω2
) ρ̃E. (11)

Moreover, ρ is evaluated as:

∂tρ = W (I )(ρat − ρ) + σ

Ui
I − f (ρ), (12)

where W (I ) accounts for the ionization probability, ρat is the
density of neutrals, I is the electric field envelope intensity, Ui

is the ionization potential, f is a recombination function, and
σ is the inverse Bremsstrahlung cross section defined as:

σ = e2τc

ε0mec
(
1 + τcω

2
0

) , (13)

where τc is the collision time between an electron and an
neutral atom and ω0 is the carrier frequency of the driving
electric field.

D. Derivation of the unidirectional propagation
equation in a waveguide

Let us recall the propagation equation driving the electric
field evolution expressed in the space (r, ω, z):[

�⊥ + n2(r, ω)ω2

c2
+ ∂2

z

]
Ẽ = −iμ0ωJ̃ − ω2

ε0c2
P̃NL. (14)

Let us now assume that one can form a basis set composed of
solutions ε̃M(r, ω, z) of the linear propagation equation such
that:

ε̃M(r, ω, z) = Ã[r, ω, Kz(ω)]eiKz (ω)z, (15)

where Kz represents the propagation constant of the mode.
Note that, according to our Fourier transform definition
[Eq. (6)], a positive (respectively, negative) propagation con-
stant corresponds to a mode that propagates in the forward
(respectively, backward) direction for positive frequencies
(ω > 0). The basis set is chosen so that the basis vectors are

orthogonal for the following scalar product:∫
Ã
[
r, ω, Kz1 (ω)

]
Ã
[
r, ω, Kz2 (ω)

]
rdr = δ

(
Kz1 − Kz2

)
Kz1

.

(16)
Moreover, by definition, these modes respect[

�⊥ + n2(r, ω)ω2

c2

]̃
εM = −∂2

z ε̃M = K2
z (ω )̃εM. (17)

Accordingly, the electric field distribution can be written as:

Ẽ (r, ω, z) =
∫

E (ω, Kz, z)Ã[r, ω, Kz(ω)]eiKz (ω)zKzdKz,

(18)

with E (ω, Kz, z) the coordinates of the electric field E (r, t, z)
in this basis:

E (ω, Kz, z) =
∫

E (ω, r, z)Ã[r, ω, Kz(ω)]e−iKzzrdr. (19)

The propagation equation then reads in the modal basis:[
�⊥ + n2(r, ω)ω2

c2
+ ∂2

z

]
E = −iμ0ωJ − ω2

ε0c2
PNL. (20)

Injecting Eq. (18) into Eq. (14) and using Eq. (17), one then
has: [

K2
z (ω) + ∂2

z

]
E = −iμ0ωJ − ω2

ε0c2
PNL. (21)

Making a Fourier transform in z, the equation reduces to:[
K2

z (ω) − k2
z

]
Ê = −iμ0ωĴ − ω2

ε0c2
P̂NL. (22)

As a consequence, Ê verifies:

Ê = F̂ NL

k2
z − K2

z

, (23)

with

F NL = iμ0ωJ + ω2

ε0c2
PNL, (24)

expressed in the modal basis. Moreover, one has:

1

k2
z − K2

z

= 1

2Kz

(
1

kz − Kz
− 1

kz + Kz

)
. (25)

Let us decompose the functions F̂ NL(ω, Kz, kz ) and

Ê (ω, Kz, kz ) (both defined in the Fourier space (ω, kz ) as

F̂ NL(ω, Kz, kz ) = F̂ NL,+(ω, Kz, kz ) + F̂ NL,−(ω, Kz, kz ),

Ê (ω, Kz, kz ) = Ê+(ω, Kz, kz ) + Ê−(ω, Kz, kz )

such as

F̂ NL,+(ω, Kz, kz ) = F̂ NL,+(ω, Kz, kz � 0),

F̂ NL,−(ω, Kz, kz ) = F̂ NL,+(ω, Kz, kz < 0),

Ê+(ω, Kz, kz ) = Ê (ω, Kz, kz � 0),

Ê−(ω, Kz, kz ) = Ê (ω, Kz, kz > 0). (26)
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The functions F̂ NL,+ and Ê+ (respectively, F̂ NL,− and

Ê−) then correspond to terms propagating in the forward
(respectively, backward) direction. Note, nevertheless, that,

generally speaking, the source term F̂ NL,+ couples a priori

both the forward and backward components of the field Ê+
and Ê−. However, the backward field remains negligible in
most practical cases so that one can reasonably neglects this
backward-forward coupling. The term 1/(kz + Kz ) in Eq. (25)

has a negligible action on F̂ NL,+ as compared to the term
1/(kz − Kz ). Accordingly, one obtains

F̂ NL,+
k2

z − K2
z

� 1

2Kz

F̂ NL,+
kz − Kz

, (27)

so that

Ê+ = 1

2Kz

F̂ NL,+
kz − Kz

, (28)

or, equivalently,

ikzÊ+ = iKzÊ+ + i
F̂ NL,+
2Kz

. (29)

One finally obtains the unidirectional pulse propagation
equation driving the evolution of E+ (i.e., expressed in the
modal basis) by using a z inverse Fourier transform:

∂zE+ = iKzE+ + 1

2Kz

(
iω2

ε0c2
PNL − μ0ωJ

)
. (30)

Note that this equation is a generalization of the scalar UPPE
derived in bulk media. However, the above equation has been
obtained in the weakly guiding approximation. This neverthe-
less remains a good approximation of almost all optical fibers.
In the bulk case, the Bessel functions J0(

√
k2(ω) − K2

z r) form
the modal basis with propagation constant Kz. However, by
a simple change of variables, one can equivalently use the
Bessel functions J0(k⊥r) with propagation constant Kz =√

k2(ω) − k2
⊥. Doing this, the projection in the modal basis

[Eq. (19)] reduces to the well-known Hankel transform which
can be numerically implemented very efficiently [12]. More-
over, in this case, the transversal distribution of the modes is
independent from ω, which highly simplifies the calculations.

For numerical implementation, it is convenient to make a
change of variables in order to keep the pulse centered around
t = 0 all along the propagation. This is made by defining a
sliding time origin such that the time origin corresponds for
any z to the time at which the pulse would be maximal if it
propagated with a velocity v. Accordingly, one defines the
new set of variables {

ζ = z,

τ = t − z/v.
(31)

The velocity v can be chosen arbitrarily but a convenient
choice is to use v = vg0 = 1/∂ωKz0 , where Kz0 is the propaga-
tion constant of the fundamental guided mode. Accordingly,
the partial derivative becomes{

∂z = ∂ζ − 1
vg0

∂τ,

∂τ = ∂t .
(32)

In the frequency domain, this leads to:

∂z = ∂ζ + iω

vg0

. (33)

Finally, the propagation equation becomes

∂zE+ = i

(
Kz − ω

vg0

)
E+ + 1

2Kz

(
iω2

ε0c2
PNL − μ0ωJ

)
. (34)

By replacing in the above equation, the expression of PNL and
J derived above, one finally obtains:

∂zE+ = i

(
Kz − ω

vg0

)
E+ + 1

2Kz

(
iω2

c2
χ (3)E3+

−ω
e2

ε0mec2

νe + iω

ν2
e + ω2

ρE+

)
. (35)

1. Complex representation of the UPPE

It is often simpler to use a complex representation of the
electric field. Let us define ε such that the real electric field is

E = ε + ε∗

2
, (36)

making the change of variable ξ = √
ε0cn

2 ε such that I (t ) =
|ξ |2(t ) represents the pulse intensity (i.e., the average over
a few optical cycles of the Pointing vector), one obtains the
following equation for the complex electric field:

∂z ξ̄ = i

(
Kz − ω

vg0

)
ξ̄ + 1

Kz

[
iω2

c2

(
n2|ξ |2ξ + n2

ξ 3

3

)

−ω
e2

2ε0mec2

νe + iω

ν2
e + ω2

ρξ

]
, (37)

where n2 = 3
4

χ (3)

ε0cn is the nonlinear refractive index of the
medium. Moreover, taking into account the optical losses
induced by ionization, one finally has:

∂z ξ̄ = i

(
Kz − ω

vg0

)
ξ̄ − ρatUi

WIξ

2I

+ 1

Kz

[
iω2

c2

(
n2|ξ |2ξ + n2

ξ 3

3

)

−ω
e2

2ε0mec2

νe + iω

ν2
e + ω2

ρξ

]
. (38)

Until now, we have supposed the existence of a modal basis
without explicitly exhibiting its mathematical form. Such a
basis and the related propagation constants Kz are well known
for simple waveguide architectures (e.g., step-index fibers or
free space propagation). The next section will describe how
the modal basis can be calculated in a more general case and
how one can switch from a description of the field in the space
(r, t ) to its modal expansion. This change of representation
will be particularly useful for numerically solving the propa-
gation equation.
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E. Modal expansion

In this subsection, we will discuss how the transversal
modes can be calculated in the linear propagation case. More
particularly, one wishes to find the transverse distributions of
the electric field satisfying:[

�⊥ + n2(r, ω)ω2

c2

]̂
ε(r, kz, ω) = k2

z ε̂(r, kz, ω). (39)

One has to emphasize that such an equation is valid in
the weakly guided approximation. Accordingly, only LP
modes can be retrieved. Finding the propagation modes then
amounts to search the eigenvectors of the operator �⊥ ≡
�⊥ + n2(r,ω)ω2

c2 and the associated eigenvalues corresponding
to the square of the propagation constants of these modes.
To this aim, we choose to express the operator �⊥ in a basis
composed of the zeroth-order Bessel functions J0(k⊥r). Note
that this basis is orthogonal for the following scalar product:∫

rJ0(k⊥1 r)J0(k⊥2 r)dr = δ(k⊥1 − k⊥2 )

k⊥1

. (40)

In this basis, one can express any radial function f (r) as:

f (r) =
∫

f (k⊥)J0(k⊥r)k⊥dk⊥, (41)

which corresponds in fact to the Hankel transform (denoted
hereafter as TH) and with

f (k⊥) =
∫

f (r)J0(k⊥r)rdr. (42)

In particular, one can write �⊥[J0(k⊥r)] as

�⊥[J0(k⊥r)] =
∫

I (k′
⊥, k⊥)J0(k′

⊥r)k′
⊥dk′

⊥, (43)

where

I (k′
⊥, k⊥) =

∫
rJ0(k⊥r)�⊥J0(k′

⊥r)dr

+ ω2

c2

∫
n2(r, ω)J0(k⊥r)J0(k′

⊥r)rdr

= −k2
⊥

δ(k⊥ − k′
⊥)

k⊥
+ ω2

c2
I1(k⊥, k′

⊥),

and where I1(k′
⊥, k⊥) = ∫

n2(r, ω)J0(k⊥r)J0(k′
⊥r)rdr.

In this basis, �⊥( f ) is

�⊥[ f ](r) =
∫

f (k⊥1 )�⊥[J0(k⊥1 r)]k⊥1 dk⊥1

=
∫∫

f (k⊥1 )I (k⊥1 , k⊥2 )J0(k⊥2 r)k⊥2 k⊥1 dk⊥2 dk⊥1

=
∫

F (k⊥2 )J0(k⊥2 r)k⊥2 dk⊥2 , (44)

where F (k⊥2 ) = ∫
f (k⊥1 )I (k⊥1 , k⊥2 )k⊥1 dk⊥1 corresponds to

the Hankel transform of �⊥( f ):

T H[�⊥( f )](k⊥2 ) = F (k⊥2 ). (45)

We look for functions ε such that �⊥(ε) = k2
z ε. Expressed

in the Hankel space, it reads as

k2
z ε(k⊥2 ) =

∫
ε(k⊥1 )I (k⊥1 , k⊥2 )k⊥1 dk⊥1 , (46)

which corresponds to an homogeneous Fredholm integral
equation of the second kind with the real kernel K (k⊥1 , k⊥2 ) =
k⊥1 I (k⊥1 , k⊥2 ). Finding the eigenmodes of the linear propaga-
tion equation then amounts to look for the eigenvalues and
eigenvectors of the kernel K .

1. Basic examples

Let us consider the bulk case, i.e., n(r) = n. In this case,
the kernel K takes the form

K (k⊥1 , k⊥2 ) =
(

n2ω2

c2
− k2

⊥1

)
δ(k⊥1 − k⊥2 ) (47)

and is consequently diagonal. One then directly obtains that
the functions ε(k⊥) = δ(k⊥−K⊥ )

k⊥
are solutions of the equation

and the eigenvalues read k2
z = n2ω2

c2 − K2
⊥. In the direct space,

one retrieves that Bessel functions J0(K⊥r) are eigenmodes of

the propagation with propagation constant
√

n2ω2

c2 − K2
⊥ .

Let us now consider the case of optical fibers. The problem
is then confined to a restricted transverse space (delimited by
the clad radius R) so that one can reasonably consider that the
electric field vanishes outside the clad. In the interval [0, R],
the field f (r) can be expanded as a Fourier-Bessel series (this
means that the Hankel transform of f is discrete):

f (r) =
∞∑
j=1

f jFj (r), (48)

where Fj (r) =
√

2
RJ1(α j )

J0(α j
r
R ), α j is the jth roots of the zeroth-

order Bessel function, and f j is given by:

f j =
∫ R

0
r f (r)Fj (r)dr. (49)

In the orthonormal basis (Fj ), f can then be expressed as a
vector called hereafter F . Let us evaluate �⊥ f in this basis:

�⊥ f (r) =
∞∑
j=1

f j�⊥[Fj (r)]

=
∞∑
j=1

f j

(
�⊥ + n2(r, ω)ω2

c2

)
Fj (r). (50)

The first term in the sum, corresponding to the transverse
Laplacian, reads:

�⊥Fj (r) = −α j

R2
Fj (r). (51)

The second term in the sum can be developed as a Fourier-
Bessel series:

n2(r, ω)ω2

c2
Fj (r) =

∞∑
k=1

Kk jFk (r). (52)
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Combining Eqs. (50)–(52), one obtains:

�⊥ f (r) =
∞∑

k=1

⎡⎣ ∞∑
j=1

(
Kk j − α2

j

R2
δk, j

)
f j (r)

⎤⎦Fk (r), (53)

where δk, j is the Kronecker delta. Equation (53) can be written
in (infinite) matrix notation as:

�⊥ f = MF, (54)

where Mk j = Kk j − α2
j

R2 δk, j and where F is the coordinate
vector of f expressed in the (Fj ) basis set.

Finding the modes of propagation then amounts to find the
eigenvalues and associated eigenvectors of M. Note that M
being a real-valued symmetric matrix, it can be diagonalized.
Moreover, the eigenvectors are orthogonal and the associated
eigenvalues are all real.

For instance, in the case of a step-index optical fiber where
the core has a size R1 and where the core (respectively, clad)
refractive index is n0(ω) [respectively, n1(ω)], Kk j is given by:

Kk �= j = K
α jJ1

(
α j

R1
R

)
J0
(
αk

R1
R

)− αkJ1
(
αk

R1
R

)
J0
(
α j

R1
R

)(
α2

j − α2
k

)
J1(α j )J1(αk )

Kj j = ω2

c2

[
n2

1 + (
n2

0 − n2
1

)(R1

R

)2 J2
0

(
α j

R1
R

)+ J2
1

(
α j

R1
R

)
J2

1 (α j )

]
,

where K = 2R1
R

ω2

c2 (n2
0 − n2

1).
In the simple case where n0 = n1, K (and, consequently,

M) becomes diagonal and the eigenvalues (k2
j ) form a count-

ably infinite set:

k2
j = n2

0ω
2

c2
− α2

j

R2
, j = 1, 2, . . . . (55)

The main difference with the infinite medium case is that the
possible eigenvalues are now quantified because of the finite
extension of the problem. Numerically speaking, we assume
that the infinite series can be replaced with good accuracy by
a finite expansion up to the N th order:

f (r) =
N∑

n=1

fnJ0

(
αn

r

R

)
. (56)

In this case, the matrix size becomes finite and one can easily
evaluate numerically the eigenvalues and eigenvectors of M.
The diagonalization procedure will return N orthogonal and
normalized eigenvectors v that form an orthonormal basis.

In order to express the electric field in this eigenbasis, call-
ing V the matrix filled with the coordinates of the eigenvectors
v in the Bessel basis, an electric field whose coordinates are
F in the Bessel basis (which corresponds to the fast Hankel
transform of the electric field) will write F ′ = V F in the
eigenbasis, where F ′ are the coordinates of the electric field
in this eigenbasis. Numerically speaking, the function f will
be evaluated at particular values of r denoted r j (1 � j �
N), which will form a vector Fj . In order to go from this
representation of the field to the one in the eigenbasis, all one
needs is to express the vector Fj in the Bessel basis (i.e., to
evaluate the fast Hankel transform of Fj) and then to apply to
the new vector F the transformation F ′ = VF . Numerically,
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FIG. 1. (a) Refractive index of the core (solid red) and clad
(dashed green) of the optical fiber and (b) associated normalized
frequency as a function of wavelength.

the Hankel transform is performed by multiplying the vector
Fj by a unitary matrix H . Then, one has:

F ′ = V HFj, Fj = H−1V −1F ′. (57)

Note that except for particular cases such as the free space
case, the change of basis matrix V depends on the frequency
ω, which can be made in parallel for every frequency.

2. Numerical examples

a. Step-index optical fiber. We will here consider a fused
silica step-refractive index optical fiber with a core radius
R1 = 20 μm. The refractive index of the core and the clad
are shown in Fig. 1(a). The associated normalized frequency
V is shown in Fig. 1(b). Using a decomposition over the N =
200 first Bessel functions and limiting the space to a radius
R = 100 μm, the diagonalization of M returns N eigenvalues
for each wavelength. For instance, those obtained for λ =
1.064 μm are displayed in Fig. 2(a). The returned eigenvalues
k2

z can be sorted into three distinct categories:⎧⎪⎨⎪⎩
k2

clad � k2
z � k2

core,

0 � k2
z � k2

clad,

k2
z � 0.

(58)

The first category of modes corresponds to the modes well
confined within the core of the fiber (that we will call guided
modes in the following). In the present case, there are eight
guided modes at this wavelength. Using Eq. (57), the spatial
distributions of these modes [shown in Fig. 2(b)] can be easily
retrieved.

The modes whose eigenvalues are in the range [0 − k2
clad]

are propagative modes whose distributions are not confined
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FIG. 2. (a) Eigenvalues returned by the diagonalization of M
at λ = 1.064 μm for the step-index optical fiber. The solid red
(respectively, dashed green) lines corresponds to the square of the
wave vectors of the core (respectively, clad) of the fiber. (b) Radial
distributions of the eight guided modes and (c) example of a prop-
agative clad mode (dashed blue) and of an evanescent mode (solid
red).

in the core (that we will call propagative clad modes). A
relatively important part of the energy contained in these
modes propagates also in the fiber clad.

The last category of modes whose eigenvalues are negative
are evanescent modes. Indeed, since one has k2

z < 0, the
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FIG. 3. (a) First fifth decomposition functions of the fundamental
and (b) the second mode of the step-index optical fiber over the
Bessel basis. The modes are shown in dashed black.

associated propagation constant kz will be purely imaginary.
Accordingly, those modes do not propagate but are exponen-
tially attenuated during the propagation. Figure 2(c) shows an
example of such modes.

The procedure of diagonalization is then performed for
each wavelength giving the weight of each Bessel function
composing the basis for building the modes of the waveguide.
For instance, Figs. 3(a) and 3(b) give the decomposition of
the first two core guided modes on the used Bessel basis. As
shown, the waveguide modes can then be reconstructed by
summing the Bessel functions composing the basis weighted
by the coordinate of the mode on the basis.

The eigenvalue k2
z related to each eigenmode can be used

to determine an effective refractive index neff0 = ckz(ω)/ω
experienced by the mode. Such effective indices are shown
in Fig. 4(a) for the two first guided modes. Moreover, one
can also determine the dispersion of the fiber by evaluating
for each mode the group velocity dispersion k(2)(ω) = ∂2

ωkz

[see Fig. 4(b)].
b. Hollow core fiber. Let us now consider the case of a

hollow core fiber. Such a fiber consists of a glass clad (here
we will use a fused silica cladding) in which a hole of size R1

is filled with a gas (here we will use argon) at some pressure
(here 5 bar). In the following, we will consider R1 = 75 μm.
The situation is slightly different from a conventional optical
fiber since the refractive of the core in the present case is
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much lower than the one of the clad. Figure 5(a) shows the
eigenvalues of the hollow fiber. Here, again, three distinct
kinds of modes can be exhibited according to their respective
eigenvalues: ⎧⎪⎨⎪⎩

k2
core � k2

z � k2
clad,

0 � k2
z � k2

core,

k2
z � 0.

(59)

The first kind of mode (k2
core � k2

z � k2
clad) is now the prop-

agative clad mode, whose energy is mainly located in the
clad. The second kind of mode (0 � k2

z � k2
core) corresponds

to the propagative core mode. However, contrary to the case of
optical fibers, these modes are less confined within the core. A
non-negligible part of the energy is also located in the clad so
that these modes are often called leaky modes. The third kind
of mode (k2

z � 0) corresponds to evanescent modes, as is the
case in optical fibers. Figures 5(b) and 5(c) show examples
of the three kinds of optical modes. While, in the present
case, there are more than 700 modes that are propagative core
modes, in practice, far fewer modes are necessary to fairly
reproduce the propagation. Figure 5(d) shows the dispersion
curve of the two first guided modes.

F. Extension of the model to the three-dimensional case

Even if considering only cylindrical modes of a waveguide
can often give a good insight in many propagation problems,
there are also practical cases in which one has also to consider
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FIG. 5. (a) Eigenvalues of the hollow fused silica fiber filled with
5 bar argon at λ = 1.064 μm. The dashed green (respectively, dotted
red) line corresponds to k2

clad (respectively, k2
core). (b) Radial distri-

bution of the first eight core guided modes. (c) Example of radial
distribution of a clad guided mode (dashed blue) and an evanescent
mode (red solid line) at λ = 1.064 μm. (d) Group velocity dispersion
of the first (dashed blue) and of the second (dotted pink) propagation
mode compared to the one of argon (solid red) taken at same pressure
(5 bar).

the optical propagation modes of the fiber that do not present
such a symmetry. We will nevertheless limit the present
discussion of optical waveguides that present the cylindrical
symmetry, i.e., waveguides whose refractive index is invariant
by rotation around the propagation axis:

n(r, θ, ω) = n(r, ω). (60)

The consideration of modes that are not invariant by rotation
leads to increase the dimensionality of the problem. The field
then now depends on the polar angle θ . In the following
section, one will see how the method presented above in the
case of the cylindrical modes can be adapted in the general
case.

1. Modal transform in the general case

Let us first recall the linear propagation equation in the
general case (note, however, that the refractive index does not
depend on θ ):[

�⊥ + n2(r, ω)ω2

c2

]̂
ε(r, θ, kz, ω) = k2

z ε̂(r, θ, kz, ω), (61)

with the transverse Laplacian that now writes

�⊥ = ∂2
r + 1

r
∂r + 1

r2
∂2
θ . (62)

Note that since the field is 2π periodic in θ , it can be
developed as a Fourier series as

E (r, θ, z) =
∞∑

�=−∞
E�(r, z)ei�θ . (63)

The goal of this section is to calculate the eigenvectors
and eigenvalues of the propagation equation. One has
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to emphasize that, since only waveguides presenting a
cylindrical symmetries are considered here, the functions
ei�θ are the eigenmodes of the angular dimension of the
propagation equation. Accordingly, the propagation modes ε

are then, in this case, of the form

ε(r, θ, z) = E�(r)ei�θeiKzz. (64)

Substituting the electric field by using Eq. (63) in Eq. (61),
one then obtains the linear propagation equation for each �:[

∂2
r + 1

r
∂r − �2

r2
+ n2(r, ω)ω2

c2

]
Ê� = k2

z Ê�. (65)

As it was done for cylindrical modes, it was chosen to
developed this equation on the zeroth-order Bessel basis.
The only difference here with the cylindrical case is that
an additional integral I2(k′

⊥, k⊥) has to be calculated. This
integral takes the form

I2(k′
⊥, k⊥) =

∫
J0(k⊥r)J0(k′

⊥r)

r2
rdr. (66)

It is straightforward to notice that I2 is an improper integral
over the domain [0 − ∞[. Accordingly, from a purely
mathematical point of view, the zeroth-order Bessel basis
seems to be unadapted as an intermediate basis for calculating
the optical modes for � �= 0. The divergence of Eq. (66)
indicates that the function of J0(k⊥r)

r2 cannot be expanded
as a (infinite) sum of zeroth-order Bessel functions on the
interval [0 − ∞[. However, one has to keep in mind that
the numerical calculations are made on a finite and discrete
spatial domain. In particular, the numerical calculation is
done on a subset of N positions (r j ) ∈ ]0 − R], in which the
Bessel functions {J0( αn

R r j )}n=1:N form a basis (αn being the
nth root of J0 and R the maximal radius of the numerical
grid used for the calculation). In other words, any functions
taking finite values on the subset of positions (r j ) can be
interpolated on this subset (but not necessarily on [0 − ∞[).
As a consequence, even if the Hankel transform of J0(k⊥r)/r2

is not defined, it can be nevertheless interpolated on the subset
(r j ). In other words, given a subset of N positions (r j ) and a
given k⊥ = αk/R, one can find an unique set of N parameters
{α(k⊥, k′

⊥)}k′
⊥ with k′

⊥ = αn/R and n = 1, 2, . . . , N so that

J0(k⊥r j )/r2
j =

∑
k′
⊥

α(k⊥, k′
⊥)J0(k′

⊥r j ). (67)

This then means that, even if I2 is a priori an improper
integral, this does not prevent the calculation to be performed
in its discrete and finite formulation during numerical
calculations.

In summary, the numerical calculation of modes that do not
exhibit a cylindrical symmetry around the propagation axis z
is performed, for each �, exactly with the same procedure than
the one used for symmetric modes (i.e., for � = 0). The only
difference is the apparition of an �-dependent additional term
in the matrix to be diagonalized. After the diagonalization
procedure, one then obtains the �-dependent transformation
matrix V�, which is composed of the coordinates of the
eigenvector of the matrix. Accordingly, one has all the tools
for transforming the field from a representation in the spatial
domain (r, θ ) to a representation in the modal basis. First,
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FIG. 6. Radial profiles of the modes at λ0 = 1.55 μm of a
parabolic profile fiber of radius R1 = 25 μm. The refractive of the
core (respectively, clad) is 1.457 (respectively, 1.444). The blue solid
(respectively, red dashed) lines are the numerical (respectively, ana-
lytical) profiles. The dotted black line shows the difference between
the numerical and analytical results. See text for details.

one operates a Fourier transform in the angular domain for
obtaining E�(r). Then, for obtaining the coordinates E ′

� of the
field in the eigenbasis, one applies to E� the transformation

E ′
� = V�HE�, (68)

which can be performed in parallel for all � numbers.

2. Numerical example

In order to test our numerical procedure, optical modes
of a parabolic profile optical fiber (R1 = 25 μm) have been
calculated at λ = 1.55 μm. The core and clad refractive index
are 1.457 and 1.444, respectively. Parabolic-shape refractive
index profile has been chosen since both spatial radial profiles
R�,p(r) and propagation constants Kz(�, p) of LP�,p modes are
analytical:

R�,p(r) ∝ r|�|e
− V r2

2R2
1 L|�|

p−1

(
V r2

R2
1

)
,

Kz(�, p) = k0ncore

√
1 − 2(2p + |�| − 1)

k0ncore

√
2�

R1
,

where k0 is the vacuum wave number, V = k0R1

√
n2

core − n2
clad

is the normalized frequency of the fiber, and � = n2
core−n2

clad
2n2

core

is the refractive difference. Figure 6 compares the numerical
profiles retrieved with the presented algorithm with the ana-
lytical profiles of different LP modes. As it can be observed,
the agreement is very good and confirms that the zeroth-order
Bessel basis can handle the retrieval of higher-order orbital
modes. Moreover, the eigenvalues retrieved by diagonaliza-
tion of the operator expressed in the zeroth-order Bessel basis
is also well reproduced as shown in Fig. 7 that compares
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FIG. 7. Analytical (red squares) and numerical (solid blue line)

propagation constants of the LP�1 modes of the parabolic profile
fiber. The black diamond shows the relative difference between the
analytical and numerical results.

the analytical and numerical propagation constants of LP�1

modes.
Note that the unidirectional pulse propagation equation

in the general remains the same if one does not restrict the
problem to modes having a cylindrical symmetry around the
propagation axis. The only difference is the dimensionality of
the equation to solve. In the cylindrically symmetric case, it
is a 2D+1 problem (i.e., the field that propagates along z de-
pends on [r, t]). Accordingly, the modal propagation constants
Kz(p, ω) is of dimension 2. In the general case, the equation
becomes a 3D+1 problem (i.e., the field that propagates
along z depends on [θ, r, t]), the modal propagation constant
Kz(�, p, ω) being of dimension 3.

III. NUMERICAL SOLVING OF THE GENERALIZED
UNIDIRECTIONAL PROPAGATION EQUATION

After having retrieved the optical modes of the waveguide,
their associated propagation constants and the matrix allowing
to go back and forth between the eigenbasis to the (r, t )
representation of the field, one has all the tools for solving
the propagation equation [Eq. (35) or Eq. (38)].

A. Numerical strategy

At first glance, one immediately notices that the gen-UPPE
can be put in the general form

∂z ξ̄ = LL[ξ̄ ] + L̄NL[ξ ], (69)

where LL (respectively, L̄NL) represents the linear (respec-
tively, nonlinear) propagation operator. Strictly speaking,
those two operators can in principle be written in any rep-
resentation basis (eigenbasis, Fourier-Hankel basis, or in the
(r, t ) domain). However, depending on the used basis, their
evaluation can be either very simple or extremely complex
and numerical resources demanding. As far as the linear
operator is concerned, its evaluation is extremely simple in the

eigenbasis since it amounts to simply multiply each coordi-
nate by its propagation constant. On the contrary, the nonlin-
ear operator explicitly depends on the electric field written in
the (r, t ) domain. As a consequence, all terms of kind f (r, t )
are far simpler to evaluate with this representation. Accord-
ingly, it becomes obvious that a split-step algorithm, in which
the linear and nonlinear terms of Eq. (69) are sequentially
solved, is well adapted for solving the generalized UPPE.
For evaluating the field at a propagation distance z + dz, the
numerical is then divided into three distinct stages.

The first stage is a linear propagation of the field over
a length dz/2. At this stage, the field is represented in the
eigenbasis and the equation to solve is

∂z ξ̄ = iKZ ξ̄ , (70)

in which KZ is a diagonal matrix representing the propagation
constant of each mode so that the propagated electric field
writes

ξ̄ (z + dz) = eidz/2KZ ξ̄ (z). (71)

The second stage consists of making a nonlinear propagation
over a full step dz. In order to do this, one simply evaluates at
this stage the electric field in a space-time representation by
operating the fast modal transform presented above. Knowing
ξ (r, t ), one can easily calculate the nonlinear term [typically
by calculating |ξ (r, t )|2ξ (r, t )] and then use an integration
scheme such as a fourth-order Runge Kutta scheme or equiv-
alent to integrate the nonlinear part of the equation.

Finally, one repeats the first stage over an half propagation
step. In fact, the algorithm is similar in many ways to the
well-known and widely used split-step Fourier in propagation
within monomode fibers or to the split-step Hankel-Fourier
algorithm used in propagation problems in bulks when as-
suming a cylindrical symmetry. Indeed, in these two cases,
the functions {eiωt }ω and {eiωt J0(k⊥r)}ω,k⊥ coincide with the
eigenfunctions of the propagation medium.

Note that one could be tempted to solve the linear propaga-
tion term directly in the Fourier-Hankel space (stages 1 and 3
described above). Indeed, in this case, the field is represented
in the Fourier-Hankel space [i.e., the Fourier-Hankel trans-
form of ξ (r, t ) denoted hereafter ξ̌ (kr, ω)] and the equation
to solve is

∂z ξ̌ = iǨZ ξ̌ , (72)

where ǨZ is now the linear operator expressed in the Fourier-
Hankel space and reads

ǨZ = V KZV −1, (73)

where V is the transformation matrix between the modal and
the Hankel basis (i.e., the matrix filled with the coordinates of
the modes in the Bessel basis). As a consequence, one has:

ξ̌ (z + dz) = eiǨZ dz ξ̌ (z). (74)

However, contrary to the case in which the calculation is
performed in the eigenbasis, ǨZ is no longer diagonal. In this
case, the calculation of its exponential becomes very time
consuming. As a consequence, one can approximate it by its
Padé approximant of order [1/1] which has the numerical
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advantage to be an unitary operator:

ξ̌ (z + dz) � 1 + iǨZdz/2

1 − iǨZdz/2
ξ̌ (z). (75)

Numerically, it is more convenient to transform this equality
as:

(1 − iǨZ dz/2)ξ̌ (z + dz) � (1 + iǨZdz/2)ξ̌ (z). (76)

The right-hand side of the above equation is reduced to a
matrix-vector multiplication, the output result being a vector
b. Then, one has to solve the equation system

AX = b, (77)

where A = 1 − iǨZdz/2 and X = ξ̌ (z + dz). For this purpose,
one can use the biconjugate gradient stabilized (BICGSTAB)
or the generalized minimal residual (GMRES) methods. How-
ever, even if there are efficient algorithms, it appears that such
a way to solve the linear step is numerically more expensive
than the one based on the representation of the field in the
eigenbasis.

B. Propagation example: Fish-wave formation in multimode
step-index optical fibers close to the zero-dispersion wavelength

A few years ago, there was strong interest in the study of
conical waves formation in dispersive nonlinear bulk media
[13–16]. Such waves are particular solutions of the propaga-
tion equation in bulk media with the notable feature of being
stationary, i.e., nondispersive and nondiffractive, in both the
linear and nonlinear regimes. Such waves are characterized
by their typical hyperbolic or elliptic shapes in the angular-
spectral plane depending on the dispersion curve of the bulk
material. Typically, X waves (respectively, O waves) are gen-
erated when the pump laser lies in the normal (respectively,
anomalous) dispersion regime. The particular situation of a
pump whose central frequency lies close to the zero disper-
sion wavelength of the material leads to the formation of a
conical waves sharing features common to both normal and
anomalous dispersion regimes. This case is called a fish wave
since its angular-frequency shape exhibits an elliptic core and
an hyperbolic tail. To the best of our knowledge, the study
of conical wave formation has been limited until now to the
case of propagation within bulk media, i.e., in media in which
an infinite and dense number of modes can propagate, even
if a few works have already suggest the potential existence
of such waves in waveguides (see, e.g., Ref. [17]). Here
we numerically show that multimode waveguides can indeed
support the generation of waves whose characteristics are
very similar to those of conical waves generated in bulk
media. In particular, it is shown that a fishlike wave can be
spontaneously formed in a step-index multimode fused silica
fiber when the central frequency of the pulse lies close to the
zero-dispersion frequency. Observing the formation of such
waves in multimode waveguides is particularly interesting
because it constitutes a typical example of the transition from
the quantized physics of a few mode system (propagation
within a monomode or a weakly multimode waveguide) to
those of a purely continuous one (propagation through a bulk
medium).

In this example, we considered a 1.3-μm, 100-fs, 400-nJ
laser pulse initially coupled in the fundamental core guided
mode of a R = 20 μm step-index optical fiber. The associated
peak power is about 3.7 MW. Note that the wavelength
1.3 μm corresponds to the zero dispersion wavelength of this
fiber. The propagation dynamics were calculated by solving
Eq. (38) without the ionization term (ρ = 0) and neglecting
the term responsible for third-harmonic generation. Moreover,
the Kerr effect was modified to take into account the vibra-
tional Raman contribution to the Kerr effect:

∂z ξ̄ = i

(
Kz − ω

vg0

)
ξ̄ + in2ω

2

c2Kz

{
(1 − fR)|ξ |2ξ

+ fR

[∫
R(τ )|ξ |2(t − τ )dτ

]
ξ

}
,

where fR = 0.18 is the relative contribution of the Raman
effect to the nonlinearity and R(t ) is the Raman impulse
response function [18].

Figure 8(a) displays the evolution of the pulse spectrum
(integrated over the full fiber transverse section) all along the
propagation within the 10-cm fiber. During the first 3 cm, the
spectrum divides into two branches almost symmetric with
respect to the pump initial frequency. After this first stage,
the spectrum undergoes a fast broadening to form a supercon-
tinuum spanning over about an octave. The formation of the
supercontinuum is accompanied together with a strong break
up of the pulse in the temporal domain as it can be noticed
in Fig. 8(b). In particular, one can notice several temporally
localized wave packets propagating slower than the pump
pulse. In the spatial domain, the multimode nature of the
propagation dynamics manifests itself if one looks at how the
pulse is spatially distorted along the propagation. For instance,
the fluence (i.e., the energy per surface unit) oscillates almost
periodically all along the propagation. In fact, the oscilla-
tion period Losc corresponds to the coherence length Lcoh =
π/�k with �k = kz1 − kz0 , where kz0 (respectively, kz0 ) is the
propagation constant of the fundamental (second) transversal
mode at the fundamental frequency. This then means that the
nonlinear propagation leads to the generation of higher spatial
modes (and in particular the second transversal mode). The
generation of higher-order transversal modes can be easily
understood by noting that if the transversal distribution of
the field ξ (r) corresponds initially to the fundamental mode,
then the nonlinear term proportional to |ξ (r)|2ξ (r) does not
share the same spatial distribution than ξ (r). In other words,
the projection of the nonlinear source term on the modal
basis is not fully along the fundamental mode but it is rather
composed of a lot of nonzero components on the higher-
order modes. Accordingly, higher-order modes are created
by the nonlinear propagation. In the present propagation
example, the second transversal mode is the most efficiently
populated, explaining in turn the periodicity of the fluence
distribution. More particularly, the transversal radius of the
pulse decreases and then recovers its initial size periodically,
which is directly linked to the fact that the second mode
population periodically increases and decreases due to the
phase mismatch along the propagation. This phenomenon
is the same as the one explaining why temporal function
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FIG. 8. (a) Evolution of the integrated spectrum, (b) the instan-
taneous power, and (c) the fluence along the propagation in a 20-μm
step-index silica fiber.

is shorter and shorter if its frequency spectrum is larger
and larger: The transversal size of a field propagating in a
waveguide is smaller and smaller if it is composed of more
and more in-phase transversal modes, the latter playing the
role of the transversal spectrum. In the above discussion, both
the generation of the supercontinuum and the evolution of
the transversal distribution along the propagation have been
described in a complete uncorrelated manner. However, if one
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FIG. 9. Mode-resolved spectrum after a 10-cm propagation in a
20-μm step-index silica fiber.

now looks at how the pulse spectrum is distributed along the
transversal modes (Fig. 9) after propagation, then it appears
that strong spatiotemporal couplings take place during the
propagation. The modal spectrum indeed exhibits a structure
similar to the fish waves generated close to the zero-dispersion
wavelength in bulk materials. The redder part of generated su-
percontinuum mainly lies in the fundamental transversal mode
while the bluer part is mainly distributed in the higher-order
modes. While the theoretical analysis and discussion about
spatially and temporally localized conical waves in nonlinear
guided media will be the subject of another publication, it is
nevertheless particularly interesting to underline the parallel
between the propagation in bulk media and in multimode
fibers. Note also that preliminary studies also show that X
waves (respectively, O waves) are generated in the normal
(respectively, anomalous) group velocity dispersion regime
(data not shown), making the parallel even more obvious.

IV. CONCLUSION

In conclusion, we have derived the general unidirectional
pulse propagation equation driving the evolution of an electric
field propagating in a waveguide, which generalizes the UPPE
obtains in bulk materials. Moreover, we have presented an
original method for both solving the propagation equation
but also for evaluating the optical modes supported by the
waveguide for any kind of geometry. In particular, a fast
modal transform based on the fast Hankel transform has
been presented. Finally, as an example, we have solved the
propagation equation in a multimode step index fiber and have
demonstrated that conical waves can be formed during the
propagation, as it is the case in bulk media.

ACKNOWLEDGMENTS

This work was supported by the Conseil Régional de Bour-
gogne (PARI program), the CNRS, the FEDER-FSE Bour-
gogne 2014/2020, the Labex ACTION program (Contract No.
ANR-11-LABX-0001-01). We thank the CRI-CCUB for CPU
loan on the multiprocessor server.

032217-12



MULTIMODAL UNIDIRECTIONAL PULSE PROPAGATION … PHYSICAL REVIEW E 99, 032217 (2019)

[1] L. G. Wright, D. N. Christodoulides, and F. W. Wise, Con-
trollable spatiotemporal nonlinear effects in multimode fibres,
Nat. Phot. 9, 306 (2015).

[2] A. Picozzi, G. Millot, and S. Wabnitz, Nonlinear virtues of
multimode fibre, Nat. Phot. 9, 289 (2015).

[3] L. G. Wright, Z. Liu, D. A. Nolan, M.-J. Li, D. N.
Christodoulides, and F. W. Wise, Self-organized instabil-
ity in graded-index multimode fibres, Nat. Phot. 10, 771
(2016)

[4] W. H. Renninger and F. W. Wise, Optical solitons in graded-
index multimode fibres, Nat. Commun. 4, 1719 (2013).

[5] K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthelemy,
G. Millot, S. Wabnitz, and V. Couderc, Spatial beam self-
cleaning in multimode fibres, Nat. Phot. 11, 237 (2017).

[6] P. St. J. Russell, P. Holzer, W. Chang, A. Abdolvand, and
J. C. Travers, Hollow-core photonic crystal fibres for gas-based
nonlinear optics, Nat. Phot. 8, 278 (2014).

[7] P. Bejot, B. E. Schmidt, J. Kasparian, J.-P. Wolf, and F. Legare,
Mechanism of hollow-core-fiber infrared-supercontinuum com-
pression with bulk material, Phys. Rev. A 81, 063828 (2010).

[8] X. Chen, A. Malvache, A. Ricci, A. Jullien, and
R. Lopez-Martens, Efficient hollow fiber compression scheme
for generating multi-mJ, carrier-envelope phase stable, sub-5 fs
pulses, Laser Phys. 21, 198 (2011).

[9] T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. Konig, and
U. Leonhardt, Fiber-optical analog of the event horizon, Science
319, 1367 (2008).

[10] J. Andreasen and M. Kolesik, Nonlinear propagation of light in
structured media: Generalized unidirectional pulse propagation
equations, Phys. Rev. E 86, 036706 (2012).

[11] F. Poletti and P. Horak, Description of ultrashort pulse propaga-
tion in multimode optical fibers, J. Opt. Soc. Am. B 25, 1645
(2008).

[12] M. Guizar-Sicairos and J. C. Gutierrez-Vega, Computation of
quasi-discrete Hankel transforms of integer order for propagat-
ing optical wave fields, J. Opt. Soc. Am. A 21, 53 (2004).

[13] D. Faccio, A. Averchi, A. Couairon, M. Kolesik, J. V. Moloney,
A. Dubietis, G. Tamosauskas, P. Polesana, A. Piskarskas, and
P. Di Trapani, Spatio-temporal reshaping and X Wave dynamics
in optical filaments, Opt. Exp. 15, 13077 (2007).

[14] C. Conti, Generation and nonlinear dynamics of X waves of the
Schrödinger equation, Phys. Rev. E 70, 046613 (2004).

[15] P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz,
J. Trull, C. Conti, and S. Trillo, Spontaneously Generated
X-Shaped Light Bullets, Phys. Rev. Lett. 91, 093904 (2003).

[16] E. Arevalo, Boosted X Waves in Nonlinear Optical Systems,
Phys. Rev. Lett. 104, 023902 (2010).

[17] L. G. Wright, S. Wabnitz, D. N. Christodoulides, and F. W.
Wise, Ultrabroadband Dispersive Radiation by Spatiotemporal
Oscillation of Multimode Waves, Phys. Rev. Lett. 115, 223902
(2015).

[18] D. Hollenbeck and C. D. Cantrell, Multiple-vibrational-mode
model for fiber-optic Raman gain spectrum and response func-
tion, J. Opt. Soc. Am. B 19, 2886 (2002).

032217-13

https://doi.org/10.1038/nphoton.2015.61
https://doi.org/10.1038/nphoton.2015.61
https://doi.org/10.1038/nphoton.2015.61
https://doi.org/10.1038/nphoton.2015.61
https://doi.org/10.1038/nphoton.2015.67
https://doi.org/10.1038/nphoton.2015.67
https://doi.org/10.1038/nphoton.2015.67
https://doi.org/10.1038/nphoton.2015.67
https://doi.org/10.1038/nphoton.2016.227
https://doi.org/10.1038/nphoton.2016.227
https://doi.org/10.1038/nphoton.2016.227
https://doi.org/10.1038/nphoton.2016.227
https://doi.org/10.1038/ncomms2739
https://doi.org/10.1038/ncomms2739
https://doi.org/10.1038/ncomms2739
https://doi.org/10.1038/ncomms2739
https://doi.org/10.1038/nphoton.2017.32
https://doi.org/10.1038/nphoton.2017.32
https://doi.org/10.1038/nphoton.2017.32
https://doi.org/10.1038/nphoton.2017.32
https://doi.org/10.1038/nphoton.2013.312
https://doi.org/10.1038/nphoton.2013.312
https://doi.org/10.1038/nphoton.2013.312
https://doi.org/10.1038/nphoton.2013.312
https://doi.org/10.1103/PhysRevA.81.063828
https://doi.org/10.1103/PhysRevA.81.063828
https://doi.org/10.1103/PhysRevA.81.063828
https://doi.org/10.1103/PhysRevA.81.063828
https://doi.org/10.1134/S1054660X11010063
https://doi.org/10.1134/S1054660X11010063
https://doi.org/10.1134/S1054660X11010063
https://doi.org/10.1134/S1054660X11010063
https://doi.org/10.1126/science.1153625
https://doi.org/10.1126/science.1153625
https://doi.org/10.1126/science.1153625
https://doi.org/10.1126/science.1153625
https://doi.org/10.1103/PhysRevE.86.036706
https://doi.org/10.1103/PhysRevE.86.036706
https://doi.org/10.1103/PhysRevE.86.036706
https://doi.org/10.1103/PhysRevE.86.036706
https://doi.org/10.1364/JOSAB.25.001645
https://doi.org/10.1364/JOSAB.25.001645
https://doi.org/10.1364/JOSAB.25.001645
https://doi.org/10.1364/JOSAB.25.001645
https://doi.org/10.1364/JOSAA.21.000053
https://doi.org/10.1364/JOSAA.21.000053
https://doi.org/10.1364/JOSAA.21.000053
https://doi.org/10.1364/JOSAA.21.000053
https://doi.org/10.1364/OE.15.013077
https://doi.org/10.1364/OE.15.013077
https://doi.org/10.1364/OE.15.013077
https://doi.org/10.1364/OE.15.013077
https://doi.org/10.1103/PhysRevE.70.046613
https://doi.org/10.1103/PhysRevE.70.046613
https://doi.org/10.1103/PhysRevE.70.046613
https://doi.org/10.1103/PhysRevE.70.046613
https://doi.org/10.1103/PhysRevLett.91.093904
https://doi.org/10.1103/PhysRevLett.91.093904
https://doi.org/10.1103/PhysRevLett.91.093904
https://doi.org/10.1103/PhysRevLett.91.093904
https://doi.org/10.1103/PhysRevLett.104.023902
https://doi.org/10.1103/PhysRevLett.104.023902
https://doi.org/10.1103/PhysRevLett.104.023902
https://doi.org/10.1103/PhysRevLett.104.023902
https://doi.org/10.1103/PhysRevLett.115.223902
https://doi.org/10.1103/PhysRevLett.115.223902
https://doi.org/10.1103/PhysRevLett.115.223902
https://doi.org/10.1103/PhysRevLett.115.223902
https://doi.org/10.1364/JOSAB.19.002886
https://doi.org/10.1364/JOSAB.19.002886
https://doi.org/10.1364/JOSAB.19.002886
https://doi.org/10.1364/JOSAB.19.002886



