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Abstract

The impact of urban sound on human beings has of-
ten been studied from a negative point of view (noise
pollution). In the two last decades, the interest of
studying its positive impact has been revealed with
the soundscape approach (resourcing spaces). The
literature shows that the recognition of sources plays
a great role in the way humans are affected by sound
environments. There is thus a need for characteriz-
ing urban acoustic environments not only with sound
pressure measurements but also with source-specific
attributes such as their perceived time of presence,
dominance or volume.

This paper demonstrates, on a controlled dataset,
that machine learning techniques based on state of
the art neural architectures can predict the perceived
time of presence of several sound sources at a suffi-
cient accuracy. To validate this assertion, a corpus of
simulated sound scenes is first designed. Perceptual
attributes corresponding to those stimuli are gathered
through a listening experiment. From the contribu-
tions of the individual sound sources available for the
simulated corpus, a physical indicator approximating
the perceived time of presence of sources is computed
and used to train and evaluate a multi-label source
detection model. This model predicts the presence
of simultaneously active sources from fast third oc-
tave spectra, allowing the estimation of perceptual
attributes such as pleasantness in urban sound envi-
ronments at a sufficient degree of precision.

PACS numbers: 43.66.Lj (Perceptual effects of
sound), 43.60.-c (Acoustic signal processing)

1 Introduction

Leveraging the advent of the Internet of Things (IoT)
and the availability of low-cost sensor networks [1, 2]
could allow us to characterize the sound environ-
ment in a way that is closer to the perception of
city dwellers [3]. This requires the identification of

its composition in terms of sources of interest from
acoustic measurements at a reasonable cost. Most
current monitoring applications rely on the measure-
ment of sound levels on time scales from 1s to several
hours [4, 5, 6], which offers limited information re-
garding the content of the sound environment. Con-
versely, sound environment recognition and event de-
tection applications operate on spectral representa-
tions of recorded audio such as Mel spectrograms or
Mel frequency cepstrum coefficients, on much finer
time scales in tens of milliseconds [7, 8, 9]. Using such
information-rich representations of the signal also al-
lows the computation of commonly used monitoring
acoustical indicators. Though, it may not be desirable
in long-term monitoring applications where analysis
is performed offlinen as it requires large transmission
bandwidth and storage capabilities, and raises privacy
concerns if intelligible speech can be retrieved [10].
Some monitoring applications [11, 12, 13] use third
octave sound level fast (125ms) measurements to un-
derline relevant spectral information. This represen-
tation is easier to store in the long term and re-
duces privacy concerns [10]. In [11], the authors
successfully linked acoustical indicators derived from
third octave sound levels to the perceived activity
of specific sound sources in recordings of polyphonic
sound scenes. Though the discriminative properties
of the proposed indicators are limited and the under-
lying methodology cannot be easily extended to larger
sound source taxonomies, it demonstrates that the in-
formation content of third octave spectra is sufficient
to identify sound sources.

The characterization of urban soundscapes through
standardized perceptual descriptors has been exten-
sively studied [14, 15, 16, 17, 18]. A two-dimensional
soundscape model of perceived quality emerges where
one dimension corresponds to the pleasantness of the
soundscape, and the orthogonal one corresponds to
its enventfulness [15, 11, 19]. In the case of pedestri-
ans, three major source types are found to contribute
to these dimensions in urban contexts: technologi-
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cal, human and natural sources [13, 15], though the
exact taxonomy of sources used differs across stud-
ies [20, 21, 22]. Furthermore, traffic noise, human
voices and birds calls can respectively be used as a
proxy of these source types [23, 24, 11]. In existing
models, source activity can be quantified by the dom-
inance [25, 15], the time of presence [24], or the vol-
ume. The dominance is built on coupled notions of
time and volume, while the time of presence is more
easily linked to the physical activity of sources. In a
more holistic approach of soundscape quality evalu-
ation, the time of presence should thus be easier to
identify from acoustic monitoring measurements and
would provide more complete information on the con-
tent of polyphonic urban environments [26].

In this paper, we do so by developing new indica-
tors relying on source recognition models based on
deep learning techniques, which has demonstrated
state-of-the-art performance in many tasks studied
in the machine listening community [27]. In the
context of urban sound environments, machine lis-
tening has been successfully applied to sound event
detection [28, 29, 30, 31], sound scene classifica-
tion [12, 32, 33, 34, 35] and soundscape quality evalu-
ation [7, 36, 31]. A wide range of architectures exist,
the most common of which are convolutional and re-
current neural networks [37]. Large amounts of data
with task-specific annotations are required for deep
learning architectures to learn to extract relevant in-
formation from recordings [38, 27, 39]. To the best of
our knowledge such databases do not currently exist
in the literature in the case of source recognition with
labels consisting of perceived source activity. It is pos-
sible to manually annotate each recording in the cor-
pus. However, this process would be time-consuming,
and must be repeated to extend the taxonomy of rele-
vant sound sources. As an alternative, we consider the
use of simulated corpora [40, 41], of which the gener-
ation procedure provides complete knowledge about
the composition of sound scenes. By using a sim-
ple indicator computed on this information-rich data
to approximate the source-specific perceived time of
presence labels, the excerpts composing large corpora
may be automatically annotated without the need for
additional subjective inputs. Thanks to this data gen-
eration procedure, we are able to validate the pro-
posed approach.

More precisely, the contributions of this paper are
three-fold:

1. Provide a corpus of simulated scenes for which
relevant acoustic properties are well controlled
and perceptual judgements are available1.

2. Propose numerical means2 for predicting the per-

1Corpus available at https://zenodo.org/record/3248734#
.XQjC4v7gqUk

2All statistical analyses are done with Matlab. Open
source code is available at https://github.com/felixgontier/

ceived time of presence of sound sources from raw
acoustic data using deep learning approaches,
with a larger corpus of simulated scenes3.

3. Demonstrate that the proposed method can be
applied to the prediction of a perceptual descrip-
tor of soundscapes (pleasantness) to a sufficient
degree of accuracy through a comparative study
with state of the art approaches.

Section 2 presents the generation procedure for a
corpus of simulated sound scenes and its validation
through a listening test in the context of a study on
perceived soundscape quality. In Section 3 a larger
dataset is constructed and automatically annotated,
and used to train and evaluate a deep learning archi-
tecture that performs multi-label sound source recog-
nition at relevant time scales. Section 4 then presents
an application of this model to the prediction of pleas-
antness in urban environments.

2 Listening experiment

2.1 Stimuli
A listening test is conducted in order to validate the
perceptual correspondence of simulated scenes with
urban sound scene recordings, as well as to obtain
subjective annotations for the design and evaluation
of the time of presence estimation model. To do so, a
corpus is constructed that contains 100 sound scenes,
including 75 simulated scenes, 6 recorded scenes for
reference, and 19 replicated scenes that correspond to
simulated reproductions of recorded scenarios.

The 75 simulated and 19 replicated scenes are gen-
erated using the simScene software, an open source
library in Matlab that allows the simulation of sound
scenes as the additive composition of sound sources,
using a database of recordings associated to isolated
occurences of these sources4. simScene can be used
in two main modes. First, the generate mode is used
to create new scenarios. It is controlled by the fol-
lowing information for each source in the considered
taxonomy:

• The probability of appearance of a given source
in the scene, for which events and backgrounds
are considered separately,

• Event-to-background ratios in dB for all events
and backgrounds compared to a main back-
ground source, drawn from gaussian distribu-
tions,

• The inter-onset of event occurrences in seconds,
also drawn from gaussian distributions.

soundSourcePresenceEstimation.
3Corpus available at https://zenodo.org/record/3248703#

.XQjDVv7gqUk
4https://bitbucket.org/mlagrange/simscene
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Figure 1: Noise map of the path and 19 locations of the soundwalks presented in [11]. Sound levels (Leq in dB
SPL) were measured at each of the 19 locations and interpolated to obtain a sound level estimations along the
path.

simScene samples these distributions to generate
original scenarios with background and event annota-
tions, then simulates sound scenes as the composition
of examples in the isolated samples database, with
source type, event-to-background ratios and event on-
sets given by the generated scenarios.

The second mode is the replicate mode, which
directly takes as input a scenario with background
and event source type, event-to-background ratio and
onset-offset information. In this mode, simScene only
samples the available isolated samples database to
simulate a sound scene that replicates the given sce-
nario with different acoustic content.

In this study we choose to restrict the taxonomy
of active sources to traffic, human voices and birds,
as these sources are found to be the most influent on
soundscape quality for pedestrians [23]. The isolated
samples database is constructed from excerpts of the
LibriSpeech [42] corpus for voices and Freesound5 con-
tributions for remaining sources. The isolated sam-
ples database contains 8mn, 17mn and 37mn of back-
ground traffic, voice and bird extracts respectively, as
well as 30mn, 37mn, and 5mn of event traffic, voice
and bird extracts respectively. No background noise
is added to these three sources, though some uncon-
trolled noise is present in the uncleaned extracts com-
posing the isolated samples database. A simulated
sound scene is thus a mix of up to six separate chan-
nels, each one corresponding to either the background
or event activity of one of the sources in the chosen
taxonomy.

Scenarios generated by simScene should cover most
real-life situations while remaining perceptually plau-
sible. To guarantee the realism of created sound
scenes, the information needed for simScene gener-

5https://freesound.org

ation is based on a corpus of 74 recordings from the
GRAFIC project [11]. These 74 sound scenes are ob-
tained during 4 soundwalks in 19 locations in the 13th
district of Paris, France, as seen in Figure 1. The orig-
inal recordings range from 55 s to 4.5 mn in duration.
In [43], the extracts are manually annotated and clas-
sified in terms of ambiance (park, quiet street, noisy
street and very noisy street). The available annota-
tions include:

• Background sources that are present throughout
the whole scene, and their respective sound level
considered constant,

• Sound events characterized for each occurrence
by their source type, onset-offset and event-to-
background ratio in dB.

This information is reused to estimate the mean
and variance of the distributions on background and
event sources activity used by simScene to generate
new scenarios. These distributions are conditional to
the four considered ambiances and three source types.
The variance of all event inter-onset distributions is
manually increased to extend the range of covered sce-
narios. Furthermore, since voice events in the iso-
lated samples database consist mostly of read English
recordings, the voice event mean event-to-background
ratios are reduced for all ambiances to improve real-
ism. A fifth square ambiance is added with properties
derived empirically from available data, with predom-
inant voice activity. At the end of the simulation pro-
cess the sound level of each sound scene is randomly
sampled and conditioned to the ambiance according
to typical sound levels in urban context.

The 75 simulated scenes of the listening test corpus
are generated using simScene in the generate mode
with the extracted distributions as input. To improve

https://freesound.org
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the diversity of scenarios considered in the listening
test, 200 sound scenes are first simulated, equally dis-
tributed among the five ambiances (resp. park, quiet
street, noisy street, very noisy street and square). A
common duration of 45 seconds is chosen due to the
limited duration of listening tests because of the fa-
tigue. Though many studies dealing with the envi-
ronmental acoustic quality are associated with acous-
tic measurements ranging from a few seconds [44, 45]
to fifteen minutes [46, 47] and even to eighty min-
utes [48], stimuli between 30 seconds and 1 minute
are often preferred for laboratory tests. To avoid sim-
ulated scenes to be too similar in the listening ex-
periment corpus, a selection of 75 simulated scenes
is carried out from the initial 200 scenes, in order to
cover a large diversity of presence (ranging from no
presence to 100% of presence) for each type of sources
without redundancy. In the case of three sources, a
3-dimensional space is constructed where each dimen-
sion corresponds to one of the three sources. The se-
lection is then operated by taking the most isolated
sound scenes, where the euclidean distance in this
space is considered as a measure of the differences
between sound scenes.

Playback sound levels are realistically drawn for
each scene, and range from 46.6 dB SPL to 77.1 dB
SPL over the 75 simulated scenes.

In order to validate the generation procedure of
new scenarios, the listening test corpus is extended
with replications of recorded sound scenes. Reference
recordings are obtained from one of the four sound-
walks performed in [11], including 19 locations (noted
P1-19) with diverse environments. The path under-
taken during these soundwalks is shown in Figure 1,
with sound levels in dB SPL interpolated from mea-
surements at the 19 locations. For each of the 19 cor-
responding recordings, 45 seconds of audio in a single
channel are extracted. The 45 s segments are selected
to represent the properties of their respective am-
biances in terms of source composition, without sin-
gle events overwhelming their overall perception. The
manual annotations available in [43] of background
and event information are then used to replicate the
sound scenes using simScene in the replicate mode,
using the same isolated samples database as for the
75 simulated scenes. The 19 resulting sound scenes
are thus simulated, but their scenarios follow those of
the reference recordings to the extent of annotation
precision. Furthermore, the original 45 s recordings
from 6 locations (P1, P3, P4, P8, P15 and P18) are
added to the experiment corpus to evaluate changes
in perception yielded by the replication process, as
they explore diverse real-life situations with respect
to ambiance categorization. The 6 recorded and 19
replicated scenes are normalized using the relation
found in Section 2.2 so that their playback sound level
through the restitution system is the same as mea-
sured during recording, with a range from 63.9 dB

SPL to 79.4 dB SPL over the 19 locations.

2.2 Equipment
During the test the scenes are played at a given sound
level as discussed in Section 2.1, through the same
computer and sound card configurations. Beyerdy-
namics DT-990 Pro headphones are used by all par-
ticipants. The calibration of the headphones was car-
ried out in a free field situation (pink noise through
a Genelec 1031A loudspeaker in front of the head)
and consisted in characterizing the relationship be-
tween voltage at the headphone terminal and the cor-
responding binaural sound pressure. To do so, the
following procedure was conducted:

1. A pink noise generator is set at an arbitrary level
and its output voltage is measured.

2. Small DPA 4060 microphones are set at the en-
trance of the ear canals of a human partici-
pant [49]. The generator is used as input of the
headphones, placed over the head of the partici-
pant. The voltage at the output of the binaural
microphones is measured.

3. The headphones are removed, and the generator
is used as input of Genelec 1031A loudspeaker
placed at a distance of 1 meter from the partic-
ipant’s head. The loudspeaker’s amplification is
tuned until the same voltage is outputted by the
binaural microphones.

4. The head is replaced by a sound level meter to
measure the sound level in dB of the loudspeaker.
This corresponds to the binaural sound level pro-
duced by the headphones for the considered out-
put voltage of the pink noise generator.

By repeating this procedure for different settings of
the generator level, the relation between the logarithm
of the generator output voltage and headphones play-
back sound level in dB is approximated as a linear
function. From this information a scaling factor is
applied to the sound scenes to ensure that they are
heard at the desired sound level by every listener.

2.3 Participants
A total of 23 students aged from 22 to 23 years in-
cluding 16 males and 7 females at Ecole Centrale de
Nantes completed the test, all reported normal hear-
ing (note that with 23 participants, the incomplete
block design is not perfectly balanced). All partici-
pants gave written consent prior to the experiment,
and evaluations were further anonymized.

2.4 Procedure
Participants are asked to evaluate sound scenes us-
ing 8 perceptual attributes represented by 11-point
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Table 1: Mean differences of perceptual assessments (resp. Pleasantness, Liveliness, Overall Loudness, Inter-
est, Calmness, Time of presence of Traffic, Voices and Birds) between original and replicated sound scenes.
Significant differences as per a Wilcoxon signed-rank test are shown in bold (n=23, p<0.05)

P L OL I C TT,p TV,p TB,p
P1 0.43 -1.65 -1.04 0.43 0.13 0.39 -2.09 0.61
P3 0.26 -0.43 0.30 -1 0.30 1.04 -4 0.22
P4 0.91 0 -1.83 0.48 1.30 -5.22 1.43 0.04
P8 0.26 -1.65 -0.87 -0.96 0.65 -0.91 0.09 -1.43
P15 -1.35 0.52 0.52 -1.17 0.09 0.13 1.96 -2.74
P18 1.13 -0.30 -1.17 -0.43 1.39 -1.83 0.83 1.30

semantic differential rating scales (0-10). These at-
tributes are presented in French and translated in this
paper using standard terminology. The first 5 seman-
tic differential scales relate to general properties of the
scene:

• Pleasantness: Unpleasant - Pleasant
(Désagréable - Agréable) - P,

• Liveliness: Inert, amorphous - Lively, eventful
(Inerte, amorphe - Animé, mouvementé) - L,

• Overall loudness: Quiet - Noisy (Silencieux -
Bruyant) - OL,

• Interest: Boring, uninteresting - Stimulating, in-
teresting (Ennuyeux, inintéressant - Stimulant,
intéressant) - I,

• Calmness: Agitated, chaotic - Calm, tranquil
(Agité, chaotique - Calme, tranquille) - C.

These quantities are typically studied in the per-
ceptual characterization of sound scenes [15, 11, 13].
Additionally, to assess the perceived source activity 3
questions are presented to the participants and evalu-
ated on the same 11-point semantic differential scales:

• Time of presence of traffic, voice and bird sources:
Never - Continuously (Jamais - Continuelle-
ment) - resp. TT,p, TV,p and TB,p

where p denotes a perceptual evaluation.
Prior to the test, a short verbal introduction is given

to the participants and the interface is introduced to
ensure that the quantities are well understood. Al-
though the corpus is comprised of 100 sound scenes,
participants only evaluate 50 scenes: all listen to the
6 recorded and 19 replicated sound scenes, then to 25
of the 75 simulated with new scenarios according to a
balanced incomplete block design [50]. The selection
of simulated scenes is done so that all scenes in the
sub-corpus are evaluated by the same number of par-
ticipants. All participants are first presented with the
most quiet then loudest of the recorded scenes (resp.
P3 and P15). A random listening order is generated
for each participant to control ordering effects for the
remaining of the test. Participants can listen to each
scene once, and have to listen to the full extract and to

answer all questions before being allowed to proceed
to the next scene.

2.5 Results
The statistic analyses carried out in this paper (statis-
tic comparison tests, principal component analysis)
are done with Matlab R2015b (Statistics and Ma-
chine Learning Toolbox v10.1). The effect of the sim-
Scene generation procedure on perception is first in-
vestigated. To do so, perceptual responses are com-
pared for the 6 recorded scenes and 6 corresponding
replicated scenes, which share common scene compo-
sitions. Table 1 shows the mean differences between
assessments for pairs of scenes with equivalent scenar-
ios. Wilcoxon signed-rank tests [51] are implemented
for each scene and semantic differential scale to out-
line significant differences between assessment distri-
butions, which are shown in bold. As the data is
discretely distributed, zero differences between paired
samples are included using Pratt’s modification of the
test [52]. On the first five scales, all mean differences
are lower than 2 points. Though, significant differ-
ences are outlined that can be linked to correspond-
ing discrepancies in source-specific parameters. The
highest difference (-5.22) is found for the assessment of
the time of presence of traffic in the location P4. For
this location, the background traffic in the recorded
scene varies along time, it is louder in the first half
of the scene than in the second half. Replicating this
scene using simScene imposes a constant sound level
for background sources. Thus, the background traf-
fic is louder in the replicated scene than it is in the
recording for about half of its duration. To a lesser
extent the same issue explains the large difference (-
4) in the assessed time of presence of voices in the
location P3. Discrepancies on source-specific scales
can also be interpreted by the choice of isolated sam-
ples, which is semi-random and based on a high-level
source taxonomy. For example, no difference is made
during annotation between child or adult speech, or
depending on its expressiveness: they share a common
voice class which is characterized in the isolated sam-
ples database by recordings of read texts. Though,
overall no consistent difference between the percep-
tion of recorded and replicated scenes emerges for the
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studied points.
Next, the perceptual space generated by the ex-

periment’s five general scales (pleasantness, liveliness,
overall loudness, interest and calmness) is studied to
validate the use of simulated sound scenes with new
scenarios as well as reduced source complexity. It is
obtained by performing a principal components anal-
ysis on the corresponding perceptual responses aver-
aged along participants. No standardization is ap-
plied to the data. Figure 2 and Figure 3 compare
the results for recorded and replicated scenes (n=25)
and simulated scenes (n=75) respectively. The re-
sulting spaces are similar, with only overall loudness
and pleasantness axes slightly rotated between the
two subcorpora. For both sets the variance explained
by the first two components is similar, resp. 79.4% -
18.1% and 79.6% - 15.2%. Furthermore, these repre-
sentations are comparable to those found in previous
work on perceptual dimensions [15, 16]. Thus, the
perceptual spaces based on simulated sounds or on
recordings and replicated scenes, do not reveal ma-
jor differences. Additionally, the assessments aver-
aged on all participants for active individuals (simu-
lated scenes) are projected as dots onto the principal
components space in Figure 3. The assessments for
recorded and replicated scenes are then projected as
supplementary individuals on this space as crosses.
These projections show that the space covered by
simulated scenes based on new compositions covers
that of the studied real-life environments (recorded
and replicated sounds). This further demonstrates
the diversity of scenarios created by the scene gener-
ation procedure. Additional information on the rela-
tion between pairs of recorded and replicated scenes
is available on the companion website6.
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Figure 2: Biplot of the principal components analysis
of average assessments for the 5 general questions on
the 6 recorded and 19 replicated scenes (n=25).

6Data available here http://felixgontier.github.io/
soundSourcePresenceEstimation/web/index.html
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Figure 3: Biplot of the principal components analy-
sis of average assessments for the 5 general questions
on the 75 simulated scenes (n=75). Assessments of
simulated scenes (active individuals) are projected as
dots, and recorded and replicated scenes (supplemen-
tary individuals) are projected as crosses.

3 Prediction of time of presence
of sources

3.1 Corpus
Considering machine learning techniques to detect the
presence of sources requires the availability of anno-
tated data. Thus, in order to train deep learning ar-
chitectures for source recognition, a large corpus is
constructed. This corpus is composed of sound scenes
simulated using simScene in the generate mode with
the same procedure as for the 75 simulated scenes in
the listening test corpus described in Section 2.1.

The simulated deep learning corpus is composed of
two subsets:

• The development set, made of 400 scenes of 45 s
each (total duration 5 hours), which is used dur-
ing the training process,

• The evaluation set, made of 200 scenes of 45 s
each (total of 2.5 hours), which is used to com-
pute the performance of the trained model and
its generalization capabilities.

The generation procedure is the same for both
subsets, and reuses the distributions extracted from
recordings of the GRAFIC project in Section 2.1.
Though, it is important in deep learning applications
to ensure a complete independance of the training
and evaluation sets. To do so, an isolated samples
database from which simScene assemble extracts to
generate a sound scene is constructed that is indepen-
dant from the one used in the generation of simulated
scenes in the listening test corpus. This database con-
tains 12mn, 49mn, and 73mn of background traffic,

http://felixgontier.github.io/soundSourcePresenceEstimation/web/index.html
http://felixgontier.github.io/soundSourcePresenceEstimation/web/index.html
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voice and bird extracts respectively, and 32mn, 12mn,
and 5mn of event traffic, voice and bird extracts re-
spectively. The isolated samples database is split in
the same proportions as the two subsets: two-thirds
for the development set and the remaining one-third
for the evaluation set. As a result, the two subsets
and the listening test simulated scenes are simulated
using three separate, independant isolated samples
databases.

3.2 Acoustical indicators for sound-
scape description

To train and evaluate a deep learning architecture for
sound source recognition using the corpus described
in Section 3.1, the activity of sound sources present
in each scene must be known. Though, the manual
annotation of such information is impractical: it is
extremely time-consuming due to the size of the cor-
pus, and the process must be repeated for each stud-
ied sound source. Several indicators are identified in
the literature that correlate well with perceptual pa-
rameters [11, 53, 24]. These indicators may be useful
to automatically annotate the deep learning corpus
without the need for additional human input.

First, some indicators can be computed directly
from the mixed audio. Typically this includes indica-
tors derived from sound level measurements used in
monitoring applications. For this study the following
variables are considered, and computed with a time
frame of 1 s using the Matlab ITA-toolbox [54]:

• Z-weighted Leq and A-weighted LAeq equivalent
sound levels in dB and dBA respectively.

• L10, L50 and L90: 10th, 50th and 90th percentiles
of the Z-weighted sound level. The L10 is often
associated to events and the L90 to background
activity, while the L50 is a measurement of the
overall sound level.

• LA50: 50th percentile of the A-weighted sound
level, with similar properties as the L50.

• L50,1kHz: 50th percentile of the Z-weighted
sound level for the 1kHz frequency band, also a
good descriptor of the overall sound level of the
scene.

• LA10 − LA90: Emergence indicator included in
the pleasantness model presented in [24].

The time and frequency second derivative (TFSD) is
introduced in [11] as a descriptor of perceived source
activity. Its expression is:

TFSDf,t =
|d

2L(f,t)
dfdt |∑f1=16kHz

f1=31.5Hz|
d2L(f1,t)
df1dt

|
(1)

where L(f, t) is the third-octave spectrum of the
signal. This indicator represents the variations in

both the time and frequency dimensions to highlight
sources of interest. For example, bird activity is char-
acterized by narrow-band energy with fast paced vari-
ations in time, which translates into high TFSD val-
ues in the corresponding frequency range. The TFSD
is computed for the 4kHz band and 125ms measure-
ments (TFSD4kHz(1/8s)), and for the 500Hz band
with 1s measurements (TFSD500Hz,1s) as estimates
of the perceived activity of birds and voices respec-
tively.

In the case of simulated scenes, the generation pro-
cess outputs ground truth source contributions as sep-
arate channels. This information could be used to
compute additional indicators that describe source ac-
tivity perception with better accuracy. The follow-
ing are computed for traffic, voice and bird sources:
the equivalent sound level Leq,s for source s and the
source emergence ∆Ls, taken as the difference be-
tween the equivalent sound level of source s and that
of all other sources combined. Events and background
occurences of the same source are added in this study.
Next, the T̂s(α, β) time of presence approximation
proposed in [53] is considered. T̂s(α, β) is based on
a binary source emergence model computed on the
third-octave band emergence spectrum ∆Ls(t, f). It
is parametrized by α and β thresholds:

T̂s(α, β) =
1

Nt

Nt∑
t=1

1

[∑Nf

f=1 ∆Ls(t, f)1∆Ls(t,f)>α∑Nf

f=1 1∆Ls(t,f)>α

> β

]
(2)

where s denotes the sound source, Nt is the num-
ber of considered time frames, Nf is the number of
frequency bands. This indicator evaluates the of per-
centage of presence of a given source with regard
to other sources. First, for each time frame, fre-
quency bands for which the source is emergent, that
is the difference between its sound level and that of all
other sources ∆Ls(t, f) is greater than the α thresh-
old value, are isolated. Then, the source is consid-
ered present in this time frame if the emergence for
these bands is on average greater than the β thresh-
old. A time of presence estimation is obtained for
each source by averaging the resulting binary presence
values along the Nt time frames composing the scene.
The optimal threshold values are found via grid search
so that the time of presence estimation T̂s(αopt, βopt)
is best correlated with the average perceived time of
presence Ts,p as obtained by human evaluation:

αopt, βopt = arg max
α,β

1

Ns

Ns∑
s=1

r
(
Ts,p, T̂s(α, β)

)
(3)

where Ns is the number of sources in the taxon-
omy and equals 3 in this study, r denotes the Pear-
son correlation coefficient and Ts,p corresponds to the
perceived time of presence assessments averaged per
scene. Both thresholds are optimized once in this
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study using data from the listening test in Section 2,
and equal αopt = −14dB and βopt = −7dB, though
several other pairs of values yielded close performance
as per the optimization metric defined in eq.2.

In the remainder of this paper, the subscript s is
replaced with the corresponding source initial: T for
traffic, V for voices and B for birds.

The considered indicators are compared to subjec-
tive assessments obtained during the listening test
in Section 2 to identify their capacity to explain di-
mensions of soundscape perception and annotate the
deep learning corpus. The analysis is performed using
the arithmetic mean of subjective assessments over all
participants for replicated and simulated scenes. The
source-specific sound level Leq,s, emergence ∆Ls and
estimated time of presence T̂s(α, β) indicators can-
not be directly computed on the 6 recorded scenes,
as their ground truth source composition is unknown.
Thus, these 6 scenes are excluded of the study. Two
simulated scenes contained only one source, leading
to infinite source emergences. Statistics including
these scenes cannot be computed and they are thus
excluded in this analysis, which as a result includes
n = 92 scenes.

Table 2 shows the Pearson’s correlation coefficients
between computed physical indicators and perceptual
assessments, with two-tailed significance tests (see
Matlab corrcoef ). First, all global sound level indi-
cators correlate well (r>0.9) with the perceived over-
all loudness. Regarding source-specific perceptual pa-
rameters, the Leq,s correlates consistently well with
the Ts,p of corresponding source s (r=0.71). Con-
versely, the emergence ∆Ls fails to represent the per-
ceived bird activity, and correlations are weak for
other sources. The proposed estimates of the time
of presence T̂s(αopt, βopt) show strong correlations to
their perceived counterparts (r>0.8), though this is
expected as αopt and βopt are optimized to this aim.
They also display good source discrimination prop-
erties, as no significant correlation is found between
voices and birds, and perceptual assessments of traf-
fic were already correlated with those of other sources
in Table 4. They are also better predictors than
the TFSD500Hz,1s and TFSD4kHz,1/8s indicators for
voice and bird activity in this corpus. Thus, be-
cause source contributions are available in simulated
scenes they can be automatically annotated in terms
of estimated perceived time of presence using the
T̂s(αopt, βopt) indicator for the three sources.

3.3 Deep learning for presence predic-
tion

A deep learning model is implemented using the
Python Pytorch [55] framework and trained on the
corpus presented in Section 3.1 for source time of pres-
ence prediction.

The developped model should extract relevant

Input example
Third-octave bands, 1s frame

Conv 5x5, ReLU

Conv 5x5, ReLU

29x8

Conv 5x5, ReLU

29x8x128

29x8x64

Flatten

7424x1

Fully connected

Conv 5x5, ReLU

29x8x32
29x8x32

3x1

Sigmoid

Output
Presence, 1s frame

3x1

TS(α, β)

BCE(y, ŷ)

Figure 4: Architecture of the deep learning model
used for source presence prediction.

source information from a representation of the au-
dio signal. Typically, spectral representations are pre-
ferred to the raw audio waveform because of the reg-
ularities they underline in the signal. Here, the third-
octave spectrum is considered as it is commonly used
in acoustic monitoring applications [1, 10]. Third-
octave spectra are computed for 125 ms frames and
29 frequency bands in the 20 Hz− 12.5 kHz range as
the input signal representation. Instead of a regres-
sion task where the output is directly the time of pres-
ence, a multiple label classification task on 1 s texture
frames is preferred as the resulting training procedure
is easier. Individual inputs are thus obtained by split-
ting the resulting spectrograms into texture windows
of 1 s duration. The spectral blocks of dimension 29x8
are then processed independently by the model.

Ground truth target outputs are associated to each
input frame to train the model. Considering the re-
sults discussed in Section 3.2, the T̂s(αopt, βopt) time
of presence estimation seems well suited to automat-
ically label the deep learning corpus for this task.
Binary presence values on 1 s frames obtained dur-
ing the T̂s(αopt, βopt) computation before averaging
in eq.2 are thus used as individual weak labels.

The architecture of the model is shown in Figure 4.
The model includes 4 blocks of convolutional layers
followed by leaky rectified linear unit (LeakyReLU)
activations of expression y = max(0.1x, x). The con-
volutional layers have respectively 128, 64, 32 and 32
output channels, and a common kernel size of 5x5.
The output of the last block is flattened then goes
through a fully connected layer with output size 3. A
final sigmoid activation is used in order to obtain out-
puts in the 0-1 range, which correspond to the pres-
ence of traffic, voices and birds in the 1 s frame re-
spectively. During training these values are directly
compared to presence labels given by T̂s(αopt, βopt)
using a binary cross-entropy cost function:
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Table 2: Pearson’s correlation coefficients between physical and perceptual (resp. Pleasantness, Liveliness,
Overall Loudness, Interest, Calmness, Time of presence of Traffic, Voices and Birds) indicators (n = 92).

P L OL I C TT,p TV,p TB,p
LAeq -0.86** 0.68** 0.92** -0.37** -0.88** 0.66** 0.07 -0.41**
LA50 -0.84** 0.67** 0.91** -0.33** -0.87** 0.63** 0.06 -0.35**
Leq -0.88** 0.67** 0.91** -0.44** -0.88** 0.71** 0.06 -0.46**
L10 -0.87** 0.65** 0.90** -0.44** -0.86** 0.71** 0.06 -0.47**
L50 -0.89** 0.65** 0.92** -0.43** -0.89** 0.71** 0.03 -0.44**
L90 -0.86** 0.68** 0.92** -0.39** -0.89** 0.67** 0.07 -0.40**

L50,1kHz -0.88** 0.69** 0.92** -0.42** -0.89** 0.73** 0.08 -0.50**
L10 − L90 0.13 -0.18 -0.24* -0.06 -0.22* -0.01 -0.01 -0.09

TFSD500Hz,1s 0.07 0.41** 0.11 0.28** -0.15 -0.39** 0.74** -0.17
TFSD4kHz,1/8s 0.52** -0.43** -0.49** 0.41** 0.52** -0.54** -0.18 0.63**

Leq,T -0.58** 0.20 0.46** -0.46** -0.42** 0.71** -0.16 -0.36**
Leq,V -0.17 0.50** 0.31** 0.08 -0.37** -0.04 0.71** -0.40**
Leq,B 0.27* -0.04 -0.11 0.35** 0.18 -0.24* -0.04 0.71**
∆LT -0.45** -0.11 0.26* -0.59** -0.22* 0.66** -0.51** -0.26*
∆LV 0.04 0.50** 0.17 0.35** -0.20 -0.38** 0.59** -0.01
∆LB 0.21* -0.25* -0.26* 0.08 0.25* -0.25* -0.10 -0.03

T̂T (αopt, βopt) -0.53** -0.05 0.35** -0.57** -0.29** 0.81** -0.39** -0.37**
T̂V (αopt, βopt) 0.12 0.44** 0.05 0.35** -0.11 -0.39** 0.81** -0.16
T̂B(αopt, βopt) 0.56** -0.30** -0.46** 0.55** 0.51** -0.57** -0.08 0.91**

*: p<0.05, **: p<0.01

BCE(y, ŷ) = −
∑
s

yslog (ŷs) + (1− ys)log (1− ŷs)

(4)
where s is the source, ys and ŷs are the target and pre-
dicted presence for source s in the 0-1 range. This loss
function is minimized using the Adam algorithm [56]
on batches of 1 s examples. During evaluation, a
threshold of 0.5 is independently applied to the 3 out-
puts to obtain a binary presence value for each source:
each source is considered absent when the model out-
puts a value lower than 0.5 and present when it out-
puts 0.5 or higher. The time of presence estimation is
then obtained by averaging presence labels of all 1 s
time frames corresponding to the same scene.

3.4 Results

The performance of the source detection deep learn-
ing architecture presented in Section 3.3 on the eval-
uation subset of the deep learning corpus is summa-
rized in Table 3. The overall presence detection ac-
curacy is 92.11%. The model performs similarly well
for the three sources, ranging from 90.08% for birds
to 94.09% for traffic. Regarding the type of errors,
they are equally split between false positives and false
negatives. Though, these rates vary depending on
the type of source. Traffic has a very low false posi-
tive rate at 2.46% and high false negative rate, while
birds display the highest false positive rate at 12.30%.
This is expected given the spectral content related to
these sources. Traffic is usually located in lower fre-

quency bands than voice or bird events, but may con-
tain high frequency components mistaken for birds by
the model. The resulting root mean squared error on
the time of presence is 12% overall, and is close for
the three sources.

Figure 5 presents an example of predictions for a
sound scene in the listening test corpus. The detec-
tion model takes the mixed audio (top) as its input,
and outputs binary presence predictions for traffic,
voice and bird sources on 1s time frames. Here the
ground truth contributions are shown as reference,
though they are never available to the deep learning
architecture. A traffic event masks voice and bird ac-
tivity from 23s to 37s, and an obvious false positive
for traffic presence is visible at 7-8s.

4 Application to pleasantness
prediction

In the context of urban soundscape quality assess-
ment for pedestrians, pleasantness emerges as the
first affective dimension [15]. Pleasantness has been
modeled from both the perceived overall loudness in
a scene [57, 58] and its content in terms of active
sources. Technological, human and natural sources
are the most influent on urban soundscape quality,
and are sometimes specified as traffic, voices and birds
respectively [15, 23, 24, 11]. One of the source activ-
ity descriptors used in existing models is the perceived
time of presence. Thus, the proposed method for pre-
dicting the time of presence of sources can be applied
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Figure 5: Example of simulated sound scene with ground truth source contributions and resulting presence
predictions by the deep learning architecture (greyed out areas)

Table 3: Performance of the detection model predicting source presence with binary ground truth labels obtained
from T̂s(αopt, βopt). Presence metrics are computed for n=8600 1s frames and time of presence metrics on n=200
45s scenes. (TP: true positive, TN: true negative, FP: false positive, FN: false negative)

All sources Traffic Voices Birds
Presence accuracy (%) 92.11 94.09 92.15 90.08

Presence TP (%) 91.96 92.70 89.93 93.37
Presence TN (%) 92.30 97.54 94.76 87.70
Presence FP (%) 7.70 2.46 5.24 12.30
Presence FN (%) 8.04 7.30 10.17 6.63

T̂s(αopt, βopt) RMSE 0.12 0.13 0.10 0.11

Table 4: Pearson’s correlation coefficients between
perceptual scales (resp. Pleasantness, Overall
Loudness, Time of presence of Traffic, Voices and
Birds) at the scene level (n=100)

P OL TT,p TV,p TB,p
P 1 -0.89** -0.76** 0.05 0.57**
OL 1 0.59** 0.17 -0.45**
TT,p 1 -0.35** -0.42**
TV,p 1 -0.21*
TB,p 1

*: p<0.05, **: p<0.01

to pleasantness prediction in an urban context. In this
section the proposed approach is compared to base-
line models from perceptual or acoustical variables to
study its potential in the prediction of high-level per-
ceptual descriptors such as the pleasantness.

4.1 Baseline models of pleasantness

Baseline models of pleasantness are constructed using
data from the experiment in Section 2. We first study
the relationships between perceptual scales with re-
spect to existing work. Table 4 shows the Pearson’s
correlation coefficients between pairs of parameters
with assessments averaged for each scene (n=100),

with two-tailed significance tests. The correlations be-
tween perceived source activity and pleasantness are
consistent with the literature [11, 53]. Pleasantness
(P) is mainly influenced negatively by overall loud-
ness (OL) and traffic and positively by birds. In pre-
vious studies a small positive contribution of voices to
pleasantness was found, while no direct relation is vis-
ible from the data gathered in this study. This can be
explained by the choice of speech samples used during
generation, which consist of read audiobooks extracts
and thus may sound unnatural in the considered ur-
ban environments. Relations between source-specific
parameters are weak with the exception of traffic be-
ing negatively correlated with birds (r=-0.42).

Multilinear regression models of pleasantness are
built as a function of the overall loudness and the
source-specific time of presence of traffic, voices and
birds, with assessments averaged over participants for
each scene of the listening test corpus (n=100). All
possible combinations of variables among the 4 predic-
tors (15 combinations) are considered, and to ensure
that no multi-collinearity exists between predictors, a
variance inflation factor (VIF) test is performed prior
to each regression. Only combinations for which all
predictors verify V IF < 5 are considered valid. The
best resulting model in terms of R2

adj with statistically
significant coefficient estimates (p < 0.05) is:
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P̂1,p = 8.99− 0.67 OL− 0.15 TT,p + 0.08 TV,p

+ 0.12 TB,p
(5)

where OL, TT,p, TV,p and TB,p represent the per-
ceived overall loudness and time of presence of traf-
fic, voices and birds respectively. The F-statistic of
P̂1,p model is 229 (p<0.0001) and the t-statistics are
26.6, -15.5, -4.5, 2.9 and 4.8 for the intercept, OL,
TT,p, TV,p and TB,p respectively. This expression is
close to existing models of pleasantness in the litera-
ture [24, 11], with both the overall loudness and traffic
activity negatively contributing and bird activity pos-
itively contributing to pleasantness. A small positive
contribution of the time of presence of voices is also
found on this corpus despite no significant correlation
underlined in Table 4.

Similarly, multilinear regression models of pleasant-
ness are constructed using acoustical indicators de-
scribed in Section 3.2. As no ground truth source
activity is available for the recorded scenes they are
discarded from this operation. Furthermore, two sim-
ulated scenes containing only one source type are dis-
carded for computational stability concerns. Multi-
linear models are thus constructed on the remain-
ing 92 scenes of the listening test corpus. The L50

and T̂s(αopt, βopt) indicators are used as predictors, as
they display the highest correlation values with the
overall loudness and time of presence of sources re-
spectively. Again, all combinations of the proposed
physical variables are considered, and a variance in-
flation factor check (V IF < 5) is performed on pre-
dictors to ensure that no multi-collinearity between
predictors exists in a model. On the present corpus,
the best model in terms of R2

adj is:

P̂1,ϕ = 16.74− 0.18 L50 + 1.01 T̂B(αopt, βopt) (6)

where ϕ indicates a model from physical variables.
The F-statistic of P̂1,ϕ model is 210 (p<0.0001) and
the t-statistics are 21.6, -15.8, and 3.8 for the inter-
cept, L50 and T̂B(αopt, βopt) respectively. Indicators
related to traffic and voices activity are absent com-
pared to the perceptual model P̂1,p. This is consistent
with the results underlined in Table 2: the L50 used
as a predictor is correlated to the traffic time of pres-
ence TT,p that appeared in the perceptual model P̂1,p

(eq.5), and no strong contribution of objective vari-
ables representative of voices to pleasantness is iden-
tified in this corpus. These results can be attributed
to the diversity of the studied corpus as only traffic,
voice and bird sources are present in simulated sound
scenes. As a result global sound level measurements
tend to be correlated with the presence of traffic in
the simulation process. Quieter environments such as
parks and quiet streets are less likely to have contin-
uous traffic, while high sound levels in busy streets

Table 5: Performance of baseline models for pleasant-
ness prediction.

RMSE R2
adj r

P̂1,p 0.61 0.90 0.95**
P̂1,ϕ 0.83 0.82 0.91**
P̂2,ϕ 0.90 0.79 0.89**
P̂3,ϕ 0.91 0.78 0.89**

**: p<0.01

are always due to busy traffic. It is expected that in-
cluding other sources such as construction noises and
other transport-related contributions in such environ-
ments would lower the observed correlation. Addi-
tionally, the diversity of available isolated source ex-
tracts for scene simulation is rather low. Particularly,
voice events are recordings of read english with low
variations in speaker and consistently neutral expres-
siveness. These properties result in no significant cor-
relation of indicators describing voice events to pleas-
antness for this corpus.

The P̂1,ϕ model is compared to two baselines pro-
posed in [24] and [11], noted P̂2,ϕ and P̂3,ϕ respec-
tively, for which predictor variables are directly com-
puted from the audio signal. Coefficients for both
models are re-optimized on the studied data for a fair
comparison.

P̂2,ϕ = 18.67− 0.20 L50 − 0.02 (L10 − L90) (7)

P̂3,ϕ = 30.18− 0.16 L50,1kHz + 8.92 TFSD500Hz,1s

+ 2.99 TFSD4kHz,1/8s

(8)

The P̂2,ϕ model does not explicitely involve the
contribution to pleasantness of specific sources, but
rather of emerging sound events with the L10 − L90

indicator. Conversely, the P̂3,ϕ model includes the
time and frequency second derivative in the 500Hz
and 4kHz bands at relevant time scales to underline
the activity of voice and bird sources.

Table 5 summarizes the performance of the per-
ceptual and physical models. The perceptual model
P̂1,p yields a root mean squared error of 0.61, which
is below the average standard deviation of pleasant-
ness assessments for this experiment: 1.77 on a 11-
point scale. P̂1,ϕ outperforms both P̂2,ϕ and P̂3,ϕ,
though a validation on a different corpus would be
necessary to conclude on its capabilities. Compared
to the model from perceptual parameters its R2

adj is
about 9% lower. Its root mean squared error is 0.83,
which is also high compared to the perceptual base-
line, but acceptable considering the average standard
deviation of pleasantness assessments of 1.77 in this
study. Introducing the L10 − L90 emergence in P̂2,ϕ

has no impact for the considered corpus, as the same
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Table 6: Pleasantness prediction quality on the perceptual experiment corpus using the source detection model
compared to labels. The corpus is split in three parts: the 6 recorded scenes (Rec.), the 19 replicated scenes
(Rep.), and the 75 scenes with simulated scenarios (Sim.).

Model P1,ϕ with model outputs P1,ϕ with T̂s(αopt, βopt) labels
Sub-corpus All Rec. Rep. Sim. All Rep. Sim.
RMSE 0.84 1.09 0.68 0.85 0.83 0.72 0.86

r 0.91** 0.89** 0.93** 0.89** 0.91** 0.92** 0.89**
R2
adj 0.82 0.73 0.82 0.80 0.82 0.79 0.79

**: p<0.01

overall performance metrics were observed using only
the L50.

4.2 Prediction using deep learning

The proposed deep learning method is applied to the
perceptual experiment corpus to obtain estimations
for the time of presence of traffic, voices and birds.
These estimations are then applied to pleasantness
estimation and compared to models presented in Sec-
tion 4.1. To evaluate the detection model’s robust-
ness to the increased polyphony and source complex-
ity of scenes in real-life scenarios, the listening test
corpus is split in three parts: 1) the 6 recorded scenes
which contain additional sources not present in the
deep learning corpus, 2) the 19 replicated scenes that
also include additional sources as annotated in [43],
and 3) the 75 simulated scenes that are obtained from
the same simulation process as both the development
and evaluation subsets of the deep learning corpus.

Pleasantness predictions are obtained by substitut-
ing time of presence estimates computed from the
presence detection architecture’s outputs to the P̂1,ϕ

model presented in Section 4.1. Thus, only the
outputs corresponding to the presence of birds are
used. Table 6 presents the performance of pleasant-
ness estimations using outputs from the deep learn-
ing architecture compared to those using ground truth
T̂s(αopt, βopt) labels computed with eq. 2 on separated
source-specific channels. First, pleasantness estima-
tions are equally effective using the detection model’s
predictions or the ground truth labels, with about
0.84 RMSE and 82% of explained variance on the per-
ceptual experiment corpus. This performance of the
detection model is expected given the low errors on
time of presence estimates in Table 3. Labels from
the detection model result in lower errors on the first
sub-corpus containing replicated scenes with sources
not seen during training. This result may indicate
that the detection model generalizes well to additional
sources, though a larger sample size would be required
to confirm this interpretation. For the simulated sub-
corpus of the experiments all performance metrics are
comparable. Applying the detection model on the cor-
pus of recorded scenes for which ground truth pleas-
antness is available results in a RMSE of 1.09 and a

decrease in R2
adj . This is expected as these scenes are

the most distant from the training corpus in terms of
sources and scenarios.

Pleasantness prediction for simulated scenes using
the detection model is as effective as the best baseline
model from acoustical indicators in table 5. This in-
dicates that detection errors found in Table 3 do not
impact pleasantness prediction on average. Since the
labels are extracted from a masking model approxi-
mating the perceived time of presence, they can be
considered as "weak" labels. Thus, the deep learning
model’s predictions are in some cases considered erro-
neous but correlate better to perceptual assessments
than the corresponding ground truth labels.

5 Discussion

This study shows the potential of deep learning ar-
chitectures in combination with corpora of simulated
sound scenes for the perceptual characterization of
sound environments. With the rich additional in-
formation about the source composition available for
such corpora, new indicators are computed that out-
perform existing ones in their relation to the perceived
time of presence of sources. Training a deep learning
architecture on a large corpus of simulated scenes au-
tomatically annotated using these indicators then al-
lows for the prediction of the time of presence in new
recordings, where information about the contribution
of each source is not available. The resulting predic-
tions can be applied to the estimation of descriptors
of soundscape perception such as the pleasantness.

Though, the performance of the trained model and
its capacity to generalize to recorded data rely on
several conditions. First, the perceptual character-
istics of the simulated corpus should be comparable
to that of typical urban environments. According
to the results of the listening test presented in Sec-
tion 2.5, the simulation process of sound scenes does
not significantly affect the relations between abstract
or content-related subjective descriptors, even with
newly generated scenarios and a reduced source tax-
onomy. This is further demonstrated by the model of
pleasantness found in Section 4.1 from subjective an-
notations of source activity in this experiment. The
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perceptual models on the listening test corpus are sim-
ilar to those found in previous studies with both in
situ questionnaires [11] and laboratory experiments
using recordings [24]. Second, the quality of predic-
tions is bounded by that of annotations. Here, the
proposed indicator does not perfectly correspond with
the perceived time of presence obtained during the lis-
tening test. Furthermore, the indicator is computed
using two parameters optimized on available subjec-
tive data, though it was found to be quite robust by
using a cross-validation scheme during its optimiza-
tion. While the quality of predictions from the model
are encouraging, testing on a larger corpus is required
to fully assess its generalization capabilities.

The methodology proposed in this paper can be
extended to include the identification of additional
sound sources, though it requires the availablity of iso-
lated samples to simulate enough diverse sound scenes
to train the detection architecture. This is because
the scene simulation process, the time of presence
indicator, and the deep learning model are all inde-
pendent from the considered taxonomy. Of course,
the complexity of the learning process scales with the
number of considered simultaneously active sources.
Particularly, differentiating between sources with sim-
ilar spectral shapes may yield higher error rates as the
deep learning architecture relies on the identification
of patterns in third octave spectra. To obtain suffi-
cient amounts of data, data augmentation techniques
can be used to diversify the training subset by apply-
ing slight modifications to existing examples, such as
filtering, pitch shifting or time stretching [35, 59].

Future work will thus focus on studying the robust-
ness of the proposed prediction scheme to a refined
sound sources taxonomy as well as its application to
a large scale sensor network.
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