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Abstract: Structured Illumination Microscopy (SIM) is an imaging technique for achieving
both super-resolution (SR) and optical sectioning (OS) in wide-field microscopy. It consists
in illuminating the sample with periodic patterns at different orientations and positions. The
resulting images are then processed to reconstruct the observed object with SR and/or OS. In
this work, we present BOSSA-SIM, a general-purpose SIM reconstruction method, applicable to
moving objects such as encountered in in vivo retinal imaging, that enables SR and OS jointly in
a fully unsupervised Bayesian framework. By modeling a 2-layer object composed of an in-focus
layer and a defocused layer, we show that BOSSA-SIM is able to jointly reconstruct them so as to
get a super-resolved and optically sectioned in-focus layer. The achieved performance, assessed
quantitatively by simulations for several noise levels, compares favorably with a state-of-the-art
method. Finally, we validate our method on open-access experimental microscopy data.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Structured Illumination Microscopy (SIM) is a commonly used imaging technique in wide-field
fluorescence and reflectance microscopy for achieving optical sectioning (OS) [1] and super-
resolution (SR) [2]. It consists in projecting usually periodic light patterns so as to spatially
modulate the intensity response of the observed object. The induced modulation produces two
effects in the acquired images. On the one hand, it down-modulates high frequency object
components that were previously inaccessible into the support of the optical transfer function
(OTF), thus enabling super-resolved reconstruction. On the other hand, the modulated content of
the images essentially comes from object layers that lie near the focal plane as the modulation
contrast strongly decreases with defocus; this allows one to extract from the modulated frequency
components an optical section of the object. By illuminating the sample for different spatial
phases and orientations of the light pattern, these two attributes of SIM can be achieved, separately
or jointly.

On the applicative side, recent works have tried to extend the scope of SIM to in vivo imaging
and in particular to retinal imaging [3—6], for which the SR and OS brought about by structured
illumination are very promising. The main issue that was discussed is the uncontrolled eye motion,
which causes inter-frame motion. This is a problem for conventional SIM implementations
[1,2], which rely on accurately phase shifting the illumination patterns over a static sample.
Conversely, the object motion can be used to introduce phase shifts without having to translate the
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illumination patterns, although the phase shifts are uncontrolled in this case. Following this idea,
2D SIM reconstruction methods for moving objects have been proposed [4,6]. They firstly use
image registration so as to get images where the object is aligned and the illumination patterns
shifted over the object. Then, the resulting phase-shifts are estimated [3] and the reconstruction
is conducted by solving a system of linear equations. However, these methods achieve SR [4] or
OS [6] independently and not jointly.

In this paper, we propose a general-purpose SIM reconstruction method applicable to moving
objects that jointly performs OS and SR, with retinal imaging in mind. The novelty of our
approach is twofold. Firstly, our reconstruction takes directly the object shifts into account in the
imaging model, instead of modifying the data and registering the images as in [4,6]. This enables
us to minimize noise amplification using the Bayesian framework [7]. Secondly, unlike the 2D
SIM approaches, which achieve both OS and SR by using ad hoc processing such as frequency
component weighting [8—11] or spectral merging [12,13], our proposed method intrinsically
enables both OS and SR. This is performed by explicitly considering the 3D nature of the object
in the imaging model, even though the data are 2D, as in [14]. In the latter paper, even though a
whole 3D volume is reconstructed, only the in-focus slice of the volume is accurately recovered
and the retrieved out-of-focus information is discarded. In contrast, our approach reconstructs a
2-layer object composed of the in-focus layer that contains the super-resolved information and a
defocused layer into which the out-of-focus contribution is rejected, thus significantly reducing
the computing cost. Furthermore, our method is able to automatically adjust the reconstruction
parameters for regularization.

In Section 2, we present the 2-layer SIM imaging model that we exploit in an unsupervised
Bayesian framework to obtain object reconstructions with OS and SR jointly. In Section 3,
we quantitatively assess the performance of our method in both OS and SR and compare it
with fairSIM [11], a state-of-the-art 2D SR-SIM method. Finally, we validate our approach on
open-access experimental microscopy data [15] in Section 4.

2. Method

We propose a general SIM reconstruction method suitable for moving object that is able to
jointly perform super-resolution (SR) and optical sectioning (OS) in an unsupervised Bayesian
framework. As such, the proposed method is tailored for in vivo retinal imaging, where eye
movements induce inter-frame shifts of the retina. It is based on a sound imaging model that aims
to simulate the acquired images from the moving 3D object that is observed. This imaging model
is then inverted using a Maximum a Posteriori (MAP) approach to reconstruct the super-resolved
and optically sectioned slice of the object.

2.1. SIM imaging model

Let us firstly introduce some notations used to describe the imaging process. We denote by o the
biological sample that is incoherently observed through an optical system. It can refer to the 3D
fluorophore density in fluorescence microscopy or to the 3D reflectance map in retinal imaging
for instance, and will be called object in the remainder of the paper. (x, y, z) are spatial coordinates
in object space where (x, y) are the transverse coordinates and z is the axial coordinate, which
quantifies the defocus from the object focal plane. In this paper, the defocus will be expressed
using the axial normalized coordinate u defined as in [5,16], by:

u = 8.(n/A).znsin*(a/2) (1)

where n. sin(a) is the numerical aperture and A is the imaging wavelength. It can also be related
to the amount of defocus aberration a4 expressed in radian rms in the Zernike polynomial
decomposition of optical aberrations [17] by u = 4V3.a4. We assume that the object o is
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moving in an uncontrolled way and that the object motion only implies inter-frame shifts in the
transverse plane (Oxy). This is a fair assumption in imaging modalities such as adaptive optics
flood-illumination retinal imaging.

A set of illumination patterns {m;}; is sequentially projected onto the observed sample o. Let
us consider the j-th acquired image i; by a camera at the image focal plane. Due to its motion,
the object is shifted in the j-th image by 6;(x,y) = 6(x — x;,y — y;) where ¢ is the 2D Dirac delta
function. The imaging process can be represented by a 3D convolution of the observed sample
with the incoherent Point-Spread-Function (PSF) of the optical system. Here, because we only
record images in one plane, we prefer to describe it with 2D convolutions of PSF and object
layers integrated along the optical axis. The image i; is then the sum of 2D convolutions of each
object layer o.(x,y) = o(x,y, z) shifted by 6;(x,y) , modulated by the j-th illumination pattern
m;;(x,y) = mj(x, y,z) with the PSF layer h, conjugated to depth z, and integrated along the optical
axis :

ij(k,[) = [/hz * (mj; X (0 * 6;))dz Hl(k, D) +mny(k, D) 2)

where (k, [) refers to the camera pixel indices, * and [.]11 depicts the 2D convolution product and
the sampling operator at camera pixels respectively. The detector noise n; is a mixture of readout
noise which is homogeneous white Gaussian and of photon noise which follows Poisson statistics.
We assume that the number of collected photons is high enough to reasonably approximate this
mixture by a spatially independent, inhomogeneous centered Gaussian noise [18] with variance
map 0'/2. Equation (2) needs to be discretized to make the imaging model computable. The
integral is approximated by a Riemann sum involving the discretized versions of &;, m;, and o,
denoted in bold, so that our discrete imaging model is:

TOEDY

Z

h, * (mj,z.tj[oz])] (k, I) +my(k, ) (3)
I

where x depicts the discrete 2D convolution product and #][.] is a subpixel shift operator that
computes the shifted discretized object. The downsampling operator [.]ry was introduced in
order to make it explicit that the object and the PSFs may be defined on a grid that is finer than
the sampling grid of the image. For instance, if the images are just Shannon-Nyquist sampled,
then h;, m; ; and o, must be defined on a grid twice as fine as that of i; so that the frequency
support of the reconstructed super-resolved object is large enough. On the contrary, if the images
are oversampled by a factor 2 w.r.t. the optical cutoff frequency, o, and the {i;}; can be sampled
on the same grid.

We can rewrite our forward model from Eq. (3) in a classical matrix framework for computing
the imaging model as in [19]. The object layers o,, are written as a vector where the lines of the
image are column stacked. The shifting of the object by ¢; is expressed as the multiplication of
the object layer o, with a matrix T;. The modulation by the illumination pattern is modelled by
the product between the shifted object and the diagonal matrix M;, whose diagonal elements
correspond to the illumination pattern m;.. The convolution product is then written as a
multiplication of the modulated and shifted object with the matrix H, which is a Toeplitz-block-
Toeplitz matrix. Its first line corresponds to the 2D PSF h,. The downsampling operator is
expressed as a matrix D. The full expression of the forward model is obtained by successively
applying each of these matrices to o,, thus Eq. (3) can be rewritten as :

ij = ) DHM;.Tjo. +n; 4)
Z

Considering the whole set of data {i;};<;<y With N the number of images, we have a system of N
equations given by Eq. (4), whose unknowns are the object layers {0,}, and the object shifts
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{Tj};. The main issue to discuss is then: how many object layers should be reconstructed in
order to jointly achieve OS and SR for the focused layer 0y? To answer to this question, it is
important to understand the physical origin of SIM’s OS.

The optical sectioning capability of SIM, evaluated in [16], is based on the fact that the
contrast of the fringes on each object layer decreases in the acquired images with its distance
from the object focal plane. In the Fourier domain, the modulation of each object layer by
the illumination pattern translates into the convolution of the object layer’s spectrum with the
illumination pattern spectrum. In the case of a sinusoidal modulation, the spectrum of each
modulated object layer is thus the object layer’s spectrum with two added replicas of itself shifted
around the carrier frequency =f;, of the modulation. During the image formation process, each
modulated layer’s spectrum is attenuated by the OTF h, in Fourier space, as exemplified in
Fig. 1, and the acquired image spectrum is the sum of each of these contributions. Of course, the
higher the defocus u of a given object layer is, the more the medium and high spatial frequencies
are attenuated in the images by the modulation transfer function (MTF) (Fig. 1, red plots),
and consequently the less contrasted its spectrum’s replicas are (Fig. 1, blue plots). Thus, the
modulated spectrum components in the acquired SIM images essentially come from the object
layers near the focal plane and this enables OS. In particular, if we choose a modulation frequency
equal to v, (= fi/fe) = 0.5, which has been found to be the optimal choice for OS [16], the
modulation completely vanishes for a defocus distance z; corresponding to u = 8 (or ag = 2/V3
radian rms defocus) as shown in Fig. 1. And in practice, the modulation is also negligible for
planes more defocused than z,4, because the corresponding OTF is even more low-pass.

u=0 u=4
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Fig. 1. Contribution of a sinusoidally illuminated object layer in Fourier space to the image
plane (in blue) through an unaberrated incoherent optical system whose modulation transfer
function (MTF) |ﬁu| (v) is superimposed in red for different defocus values u. The abscissa
coordinate, v = f/fe, is the radial normalized spatial frequency. The modulated spectra
are normalized by their value at zero frequency. The sinusoidal illumination produces a
modulated replica of the object layer’s spectrum shifted around the modulation frequency
vim = 0.5 on the plots. The amplitude of its contribution to the image depends on the value
of the MTF at the modulation frequency.
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Considering the above, we choose in this paper to model the object as 2 planes only, the focused
plane z = 0 and a defocused plane z = z; and to reconstruct a 2-plane object 0 = (09, 04). This is
obviously the minimum number of planes in order to perform OS, i.e, reject defocused light into
04, and this allows for a fast algorithm as it keeps the number of unknowns to a minimum. We
have checked, as shown in Section 3, that if we choose the defocused plane to be z = z4, in practice
object contributions that are more defocused than z = z,4 are incorporated into the estimated 0, at
plane z4 so it is unnecessary to add more defocused planes to be estimated. We have also checked
that choosing a distance z<z, as the defocused layer to be reconstructed is suboptimal, as it results
in a poorer sectioning than z = z; due to a poorer disambiguation of each layer’s contribution.
Thus, in this paper, we shall reconstruct a 2-plane object lying at z = 0 and z = z4. We note M 4,
and H respectively the modulation and convolution matrices corresponding to the defocused
layer o4. Similarly, we note M; o and Hy respectively, the modulation and convolution matrices
for the in-focus layer 0¢. This leads us to the following expression for the 2-layer imaging model:

M;(00, 04) = DHoM;0T;00 + DH/M; ¢ T;04 + 1; ®)

The novelty of this model is that the out-of-focus contribution and the object shifts are explicitly
taken into account through the defocused layer o4 and the translation matrices T;. By inverting
the model within the Bayesian framework as described in the next section, we will be able to
reconstruct the object focused slice with SR and OS jointly in the in-focus layer 0y, while properly
rejecting the out-of-focus contribution into the defocused layer o4, even if the object moves
between frames. Thus, our reconstruction method is nicknamed BOSSA-SIM, which stands for
Bayesian Optical Sectioning and Super-resolution Algorithm for SIM.

2.2. Reconstruction method

Before inverting the forward model given by Eq. (5), the first step consists in determining the
model parameters. PSF and illumination pattern calibrations, which are discussed in Subsection
2.3.1, enable one to set the modulation matrices (Ho, Hy) and convolution matrices {(M; o, M; 4)};.
As for the object shifts {¢;}; from which we define the shifting matrices {T;};, they are set to
0 if the observed sample is static as is generally the case in microscopy. Otherwise, they are
estimated from the acquired SIM images using a subpixel shift registration algorithm described
in Subsection 2.2.3.2.

Once the model parameters are determined, the 2-layer object 0 = (09, 04) is estimated within
the Bayesian MAP framework. The topic of Bayesian approaches for image estimation is well
documented [20]. The MAP estimator of the 2-layer object o is given by maximizing the posterior
likelihood of o, knowing the acquired SIM images {i;}1<j<n:

0 = argmax p(oliy, iy, . .., 1y) (6)
o

where the symbol ~ denotes the estimated value.

Maximizing the posterior likelihood is equivalent to minimizing the neg-log-likelihood
J(0) = =Inp(oliy, iy, . ..,iy). As the observed images i; are independently corrupted by a white
centered Gaussian noise with variance map o-f, one can show using Bayes’rule that the criterion
J is the sum of a weighted least square metric and a regularization term R(0) = — In p(0) that

embodies the object prior information:

(IR 2 1
J(o):zzl 2+R(0):§Z
J= .

j=1 kil
where ||.||§ is the square of the Euclidian norm of its argument and M(o) is the forward model of
Eq. (9).

ij(k, ) = Mio)(k. D) |*
O'j(k, l)

+ R(o) ™)

ij - Mj(O)
agj




Research Article Vol. 27, No. 23/11 November 2019/ Optics Express 33256 |

Optics EXPRESS i N

The regularization term R(o), which prevents uncontrolled noise amplification, uses the
following prior: we assume that the 2 layers of the object (0g, 04) are independent and that they
each follow centered Gaussian statistics. We thus can write R(0) = Ro,(00) + R,,(07) where
Ro,(00) and R, (0,) are the respectively in-focus and out-of-focus object priors. They can be
written in Fourier space as [21]:

~ 2
Bo)=3 b ®)

where the index g refers either to "0" or "d", the tilde denotes the 2D discrete Fourier transform
and f is the 2D spatial frequency. S,, is the power spectral density (PSD) of the layer o,.
By injecting Eq. (8) into Eq. (7), we obtain the expression of the MAP criterion to be

minimized under positivity constraint:
N 2 = 2 = 2
1 1 |80(/)] |04 ()

J(o) = = + = + 9

©=32, 103DV s ®

where A is a regularization parameter which should be set to 1 for a nominal regularization. The
noise variance maps 0'12 and the PSDs of each object layer, denoted S, and S,,, are estimated
from the data in an unsupervised way before minimizing the criterion J. The details of this
estimation step are reported in Subsection 2.3.3. As there is no analytical expression of the
2-layer object o that minimizes the criterion J, the minimization is numerically computed using
the VMLM-B method [22].

ij — Mj(O)
aj

2.3. Implementation
2.3.1. Instrument parameter calibration

The calibration of the PSFs and especially the illumination patterns needs to be carefully done
in order to avoid reconstruction artefacts [23]. Depending on the optical system and the object
medium, we can either consider an ideal diffraction-limited or an aberrated in-focus PSF hy. In
the latter case, the PSF can be derived from the optical aberrations if they are measured [17], or
from empirical approaches if not. We use, as in the fairSIM quickstart guide available in [15], an
exponential attenuation of the ideal OTF to account for optical aberrations in the experimental
microscopy data that we process in Section 4. As for the out-of-focus PSF h,, we consider a
defocused version of PSF hg with a defocus of u = 8 as explained in Subsection 2.2.1.

2.3.2. Subpixel shift estimation

In the case of a static object, the object shifts are simply set to 0. If the object is moving, the
object shifts are estimated from the acquired SIM images. The estimation method assumes
that the motion implies only shifts as is customary in flood-illumination retinal imaging, and
is an adaptation of the image registration algorithm presented in [24], which allows to register
all images jointly rather than pairwise, within the MAP framework. The reader is referred to
the original paper for more implementation details. The original algorithm was tailored for
conventional retinal imaging (without structured illumination). In order to apply it to SIM
imaging, we filter each SIM image to cut off the spatial frequencies around the modulation
frequencies of the illumination pattern in Fourier space. In practice, the filtering is performed by
multiplying the SIM image in Fourier space with a binary mask whose values are set to O on a 3
pixel radius around the modulation frequencies and set to 1 elsewhere. This pre-processing step
allows one to approximate the filtered images as conventional images, on which we next apply
the image registration algorithm from [24]. This approximation leads to additional errors in the
estimation of the object shifts but we show in simulation (Section 3) that they are small enough
not to degrade the reconstruction performance.
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2.3.3. Hyper-parameter estimation for unsupervised reconstruction

In order to compute the MAP criterion from Eq. (9), the noise variance maps, the PSDs of each
object layer and the regularization parameter A need to be determined. We propose a method to
automatically estimate them.

The noise variance map 0'/2 at every pixel (k, [) is assumed to be the mixture of a photonic noise

approximated by a white Gaussian noise of variance (rfph(k, [) and a readout noise which is white

Gaussian of variance 0'? det

detector whereas the variance of the photon noise is estimated using é'j%ph(k, ) = max(i;(k, 1), 0)
assuming that the camera gain has been properly calibrated. The noise variance maps are
then estimated using éjz(k, =6 j,ph(k, )+ 6'12, JerK> D). If the camera isn’t calibrated, then the
noise variance maps are approximated by a mean variance which can be estimated using an
unsupervised method presented below.

The PSD of each layer, S,, and S,, as well as the noise mean variance o are estimated from
a widefield image of the object. For a 2-layer object, each layer contributes to the image PSD

whose model is given by :

(k,1). The readout noise is characterized through a calibration of the

2

Si = [Ro|” Sop + [d|” So, + Sn (10)

where Sy, is the noise PSD which is, up to a multiplicative constant, equal to the noise variance.
In order to estimate the PSD of the two layers oy and 04, we assume that their PSDs are the same
apart from a scaling factor that depends on the amount of photons backscattered by each layer. If
we note a the portion of photons collected by the detector that is attributed to the in-focus layer,
then a ratio 1 — @ of the collected photons comes from the out-of-focus layer. Then we have :

So, = @’S, and So, = (1= @)*Se (11)

where S, can be called the single-layer object PSD. Equation (11) can be injected in Eq. (10) to
obtain : - =
i = [02 ol + (1 - @ B[] S + S (12)

From Eq. (12), we can deduce that the image PSD is the same as the one obtained for a 2D

object observed with an imaging system of equivalent MTF |fleq| = \/ a? |l~10|2 +(1-a)? |fld’2.
By using the unsupervised method from [25] designed for a 2D object, giving the MTF |ﬁeq| in
input, we obtain from the image an estimated 3-parameter PSD S, of the object and the noise
mean PSD S, [21]. We then easily derive the estimation of each layer’s PSD from Eq. (11) given
a. The parameter « should depend on the observed sample and the imaging setup. In practice
we choose @ = 0.5, assuming that the in-focus layer and the defocused layer scatter the same
amount of photons toward the detector. We show in simulations and on experimental microscopy
data that this value yields good results.

The regularization parameter A for the minimization of the MAP criterion of Eq. (9) should
be fixed to 1 for nominal regularization. In the reconstructions that are performed in the next
sections, we use 4 = 0.3, i.e. a slight under-regularization in order to take into account the fact
that the positivity constraint brings some additional regularization.

2.3.4. Object reconstruction: MAP criterion minimization

Once the instrument parameters, the object shifts and the noise and object PSDs have been
determined as described above, the 2-layer object o is estimated by minimizing the MAP
criterion J(0) from Eq. (9). To perform this minimization we use a fast iterative gradient-based
method called VMLM-B [22]. It requires an initial guess of the unknowns (0g, 04) and it
computes repeatedly the MAP criterion J and its gradient until convergence. The minimization
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is automatically stopped when the evolution of the estimated object from one iteration to the next
is close to machine precision.

As the imaging model of Eq. (5) is a linear function of all object pixel values, then the
data fidelity term is quadratic and thus a convex function of the object pixel values. The
regularization metrics are also quadratic functions of the object pixel values, and thus convex.
Additionally, the chosen regularization metric of Eq. (8) is a weighted quadratic sum of all
object frequency components (with only non-zero weights) and is thus strictly convex. We then
conclude that criterion J is strictly convex as a sum of a convex data fidelty term and a strictly
convex regularization metric. Hence, it does not have any local minimum [26], and we can safely
initialize the unknowns to any value, e.g. zero.

The whole algorithm is summarized in the block diagram of Fig. 2.

\ Obiject initialization (0", 0”) \

Input " Output
pu Estimate object shifts {;}. uipu
- - . TN
SIM image stack {i}; / (cf. Section 2.3.2) Minimize MAP criterion / (09, 04) R g
+ of Eq. (7) given ) fecons’(ruc’(i
Instrument parameters () ho,ha, {my},. {5}, Soy S, 82 ('i“'f ocus 'j)l’ef 0o +
ho, hq, {m;}, \ Estimate object PSDs $,,,, $o, | | (sradientbased minimization) efocused layer 9,
+ noise variance map 6?2
(cf. Section 2.3.3)

Fig. 2. Block diagram of the BOSSA-SIM algorithm

3. Performance assessment by simulations

3.1.  Simulation conditions

In order to validate this approach, we have simulated a 16-layer object. Each layer is composed of
a radial resolution target of the form f(p, 8) = 1 + cos (400) where (p, 8) are the polar coordinates.
This kind of object allows one to visually evaluate the SR and OS simultaneously. The object
layers are equally spaced along the optical axis so as to have the first one at the object focal
plane and the other ones gradually more defocused with a defocus step of # = 1 in normalized
axial coordinates. This object layout was chosen because it allows us to conveniently assess the
performance of the reconstructions in both OS and SR, as we will see later.

We consider that a physical single spatial frequency grid structure at spatial frequency f:l is
imaged onto the object to produce the structured illumination and the object is imaged on a
camera through the same optical system as the illumination one. In this case, the contrast of the
projected modulation pattern in object plane at defocus z is given by the value C,(f;,) of the MTF
of the optical system at the spatial frequency of the modulation f,, = |V:n|| and defocus z. The
simulated illumination pattern projected onto the object layer at defocus z is then:

m,(7) = 1 + C.(f,,) cos2af 7 + ¢) (13)

where 7 = (k, [) refers to the pixel indices, and ¢ specifies the relative position of the illumination
pattern to the object frame. Horizontal and vertical sinusoidal illumination patterns with a
modulation frequency f,, equal to half the optical cutoff frequency f, are used, leading to a
theoretical SIM cutoff frequency of f,, + f. = 1.5f.. Although higher modulation frequency can
be used to achieve better resolution, this value was chosen because it exhibits optimal OS [6].
The PSF of the optical system is assumed to be diffraction-limited. Thus we model the in-focus
PSF hy of the optical system by an ideal diffraction-limited Airy disk [27]. The defocused PSFs
h, ..o are then derived from hg by adding the corresponding amount of defocus aberration. To
fulfill the Shannon-Nyquist sampling theorem during object sampling and reconstruction, the
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diffraction-limited PSF is oversampled by a factor of 3 (i.e., the Nyquist frequency is three
times higher than the optical cutoff frequency). This allows to conveniently use the same spatial
sampling for the simulated object, the simulated images and the SIM reconstructions.

The widefield image and the SIM images {i;}; of size 1024x1024 pixels are then simulated
using Eq. (3) for different SNRs (Signal-to-Noise ratios). We define the SNR as the mean of the
image over the standard deviation of the noise and we assume that the detector noise is an additive
white gaussian noise. Examples of simulated images for a SNR of 10 are displayed in Fig. 3 and
show how the different radial targets become more and more blurred as the defocus grows.

Fig. 3. Simulated images for a SNR of 10: SIM images with vertical modulation pattern
(left) and conventional widefield image (right). The in-focus radial target is located in the
bottom-left corner, then the other targets are progressively defocused from left to right and
from bottom to top with a defocus step of u = 1.

Two sets of simulations were conducted. In the first one, the object is static and illuminated
with 3 different phases (¢ = 0, ¢ = 27/3 and ¢ = 47 /3) for each of the 2 directions (horizontal
and vertical) of the pattern, making a total of 3 X 2 = 6 SIM images.

The second case aims at simulating a moving object such as the retina. Eye movements are
well studied and quite complex [28] and induce inter-frame shifts of the retina during the image
acquisition. For SIM imaging, the most important requirement on the retinal shifts is that they
span more than one spatial period of the modulation pattern so that the corresponding phase
between the object and the pattern covers [0, 2] [4], a condition that is always verified in practice.
In our simulation, the object is randomly shifted in the transverse plane following a uniform law
of bounds [-32, 32] pixels, which is notably larger than the period of the chosen modulation
pattern, 2/f. or 12 pixels. The phase of the illumination patterns is fixed (¢ = 0) between images,
and it is the object movements that introduce the required phase shift diversity for reconstruction.
7 images of the object are simulated for each of the 2 pattern directions to ensure a suitable
diversity of the random phases as shown in [6]. The total number of considered SIM images is
then 14.

3.2. Reconstruction methods

We perform two types of reconstruction: the proposed BOSSA-SIM reconstructions presented in
Section 2 and the open-source fairSIM method [11] that enables 2D SIM reconstructions with
SR and OS. The BOSSA-SIM reconstructions were performed using the illumination patterns
defined in Eq. (13) and a diffraction-limited in-focus PSF hy. The reconstructions were then
carried out as explained in Subsection 2.3.
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The fairSIM reconstruction consists of 4 steps of processing in Fourier space: the different
spectral components are firstly extracted, taking into account the OTF attenuation, then shifted
into place; they are next combined through a weighted generalized Wiener filter and the result is
finally apodized with a selected OTF profile to avoid ringing artefacts. Such a method requires
several reconstruction parameters to be adjusted empirically: the shape and strength of the OTF
attenuation that suppresses frequency components with poor axial resolution to achieve OS, the
Wiener parameter w for regularization and the shape of the apodization function. To perform
fairSIM reconstruction on the simulated data, an ideal OTF was selected and the OTF attenuation
was set with the default values proposed by fairSIM (strength of 0.99 and FWHM of 1.2). The
Wiener parameter w was chosen so as to ensure the same noise amplification in fairSIM and
BOSSA-SIM reconstruction, thus allowing fair comparisons between the two methods. The noise
amplification is evaluated by computing the normalized reconstruction noise standard deviation
Orec.norm = Orec/M, Where m is the mean intensity of the reconstructed in-focus target and o, is
the reconstruction noise standard deviation, which is estimated on a background area dominated
by noise. This leads to choosing w = 0.01 for a SNR of 100 and w = 0.26 for a SNR of 10.

3.3. Performance assessment criteria

We define two performance criteria to assess the achieved OS and SR in the reconstructions.
Thanks to the above choice for the regularization parameter of fairSIM, we are able to compare
the performance of both reconstruction methods for the same noise amplification.

The OS is evaluated by studying the mean intensity axial profile /() of the reconstructions as
a function of the defocus u. As the object is composed of 16 radial targets each of which being
at a specific defocus u from u = 0 to u = 15 by steps of 1 as illustrated in Fig. 3, we compute
the intensity axial profile by measuring the mean intensity of each radial target. In practice, we
consider 16 circular regions of interest (ROIs), each corresponding to the positions of a radial
target at a given defocus u in the reconstructions and we compute the mean intensity over each
ROI to obtain the mean intensity axial profile of the reconstructions. The strength of the axial
sectioning is then measured by the half-width u /> of the mean intensity axial profile, as in [16].

The SR is evaluated by measuring the contrast of the reconstructed in-focus radial target
located in the bottom-left corner of the image, as a function of the spatial frequency. As in [29],
we compute the following modulation contrast function (MCF):

C(f) = 2~6rec(f)/6rec(0) (14)

where f is the spatial frequency, 0, is the 1D Fourier transform of the reconstructed in-focus
radial target interpolated along a centered circle of radius 40/(2.7.f) expressed in meters. By
comparing the MCF of the ground truth object and the MCF of the reconstructed one, we are
able to assess how well the spatial frequency components of the object are reconstructed and up
to which frequency. For each reconstruction, we define the maximal reconstructed frequency as
the spatial frequency for which the MCF falls down below 0.2.

3.4. Results
3.4.1. Static object

The reconstructions that we obtain with the BOSSA-SIM method for SNRs of 100 and 10 are
shown in Fig. 4. It clearly shows that the out-of-focus radial targets are rejected in the estimated
defocused layer 6, (Fig. 4, middle column) and we reconstruct in the in-focus layer ¢ (Fig. 4, left
column) essentially the radial targets which are at a distance u < 8 from the object focal plane.
Zoomed view of the reconstructed in-focus layer 0¢ (Fig. 4, right column) indicates that 6¢ also
has an increased lateral resolution compared to the conventional widefield image (Fig. 3, right)
and the higher the SNR is, the better the achieved resolution is. The strength of the OS and the
lateral resolution improvement will be quantitatively assessed later.
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Fig. 4. BOSSA-SIM reconstructions of a static object for SNRs of 100 and 10, composed of
the in-focus layer 0g (a and d) and the defocused layer 6,4 (b and e). Zoomed views into the
red box from 6 are shown (c and f). The zoomed-in region corresponds to the radial target
located at object focal plane and the superimposed red circle materializes the resolution limit
on conventional widefield image.

Let us firstly analyze how the 16 object layers are allocated between the in-focus and out-of-
focus reconstructed layers. We compute the axial intensity profile of both layers as explained in
Subsection 3.3, which we normalize by the axial intensity profile of the sum of reconstructed
layers 0 + 64 to evaluate how the total reconstruction intensity is distributed among 6y and 0.
The results are plotted in Fig. 5. It shows that, at focal plane u = 0, 90% of the total intensity is
attributed to the in-focus layer which is close to the ground-truth value equal to 87%, then the
in-focus intensity ratio rapidly decreases with defocus, reaching near-zero values from u = 9.
Inversely, the proportion of intensity allocated to the out-of-focus layer increases with defocus
u, tending near-one values from u# = 9. This proves that our reconstruction method is able to
correctly distinguish the in-focus and out-of-focus contributions and distribute them among the
2 reconstructed layers 69 and 64. The small increase of intensity attributed to 0g at u = 15 is
due to a slight rise of the contrast of the projected modulation pattern C, around this defocus.
Furthermore, we notice that the axial sectioning capability of our reconstructions is robust to
noise as it gives almost the same axial intensity distribution for a relative low SNR of 10 and a
high SNR of 100.

The performance of our reconstructions was assessed and compared with that of fairSIM
reconstructions for SNRs of 100 and 10. We measured for both methods a normalized
reconstruction noise standard deviation of 3% and 5% for SNRs of 100 and 10 respectively.
We evaluated the achieved OS and SR of the reconstructed in-focus layer 8y and the fairSIM
reconstructions using the axial intensity profile /(x) and the MCF respectively as explained in
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Fig. 5. Distribution of the reconstruction intensity between the reconstructed in-focus layer
0 (red plots) and the defocused layer 0, (blue plots) for SNRs of 10 (solid line) and 100
(dash line) as a function of the defocus u.

Subsection 3.3. The results are plotted in Fig. 6. Regarding the OS capability (Fig. 6, left), we
note that BOSSA-SIM provides a slightly better intensity attenuation with defocus than fairSIM
for both SNRs, showing that we are able to reject more efficiently the out-of-focus contributions.
Furthermore, in both SNRs cases, I(u) is very similar for both methods, showing that the OS is
quite robust to noise. We measure a half-width of the axial intensity profile u;/2 possa—siy = 4.6
for our method which compares favourably with the value u; /3 fzirsjy = 5.0 for fairSIM. Thus
BOSSA-SIM provides a better OS than fairSIM.
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Fig. 6. Performance comparison: Normalized axial intensity profile I(u) as a function of the
defocus u (left) and modulation contrast function MCF(v) as a function of the normalized
spatial frequency v = f/f, (right). I(u) is normalized to unity at zero defocus. Red and black
plots show respectively BOSSA-SIM and fairSIM results for SNRs of 100 (dash line) and 10
(solid line). Ground truth MCF is plotted in green.

Regarding the SR capability (Fig. 6, right), the contrast of the ground truth radial target is
shown (green plot) as a reference and is, as intended, close to 1 for all spatial frequencies. The
slight fluctuations are due to sampling and interpolation effects. As expected, the reconstruction
MCFs gradually decrease to O when the spatial frequency increases. Both reconstructions achieve
SR for both SNRs as their MCF is non null for frequencies higher than the conventional widefield
cutoff frequency v = 1. Furthermore, the BOSSA-SIM MCFs are greater than the fairSIM MCFs
at every spatial frequency and for both SNR levels, proving that BOSSA-SIM achieves better
contrast. The measured maximal reconstruction frequency is somewhat higher with our method



Research Article Vol. 27, No. 23/11 November 2019/ Optics Express 33263 |

Optics EXPRESS 1 N

than with fairSIM: BOSSA-SIM obtains maximal reconstruction frequencies of 1.36f, and 1.13f,
for SNRs of 100 and 10 respectively, whereas fairSIM reaches of 1.28f, and 1.05f, for SNRs of
100 and 10 respectively. As expected, the lower the SNR, the lower the maximal reconstruction
frequency is, because of the regularization needed to minimize noise amplification.

To sum up, for a given noise level in the reconstruction, BOSSA-SIM achieves more resolved
and contrasted reconstructions with a slightly better optical sectioning compared to fairSIM. In
addition, the reconstruction parameters are automatically adjusted in BOSSA-SIM whereas they
have to be empirically fixed in fairSIM.

As a final note, we have performed some additional simulations to explore the behavior of
BOSSA-SIM for higher modulation frequencies f,,. We found that when f,,, increases towards
the optical cutoff frequency f., the gain in lateral resolution increases and simultaneously the
OS capability decreases, which is the expected behavior [6,16]. Additionally, when the SNR
decreases from 100 to 10, the OS performance decreases noticeably for f;, > 0.8f, whereas it was
almost independent of the SNR for f;, = 0.5f..

3.5. Moving object

In the case of a moving object, we consider simulated SIM data with a SNR of 10. The main
issue when dealing with a moving object compared to a static object, is that the phase of the
modulation pattern, i.e. its relative position w.r.t. the object is uncontrolled. We firstly compute
BOSSA-SIM reconstruction using the true object shifts to evaluate directly the effect of this
uncontrolled phase distribution on the reconstructed object. The axial intensity profile /(u) and
the MCF measured are plotted in Fig. 7 (blue dash lines). We measure a half-width of the axial
intensity profile u;/, = 4.5 and a maximal reconstruction frequency of Vyay,ossa—sm = 1,15
which are are very similar to the static object case in the same SNR condition (Fig. 6, red solid
lines).

1.0 L L I L L L L B 1.0 T T T

== True shifts
—  Estimated shifts

0.8 0.8

0.6 0.6

MCF(v)

0.4 0.4

o
)

0.2

LA L L B B B L
[T BTN BT BT

11l | L1 ‘ 111 | L1 ‘ L1 11l 0 111 | 111 | L1 | - ‘ L1l ‘ L1
2 4 6 8 10 12 '%.4 0.6 0.8 1.0 1.2 1.4 1.6
Defocus u v

o
o
ST T
IS

Fig. 7. Performance assessment: Normalized axial intensity profile I(u) as a function of the
defocus u (left) and modulation contrast function MCF(v) as a function of the normalized
spatial frequency v = f/f. (right). I(«) is normalized to unity at zero defocus. Red and blue
plots show BOSSA-SIM results using respectively the estimated and true shifts for a SNR of
10. Green plot shows the ground truth MCF.

To see the effect of the shift estimation error on the reconstruction, we then perform BOSSA-
SIM reconstruction using the shifts estimated with the method described in Subsection 2.2.3.2.
The accuracy of our shift estimation was assessed by evaluating the rms shift error in all the data.
We found a rms shift errors of 0.018 pixel which correspond to 0.3 % of the diffraction size spot.
The resulting axial intensity profile /() and MCF are superimposed with the plots obtained using
the true shifts in Fig. 7, showing that the shift estimation is accurate enough not to reduce the
performance of the reconstruction.
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Finally, we have showed that our reconstruction method is tailored for moving object, provides
both OS and SR, and compares favourably with a state-of-the-art method.

4. Reconstruction on experimental microscopy data

In order to validate our method on experimental data, we have applied BOSSA-SIM reconstruction
on SIM datasets generously provided by the authors of fairSIM [11,15]. We have considered the
dataset named "OMX LSEC Actin 525nm", consisting of fluorescence images of a stained Actin
excited at 488 nm and emitting at 525 nm. The images were acquired with a OMXv4 microscope
which uses 3-beam illumination, 3 angles, 5 phases and an objective of numerical aperture 1.4.
Thus each dataset contains 15 images altogether. The illumination patterns projected onto the
sample correspond to a 2-order modulation atf,,, ; = 0,45f, and f,,, » = 0,9f. where f, is the optical
cut-off frequency. It should thus enable both OS and SR.

To apply our method to the given dataset, we firstly calibrated the instrument parameters of
our model (Eq. 5) so that they match the characteristics of the OMX microscope. The in-focus
PSF hy was chosen according to the PSF data provided by fairSIM. It corresponds to an ideal

(a) Widefield image (b) FairSIM reconstruction

(c) BOSSA-SIM, defocused layer (d) BOSSA-SIM, in-focus layer

Fig. 8. Comparison between the widefield image (a) obtained by averaging the raw data
and SIM reconstructions using fairSIM (b) and BOSSA-SIM (c and d). Both reconstructions
(b and d) achieve OS and SR compared to the widefield image. Scale bar length: 5 um. The
red box region is zoomed in on Fig. 9.
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OTF multiplied with an exponential attenuation term of the form exp(—a |v|) with a = 0.3, and
|v] = 1 at the optical cutoff frequency. The out-of-focus PSF h; was obtained from an ideal
OTF defocused at u = 8, and then attenuated with the same exponential attenuation as hg. As
for the illumination patterns, the modulation depth of both orders was chosen according the
fairSIM data and the modulation frequencies, orientations and phases were estimated from
the data. To do so, we identify in Fourier space the peak positions due to modulation in the
SIM data with pixel precision, then we filter the data using circular masks of radius 3 pixels
centered around the peak positions to essentially keep the contribution due to the illumination
pattern, and finally we fit a sinusoidal model on the filtered data using a least squares approach to
estimate the illumination pattern parameters (modulation frequencies, orientation and phase). The
reconstruction parameters are then adjusted from the data in the unsupervised way explained in
Subsection 2.3 and the BOSSA-SIM reconstruction were finally performed under the assumption
that the sample is static. As we lack the underlying ground-truth information, we use the fairSIM
reconstruction as a reference, with which we check the consistency of our result. The fairSIM
reconstruction was performed using parameters provided with the datasets [15]. The processed
images were apodized in order not to introduce artefacts when computing discrete Fourier
transforms and the negative values of the fairSIM reconstruction were thresholded to zero to
enhance its displayed contrast.

The different reconstructions are shown in Fig. 8. It appears that BOSSA-SIM is able to
successfully achieve OS and SR by attributing the out-of-focus contributions such as the blurred
circular shape located near the center of the widefield image (Fig. 8(a)) to the defocused layer

(a) Widefield image (b) FairSIM (c) BOSSA-SIM
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Fig. 9. Zoomed-in regions of area 10x10 um extracted from the widefield image (a),
fairSIM reconstruction (b) and BOSSA-SIM’s in-focus layer (c). The intensity profiles
corresponding to the respectively green, blue and red lines drawn on (a), (b) and (c) are
compared in (d). Each intensity profile has been normalized by its median value and the plot
goes from the bottom to the top of the line.
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(Fig. 8(c)) and by reconstructing in the in-focus layer (Fig. 8(d)) structures such as filaments
better contrasted and resolved compared to the widefield image. Furthermore, the in-focus layer
obtained with BOSSA-SIM is consistent in terms of OS and SR with the fairSIM reconstruction
(Fig. 8(b)). As we do not know the ground-truth object, we are unable to decide which result
is closer to the reality but we can check that our reconstruction method does not introduce any
additional artefact compared to fairSIM’s.

Zoomed-in regions and the plotted normalized intensity sections displayed in Fig. 9 show that
the contrast and the capability to resolve tiny structures such as filaments is greatly improved in
both SIM reconstructions (Figs. 9(b) and 9(c)) compared to the conventional widefield image
(Fig. 9(a)). Again, we check that the filament layout reconstructed with BOSSA-SIM is consistent
with the one from fairSIM. We also notice on the plots of the normalized intensity profile that
BOSSA-SIM reconstructs better contrasted filaments compared to fairSIM, which supports the
performance assessment by simulations shown in Fig. 6.

5. Conclusion

We have proposed a novel SIM reconstruction method that achieves both optical sectioning (OS)
and super-resolution (SR), in an unsupervised Bayesian framework. Our method is based on
a multi-layer imaging model which enables us to properly distinguish the in-focus layer from
the out-of-focus contribution while taking into account object motion. The performance of our
reconstruction method, assessed on simulation, exceeds the axial sectioning, contrast and lateral
resolution achieved by fairSIM, a state-of-the-art SIM reconstruction technique. When dealing
with a moving object, our method still provides OS and SR jointly with a performance that is
comparable to the static case. Lastly, we have validated on experimental microscopy data kindly
provided by [11] that our reconstruction method yields highly contrasted images with both OS
and SR.

In order to further improve the performance of the proposed approach, several avenues are
worth exploring: (1) the object shifts and the illumination patterns could be jointly estimated
with the object using an alternate optimization approach, as done for the illumination patterns in
the Blind-SIM method [14]; (2) we could study the reconstruction performance with a number of
object planes greater than 2, while keeping this number small to minimize the computing time and
preserve the robustness to noise; (3) a refinement of the noise model that would take into account
the deviation to the Gaussian assumption used here could bring an additional improvement in the
reconstructions.

Finally, we are currently working on an adaptive optics flood-illumination ophthalmoscope
with structured illumination capabilities [30], on which we plan to apply our reconstruction
method in order to improve both the resolution and the axial sectioning of the imaging system.
Such an imaging system would greatly benefit the study of the retinal 3D structure and function
in the living eye.
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