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Game theoretic decision making for autonomous vehicles’ merge
manoeuvre in high traffic scenarios

Mario Garzón1 and Anne Spalanzani1

Abstract— This paper presents a game theoretic decision
making process for autonomous vehicles. Its goal is to provide
a solution for a very challenging task: the merge manoeuvre in
high traffic scenarios. Unlike previous approaches, the proposed
solution does not rely on vehicle-to-vehicle communication or
any specific coordination, moreover, it is capable of anticipating
both the actions of other players and their reactions to the
autonomous vehicle’s movements.

The game used is an iterative, multi-player level-k model,
which uses cognitive hierarchy reasoning for decision making
and has been proved to correctly model human decisions in
uncertain situations. This model uses reinforcement learning to
obtain a near-optimal policy, and since it is an iterative model,
it is possible to define a goal state so that the policy tries to
reach it.

To test the decision making process, a kinematic simulation
was implemented. The resulting policy was compared with a
rule-based approach. The experiments show that the decision
making system is capable of correctly performing the merge
manoeuvre, by taking actions that require reactions of the other
players to be successfully completed.

I. INTRODUCTION

The past few years have seen an increasing interest on
the research and development of autonomous cars. As new
developments are made, more complex tasks and situations
are being tackled, therefore requiring either more complex
or more creative solutions. Among the many challenges that
have arise for autonomous cars, the interaction with human
drivers is one of the most complex and interesting. This is
due to the fact that involving human drivers require to model
their behaviour and anticipate their intentions, which may not
be clear and therefore can not be predicted with certitude.

This paper proposes a solution to a very challenging
scenario, the on-ramp merging of an autonomous car into
a road with high traffic flow, namely during a traffic jam.
Furthermore, the scenario does not assume any shared control
or intercommunication with neighbourhood vehicles, there-
fore, it requires a non-coordinated bi-directional interaction
between the autonomous cars and human drivers. A real
world situation, such as the one proposed in this scenario
is shown in Figure 1.

In order to solve a situation as the one proposed here, it
is necessary to solve many challenges, they can be broadly
divided in four areas: situation awareness of the autonomous
vehicle or ego-car, prediction of actions or movements by
other vehicles, decision making of the ego-car and execution
of the manoeuvre. The work presented on this paper focuses
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Fig. 1: Example of the task and scenario: An autonomous
vehicle (in the blue circle), needs to merge with the traffic.

on two of those challenges, the anticipation of actions from
other vehicles and the decision making of the ego-car. Those
two task are strongly dependent on each other, because the
decision making should consider both the actions of the other
vehicles as well as their reaction to the movements of the
ego-car. Moreover, the solution proposed solves these two
tasks simultaneously by involving the estimated actions and
reactions of other vehicles in the decision making model.

Commonly used decision making process are not suitable
in this case. The reason for this is that most techniques relay
on overly defensive strategies, usually assuming constant
velocity or simplistic models for other vehicles and human
drivers, applying a “stay out of their way” strategy. Although
those approaches may work in simpler scenarios, they are
not suitable in the presence of high traffic, because there it
is impossible to merge without affecting the cars surrounding
our vehicle [1].

The approach used in this paper is based on Game Theory,
which is a tool that provides a good framework to model
and solve interactions between multiple agents [2], therefore
allowing the vehicle to make a decision that can be seen as
a risky manoeuvre if seen by traditional techniques, and at
the same time anticipating both the movements of other cars
as well as their reaction to the movements of the ego-car.

There are many different techniques within game theory,
some of them have already been applied to autonomous
cars [3]. Furthermore, usually the game theoretical decision
making seeks equilibrium by assuming mutual rationality and
mutual consistency (i.e. every player will always make the
rational decision and all the players’ beliefs about other play-
ers are consistent and true). This however is not necessary
true, and therefore new game models have been proposed.

The game theoretical model used in this paper, is based
on the cognitive hierarchy model, proposed by Camerer
et al. [4], which has been experimentally validated with



cognition experiments [5]. Its main difference with most
other game theory models, is that it assumes that some
player’s beliefs may be mistaken, and optimizes a policy
based on that assumption, therefore yielding a higher level
policy that is better than that of everyone else’s. These games
are also known as Level-k thinking, because starting from
the assumption that every player will use a basic (level 0)
policy, a player (level 1) will try to find a new optimal policy
assuming every one else will use the previous one (level 0),
and using the same logic, higher levels can be reached.

The main contribution of this paper, is the use of an
iterative, multi-player level-k game model, in order to solve
a very complex task for autonomous cars. This model, relies
on the creation of an Iterative Semi Network-Form Game [6],
which allows to obtain a near-optimal policy, taking into
account the estimation of the possible actions of surrounding
vehicles, as well as their reaction to the actions of the ego-car.
Furthermore, the proposed technique does not require any
vehicle-to-vehicle communication or coordinated behaviour.
Also, the observation space and the set of actions proposed,
can be applied to many other scenarios and other complex
situations. In addition to this, the iterative model proposed,
makes it possible to set a goal state and therefore model long
term intentions of the ego-car and the additional vehicles.

The remainder of this paper is structured as follows
Section II presents a brief summary of related works and
states the main differences of the work presented here. Then,
Section III describes the proposed methodology and their
main components. Section IV details the implementation
procedure and Section V describes the scenarios and experi-
ments used to test the capabilities of the system and, finally,
Section VII presents the concluding remarks.

II. RELATED WORK

Several different techniques to perform the merging ma-
noeuvre have been reported in the past few years. One
of the first works using game theory for this tasks was
proposed by Kita et at. [2], it models a two-person game
where players can either give-way or not and merge or pass.
Also it obtains the reward function by finding correlation
with real world observations. However, its drawback, apart
from only considering two players, is that it assumes perfect
information and knowledge of the other player.

Some of the works found on the literature are based on
a shared control of all the vehicles in the scenario. Merging
using on slot-based driving [7], or relying on vehicle-to-
vehicle communication and strong cooperation, so as to
yield space for the merge [8] have been proposed. Similarly,
Brechtel et al. [9] uses continuous POMDP in order to
generate safe, efficient, and goal-directed driving behaviours
for a two-vehicles interaction, although only two possible
actions (change lane or stay) were considered. A different
work includes non-cooperative road users [10], however,
those additional road users are assumed to follow a single
trajectory that is not modified by the ego-car’s actions.

Considering the possible reactions of other vehicles (un-
coordinated approaches), a multi-policy decision-making

process was proposed by Cunningham et at. [11]. It uses
driving models to create a set of policies that evaluate the
consequences of the ego-car actions. The effects that the
actions of an autonomous car can take on human drivers are
studied in the work of Sadigh et al. [12], this uses Inverse
Reinforcement Learning to determine the cost functions
for those possible actions. Another work uses a Receding
Horizon Control and game theory to maximize mutual pay-
off of different players [3], However, all those works only
consider one additional vehicle or player and two possible
actions, rendering it invalid for high traffic scenarios.

Another approach generates many possible velocity pro-
files, and then it estimates an acceptable breaking or dis-
comfort in other vehicles in reaction to each possible tra-
jectory [1]. That estimation is based on the Intelligent
Driver Model. A different approach, also based on a set
of traffic rules and regulations, requires complex parameters
and movements equations [13]. The main drawback of these
approaches is that, since they are model based, they will
produce mostly over safe manoeuvres, that will cause longer
waits in order wait for a safe space for the merge manoeuvre.

Finally, the work proposed by Li et al. [14], which
similarly to the work presented here, uses a level-k game
theory approach to model and simulate traffic and it considers
many players interacting and also many possible actions.
However, that work is mainly focused on calibrating, testing
and comparing decision and control systems for autonomous
vehicles.

The main differences of the our proposal with respect
to the related works is as follows. Firstly, it can consider
the reactions of multiple players to the ego-car actions,
furthermore, it differs from the work of Li et al. [14]
in that it can have different models or policies for each
additional player, and it can also model end-of-roads or
other variation of the road. Another important difference,
is that it uses a time-iterative approach, that allows to define
a goal state, and therefore it can be used to model many
different scenarios, such as vehicles entering or leaving a
highway. In addition to this, the assumptions of other players
actions do not need to be perfect, and therefore it is possible
to perform interactions with human drivers or other un-
connected autonomous vehicles.

III. MERGE SCENARIO MODEL

The objective of the work presented here is to develop a
decision making approach capable of solving a very complex
task for autonomous vehicles, the on-ramp merge during a
traffic jam. In order to solve this, it was necessary to define
a world model, that allows to simulate the manoeuvre and
the movements of all the vehicles. A model of the scenario,
with its main components, is presented on Figure 2, which
corresponds to a two lane road, that reduces to a single lane
after a given distance.

A. World Model

In order to perform the simulated merge, a model of
the world, which defines the movements of the vehicles,



Fig. 2: Modelling of the world. The ego-car is shown in blue,
and the variables considered in the world model are marked.

possible collisions and road restrictions has been defined.
This world model uses discrete-time kinematic equations to
define the movements of the vehicles, and rule-based checks
for collision as well as to ensure the limits of the road. For
each vehicle, the following parameters and measurements are
defined (See Fig 2):

• v len Length of the vehicle.
• pos x, pos y Position (forward and lateral).
• accel x Linear acceleration.
• vel x, vel y Linear, (forward and lateral) velocity.
Having this, the equations of motion are defined according

to Equation 1

pos x(t+ 1) = pos x(t) + vel x(t) · t step
vel x(t+ 1) = vel x(t) + accel x(t) · t step
pos y(t+ 1) = pos y(t) + vel y(t) · t step

(1)

Some additional restrictions are also included on the
world model, namely: The forward velocity is limited by
a maximum speed parameter. The lateral position pos y is
only controlled by the change lane actions, thus, the lateral
position corresponds to the lane the vehicle is on, and the
lateral velocity vel y will be either −1, 0 or 1 depending on
the action taken. All the boundaries of the road, including
the end of the merge ramp are ensured, as well as maximum
acceleration and deceleration values. Furthermore, although
the scope of this work does not include the use of a complex
traffic simulator, the models of the world and vehicles, as
well as the information available, have been selected so as
to facilitate its future integration with a high traffic simulator
previously developed [15].

B. Observation Space

As in any real world driving scenario, the vehicles involved
are not capable of having complete information about every
other vehicle. Moreover, when involving many other vehicles
in the decision making, it will be very complex to process
such amount of information. The solution proposed here
relies on a different observation space, which, as any human
driver will do, only considers the surroundings of the vehicle.
Moreover, by having a broad set of discrete states, the
observations can handle uncertainties that may be found in
the measurements. The objective of these observations is to
be able to provide a sufficient amount of information, without
requiring complete or exact measurements.

FR

FL

F

RL

RR

Fig. 3: Observation space. The possible states for each mea-
surement are: forbidden, free, vehicle static, vehicle moving.

The definition of the observation space is shown in
Figure 3. As can be seen there, each vehicle handles five
different measurements, corresponding to the status of the
front F , front-left FL, front-right FR, rear-left RL and rear-
right RR. Observations of the back of the vehicle are not
considered, because, as stated by Li et al. [14], they don’t
provide relevant enough information for the decision making
process and including the will highly increment the size of
the observation space.

There are four possible states for each of those measure-
ments, they can be: forbidden, there is no road available; free,
if there is no vehicle and the road is clear; vehicle static, if
a vehicle is stopped or moving slower that the ego-car; and
finally vehicle moving, meaning that a vehicle is present and
moving at the same speed or faster than the ego-car.

C. Possible Actions

A set of five possible actions has been defined for the
vehicles. As with the observation space, they are designed
for the merge scenario, but they can also be used in many
other situations. The actions are described next:

• left: Change lane to the left (if available).
• right: Change lane to the right (if available).
• remain: Maintain the same speed, direction and lane.
• accel: Increase speed at given rate. (up to max. velocity)
• brake: Decrease speed at given rate. (until velocity is

zero)

D. Reward function

The final item in the formulation of the problem is the def-
inition of a reward function, which defines the goals and/or
behaviour of the vehicles. Since a time-iterative approach is
used, it was possible to use a reward function where one
or multiple states are defined as the goal, so as to obtain a
policy that drives the ego-car towards this state. The reward
function used is defined as per Equation 2.

Reward =


pos x, if pos x > ramp len

and pos y = goal lane

−350, if constraint violation
0, otherwise

(2)

For the merge scenario, the main goal will be to safely
pass the bottleneck and get incorporated in the main lane



of the road, therefore, the goal state will be any position
in the main (left) lane after the bottleneck. To ensure this
goal, only three different values are used for the reward: If
there is a constraint violation, such as a collision with other
vehicles, or a movement towards a forbidden state (out of
the road), a very low reward value is assigned. If the car is
able to get to the goal lane, and pass the bottleneck, then
its reward will be positive and it will increase as it moves
forward so as to encourage faster movements. Finally, if the
car has not merged, but is still on a valid state, a reward of
zero is assigned.

IV. PROPOSED SOLUTION

The solution of the decision making problem presented
here is based on the use of an Iterative Semi Network-Form
Game. This type of game, which was first introduced by Lee
et al. [6], combines Bayesian networks and Game Theory
in order to generate a model where multiple human and
autonomous components can interact. These form of games
have been used to model cyber-physical security systems [16]
and to predict pilot behaviours [17].

An iterative semi network-form game uses random vari-
ables and a probabilistic framework to represent the different
components of the system. There are two types of nodes
in this network, firstly the chance or Estimated Action
nodes, which use a pre-defined fixed conditional probability
distribution. The second type are the Decision Nodes, they
represent the human players and their behaviour is learned
or optimized. Each decision node requires a reward function
(See Equation 2) and then game theory approach is applied in
order to optimize their policy. An overview of the proposed
iterative semi network-form game is presented in Figure 4.

A multi-player game, with up to 6 players, is proposed,
however additional vehicles, following simple rules can be
added to the simulation. For each of the players, a set of
Estimated Action nodes is used to estimate the likely actions
that the vehicles in the surroundings of the player may take at
any given time. Each player then uses those possible actions
to obtain an estimation of the new state, which will represent
its near future status. Having this, it is possible for each
player to tune its Decision Node’s policy accordingly. The
process to optimize that decision making policy is briefly
described in Section IV-A.

A. Level-K Reinforcement Learning

In order to determine which is the best action to take in
each case, a hierarchical or level-k reasoning process was
used. The objective is to make meaningful predictions of
the outcomes of the games assuming that the other players
will use a basic (level-0) strategy, and then optimize the
policy (i.e. conditional probability distribution) using that
estimation, so as to obtain a higher level policy and so on,
as aforementioned, this type of level-k solutions have been
proved to produce results coherent with human behaviour.

Finding the optimal equilibrium for multiple players, in an
iterative game using methods such as Nash equilibrium or
quantal response equilibrium, may not be feasible because

INITIAL STATE

STATE
T = 1

T = N

OBS PREV

ESTIMATED
STATE / OBS

ESTIMATED
ACTION

DECISION
CAR 1

OBS PREV

ESTIMATED
STATE / OBS

ESTIMATED
ACTION

DECISION
CAR 2

x num veh

Fig. 4: One time-step and two player example of the
proposed semi network-form game. Each car generates an
estimation of the movements of the other players and makes
the decision accordingly.

those methods become extremely complicated when a high
number of player and possible actions is involved. Therefore,
it is necessary to use a different approach. In this case, the
solution is based on reinforcement learning.

The system does not consider every possible combination
of actions, instead it assumes that the players define a single
policy for all the network, and then execute this policy over
all iterations of the network, thus making the computational
complexity independent of the number of time-steps. Also,
by defining a single policy, it is not necessary to sample for
different actions of the players, but rather it is possible to
sample for different policies.

Once a policy has been defined, its utility is obtained by
adding the rewards of every time step. Using this utility
value, an optimization problem can be defined by trying to
find the policy that leads to the highest expected infinite sum
of discounted rewards. This optimization problem is solved
using a Monte Carlo reinforcement learning approach, which
searches for a near-optimal policy and can be seeded with
lower level policies to improve its results.

V. EXPERIMENTS DESCRIPTION

This section describes the test performed in order to
validate the decision making process and to evaluate the
performance of the system itself. Firstly, the scenario, its
initialization and the overall procedure of the simulation is
explained. Then, the basic behaviour, used by level 0 players



is explained, and finally a comparison of the performance of
different level players is carried out.

A. Scenario set-up
The scenario used for the experiments is based on the

world model presented on Figure 2. It is composed of a two-
lane road, each lane has a width of 3.2m. The left lane is
continuous and unlimited in distance, whereas the right lane
ends after a distance of 25m. The vehicles are assumed to
drive on the centre of the lane, and they only move laterally
to perform a lane change manoeuvre.

Since the scenario modelled is a traffic jam, the maximum
velocity of the cars is limited to 5m s−1. The acceleration of
the vehicles is 2.5m s−2 and the breaking action decelerates
the vehicle at 5m s−2.

The initialization of the vehicles is as follows: the ego-car
and one more vehicle are placed on the merging ramp and
the rest of the vehicles on the main lane. The vehicles located
on the same lane are separated by a distance of 2.5m, and
all vehicles are assigned an initial speed of 2.5m s−1.

B. Simulation work-flow
Once the vehicles are assigned their initial position and

speed, the main loop starts. The simulation is executed for
10 s, and as aforementioned, the movements have discrete
time steps of 1 s. At each time step, each vehicle obtains an
estimation of the actions of the vehicles in its surroundings.
Then, using those estimated actions, their observations are
updated, and the best action is selected accordingly. Each
vehicle performs only one action per time step. Finally all
selected actions are applied simultaneously and the state of
each car is updated according to Equation 1. After the new
state has been obtained, the reward function (See Section III-
D) is computed, and the process continues with a new time-
step.

C. Level 0 Behaviour
A set of basic rules was defined as the Level 0 policy.

These rules generate a behaviour that can be used as ref-
erence for training as well as a point of comparison with
the higher level policies found by the reinforcement learning
algorithm.

The main idea of that behaviour is that all vehicles will
continue on their lane until it is not possible to move forward
(i.e. when they reach the end of the ramp), and then they will
wait to have a clear space, change lane and continue their
movement. This Level 0 policy is achieved by following the
next rules:

brake =


if vel x > 0 and F = forbidden
if vel x > 0 and F = vehicle static
if any collision

accel =
{

if vel x = 0 and F = free

left =
{

if vel x = 0, RL = free and F = forbidden

remain =
{

elsewhere

Using this basic policy, all vehicles are capable of merging
if enough time is given. For the case of the ego-vehicle, in
the 10 s of the simulation, it will be able to place immedi-
ately after the bottleneck. Moreover, additional vehicles, not
participating on the game, are controlled using this policy.

VI. RESULTS AND EVALUATION
In order to have a qualitative evaluation of the decision

making process, an example of the trajectories obtained
using the proposed decision making system, as well as the
reference basic behaviour, are presented in Figure 5, the main
difference, as shown in the image, is that using the rule based
approach the ego-car will always wait for a safe space in
order to merge, in this case at time t = 9 s, whereas using
the game theoretical approach, the ego-car can anticipate that
the orange vehicle will break if it merges, and as shown, it
correctly manages to do so at a much earlier time, at t = 3 s.

t = 9

t = 7

t = 5

t = 3

t = 2

t = 0

(a) Ruled based (Level 0)

t = 9

t = 7

t = 5

t = 3

t = 2

t = 0

(b) Game Theoretic (Level 2)

Fig. 5: Sequence of movements using rule-based and game
theoretic approaches. The ego-car is shown in blue and the
instant of the merge manoeuvre is highlighted.

A. Resulting policy evaluation

Since obtaining a Nash equilibria for the resulting policy
(i.e. probability distribution), is not possible in this case. It
is necessary to use a different technique to provide a formal
evaluation of the quality of the obtained policies.

This evaluation is obtained by using a Monte Carlo Im-
portance Sampling estimation of the Predictive Game Theory
(PGT) model [18]. This sampling provides a quantification of
the level of rationality inherent in a player’s behaviour [19].
It uses as reference a welfare function, which in this case
is the same as the reward function defined in Section III-
D, where negative values represent collisions or undesired
states, whereas, positive values show that the car was able to
pass the bottleneck, moreover, larger positive rewards mean
that the given car reached a further position, and since the



simulation time is fixed, it also means that it was capable of
crossing faster.

(a) Level 1 (b) Level 2

Fig. 6: Level 1 vs level 2 average welfare, from Importance
Sampling estimation.

The resulting values of the importance sampling are shown
in Figure 6. For both, level 1 and level 2 players, the expected
welfare can vary highly, this is because using the game
theoretical approach, there may be risky situations, and thus
it may lead to lower rewards. As can be seen in Fig. 6a, for
the Level 1 player, most of the expected rewards are negative,
meaning that there is a considerable probability of collisions.
However, when training a higher level policy (Fig 6b), it can
be seen that, although there may be still some collisions,
most of the rewards is positive, and is overall higher than
the reward obtained by the level 1 policy, thus proving the
efficiency of the decision making to find a solution to this
scenario.

VII. CONCLUSIONS
This paper presents a possible solution for a very complex

task of autonomous vehicles: the merge manoeuvre in very
high traffic scenarios. The solution does not require any
specific cooperation or vehicle-to-vehicle communication,
and it is capable of anticipate the reactions of other vehicles
to specific actions of the ego-car.

The proposal uses an iterative, multi-player level-k game,
and finds a near-optimal solution using Monte Carlo rein-
forcement learning techniques. Moreover, the set of observa-
tion, possible actions and reward proposed, can be applied to
different situations, and it can yield goal-oriented behaviours.

A kinematic simulation were used in order to test the de-
cision making algorithm and a pre-defined rule-based policy
was used for comparison. The results show the capacity of
the proposed methodology to solve the task by taking actions
that may be consider unsafe unless they take into account the
reactions of the other players.
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