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We propose a framework to study contextual equivalence of programs written in a call-by-value functional

language with local integer references. It reduces the problem of contextual equivalence to the problem of

non-reachability in a transition system of memory configurations. This reduction is complete for recursion-free

programs. Restricting to programs that do not allocate references inside the body of functions, we encode

this non-reachability problem as a set of constrained Horn clause that can then be checked for satisfiability

automatically. Restricting furthermore to a language with finite data-types, we also get a new decidability

result for contextual equivalence at any type.
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1 INTRODUCTION

Proving that two programs are equivalent is crucial to ensure that an optimization of a program is
correct, or to ensure that a modification does not introduce any regression. Many recent works
have introduced techniques to check automatically if two programs are equivalent [Ciobâcă et al.
2016; Felsing et al. 2014; Godlin and Strichman 2009; Lahiri et al. 2012]. Considering a notion
of input/output equivalence, they use standard techniques from static analysis to check it. An
important idea in this setting is to use similarities of the two programs. This is particularly useful
when reasoning on recursive programs, where we can perform circular reasoning by supposing
that the recursive calls are related to prove that the body of the programs are related.
However, the notions of equivalence considered in these works are not suitable for open or

higher-order programs that manipulate private memory cells, a.k.a. references or local states. In
this paper, we study such a language: a call-by-value higher-order language with references, i.e. a
fragment of ML. For this language, contextual (a.k.a. observational) equivalence is accepted as
the right notion of equivalence of programs, being the gold standard in the programming language
semantics community.

It consists in seeing programs as black-boxes, checking that they interact in an observationally
equal way w.r.t. any context (i.e. a program with a hole). This means that no context can distinguish
them, not being able to observe any difference between them. Due to the universal quantification
over any contexts in its definition, it can be hard to prove that two programs are contextually
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59:2 Guilhem Jaber

equivalent. Indeed, for a fragment of ML with finite data-types, integer references but no recursion,
it has been proven that contextual equivalence is undecidable [Murawski 2005]. Techniques like
Kripke Logical Relations [Ahmed et al. 2009; Dreyer et al. 2010a; Pitts 1996] or various forms of
bisimulations [Hur et al. 2012; Koutavas and Wand 2006; Lassen and Levy 2007; Sangiorgi et al.
2007; Sumii 2009; Sumii and Pierce 2005] have been designed to prove contextual equivalence
of programs written in fragments of ML. However none of these techniques have been used to
effectively automate reasoning on equivalence of programs.
In a different setting, algorithmic game semantics has been developed to obtain a typed-based

classification of decidability of contextual equivalence for fragments of ML [Cotton-Barratt et al.
2015, 2017; Hopkins et al. 2011; Murawski 2005; Murawski and Tzevelekos 2011a, 2012]. Designed
to yield decidability results, algorithmic game semantics provides an automatic technique to prove
contextual equivalence only for programs with finite data-types, and łlow-orderž types. It uses an
automata representation of the denotation of programs, in order to test them for equality
In this paper, we are rather interested in the following question:

Is it possible to algorithmically reduce the problem of contextual equivalence of two
programs to the verification of a single łprogram-likež object that only manipulate

first-order values (i.e. integers and locations) ?

Working in the setting of RefML, a fragment of ML with higher-order functions, Int and Bool
datatypes, recursion, and higher-order references (but no reference disclosure), this paper provides
a first answer to this question, by introducing the framework SyTeCi. It reduces the problem of
contextual equivalence of two programs to the problem of non-reachability of łfailedž configu-
rations in a transition system of memory configurations, called a Structured-Memory Transition
Machine (SMTM). These transition systems are represented symbolically and can be effectively
constructed. They manipulate only ground values like integers and memory addresses. Paths in
these SMTSs represent an abstraction of an interaction between a context and each of the two
programs considered. Reaching a failed configuration means that there exists a context that can
discriminate these two programs.

While we consider contexts in RefML, for technical reasons explained later, we will only consider
programs in a fragment SimpleML of RefML, where references can only store integers. In RefML,
there is no control operators like call/cc, so that contexts can discriminate less programs. Indeed,
in this setting the sequence of calls and returns must follow a łwell-bracketedž discipline, that will
necessitate to have a stack in the configurations of the SMTMs that we will consider.

Importantly, our method is complete for recursion-free programs, as soon as we allow contexts
to use higher-order references (that is references that can store functions). This means that given
two recursion-free programs, the failed configurations of the automatically constructed SMTM
are non-reachable if and only if the two programs are contextually equivalent. For programs with
recursion, we may fail to build the SMTM if the two programs are too łdifferentž, so that we cannot
find synchronization points between them.

Compared to algorithmic game semantics, this reduction works with unbounded data-types, by
treating them symbolically, and at any type order. Notice that as soon as we have unbounded integer
with basic arithmetic opertions, contextual equivalence is undecidable, even without recursion.

Restricting ourselves to programs that do not create references in the body of functions, so
that the interaction w.r.t. any context always generates bounded heaps, we can encode this non-
reachability problem as satisfaction of a set of constrained Horn clauses [Bjùrner et al. 2015, 2013]. If
furthermore programs only handle finite datatypes and are recursion-free, we prove that contextual
equivalence is decidable.
A prototype implementing this work is available at https://github.com/g-jaber/SyTeCi.
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2 SYTECI AT WORK

To prove contextual equivalence of higher-order programs, one has to represent the interac-

tion between a program and a context. Game semantics provides a general framework to do so,
representing interactions as traces formed by actions, which can be of four kinds:

• Player Answer: the program returns a value (boolean, integer, function);
• Player Question: the program calls a function provided by the context (i.e. a callback);
• Opponent Answer: the context returns a value to terminate a callback;
• Opponent Question: the context calls a function provided by the program.

The denotation of a program is then formed by the set of traces corresponding to the interaction
of the program with all the possible contexts. A key point of game semantics is that it provides a
fully abstract model ś without any need of quotienting ś for RefML, a typed higher-order language
with higher-order references [Laird 2007; Murawski and Tzevelekos 2011b]. This means that two
programs are contextually equivalent if and only if their denotations are equal.

However, building effectively the denotation of programs and comparing them can be impossible
when working with programs of arbitrary types, with infinite data-types, or with recursion.

To avoid to have to consider all the possible interactions of the programs in one go, we will
rather try to synchronize the interaction points of the two considered programs on the fly.
Synchronizing interaction points means:

• to check they are of the same kind (Player answers or Player questions),
• for Player questions, to check that they interrogate the same function provided by the context,
and that the ground values (integer or booleans) provided as arguments to this function in
these questions are equal,

• for Player answer carrying ground values, to check that these values are equal.
We use an abstract representation (using free variables) for the higher-order values provided by

the context to the program, similar to what is done with normal form (a.k.a. open) bisimulations [Ja-
gadeesan et al. 2009; Lassen and Levy 2007]. One of the novelty of this work is to do the same
for the ground values too, allowing to perform symbolic reasoning on the behaviour of programs.
This is done using a symbolic evaluation, that collects arithmetic constraints on these variables
representing ground values like integers.
So types are important to determine how to represent values provided by Opponent, being

boolean, integer or functional. But it is interesting to notice that, working in an untyped setting
with only functional values, it would be straightforward to adapt this framework.

Since we consider programs that use references, the symbolic evaluation has to handle the
heap too. It does so by using a symbolic heap and by collecting, during the evaluation, arithmetic
constraints on the values stored in it. So this symbolic evaluation is used to find all the possible
executions of each program until we reach an interaction point. A key point is that after each
interaction point, the symbolic evaluation cannot use the knowledge it has acquired before on the
heap. This is due to the fact that at an interaction point, the context could have performed some
(possibly reentrant) calls to the functions that the programs have supplied, whose execution could
have modified the heap.

These various synchronization points, together with the arithmetic constraints collected by the
symbolic evaluation, can then be organized as a transition system representing the evolution of the
memory configurations (the two heaps, a stack and the ground values provided by the context)
of the two programs. We call these transitions systems Structured-Memory Transition Machines
(SMTM). In these SMTMs, we represent failure of synchronization with special configurations,
called failed configurations.. We then have to check such failed configurations are not reachable
in order to prove contextual equivalence of the two programs.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 59. Publication date: January 2020.
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The idea of using transition systems of memory configurations to prove contextual equivalence
of ML programs was advocated by Dreyer, Neis & Birkedal in a landmark paper [Dreyer et al.
2010a] on Kripke Logical Relations. This idea was later refined in [Jaber and Tabareau 2015], where
such transition systems were shown to be an abstraction of the labelled transition systems used
in operational game semantics [Jaber 2015; Laird 2007] to represent the denotation of programs.
In [Jaber and Tabareau 2015], transition systems of memory configurations needed to prove
contextual equivalence where shown to always exists. However, no effective way to build a finite
representation of them, suited for automatic reasoning, was given. Our paper can thus be seen as
the conclusive step in this direction, by showing that these transition systems is the only needed
object to prove contextual equivalence, and by providing an algorithmic way to build them.

We now present on two examples (using the syntax of OCaml) the main ideas of this framework.

2.1 Representation Independence Example

Our first example, consists in two programsMri
1 ,M

ri
2 that both provide two functions to handle a

counter: an increment function inc and a getter function get. Their code, where the blue and red
labels correspond to the states of the SMTM presented later, are:

Mri
1 : 0let c1 = ref 0 in

let inc () =2 c1 := !c1 + 1
3
in

let get () =4 !c1
5,6

in ⟨inc, get⟩1

Mri
2 : 0let c2 = ref 0 in

let inc () =2 c2 := !c2 − 1
3
in

let get () =4 −!c2
5,6

in ⟨inc, get⟩1

WhileMri
1 indeed implements these functions as expected,Mri

2 rather chooses to decrement the
counter in its inc function, but returns the opposite of the value of the counter in its get function.
Since the references c1, c2 are not directly accessible by the context, they are indeed contextually
equivalent. Even if this is not an higher-order example, contextual equivalence here does not
correspond to the kind of input/output equivalences that are considered in regression verification.
This is due to the fact that both programs uses a private reference that continue to exists after each
call of inc and get. So each call of inc and get depends on the previous calls of these functions.
Here contextual equivalence rather correspond to class equivalence [Banerjee and Naumann 2005]
that we may find in object-oriented programming. It could also be reformulated as an equivalence
checking problem of database-driven applications, as studied in [Wang et al. 2018].
To prove thatMri

1 ,M
ri
2 are contextually equivalent, we build the following SMTM:

0 1

2

3

4 5

6

(εε)⇛(x1 7→0
x2 7→0),[x1 7→Loc,x2 7→Loc],PA

OQ

(x1 7→y1
x2 7→y2

)⇛(x1 7→y1+1
x2 7→y2−1

),PA

OQ

(x1 7→y1
x2 7→y2

)⇛(x1 7→y1
x2 7→y2

),y1=−y2,PA

( x1 7→
y
1

x
2 7→

y
2 )⇛

( x1 7→
y
1

x
2 7→

y
2 ),y

1,−y
2 ,PA

Let us now describe how to build and understand this SMTM system. The state 0 is the initial
one. The transition from 0 to 1 corresponds to the evaluation ofMri

1 ,M
ri
2 till they both reach an

interaction point. In both cases, the evaluation does not need anything about the heap, and return
in both cases a heap where a reference xi has been allocated, and stores 0. This is represented by
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the label
(ε
ε

)
⇛

(x1 7→0
x2 7→0

)
on the transition, where ε represent the empty heap. The typing context

[x1 7→ Loc, x2 7→ Loc] in this transition indicates that this transition creates two fresh variables
x1, x2 of type Loc. The evaluation of Mri

1 ,M
ri
2 returns in both cases a pair of values ⟨inc, get⟩,

corresponding to a Player Answer, so that we can synchronize these interaction points.
In state 1, the context (i.e. Opponent) chooses what to do. It has two possibilities:
• either interrogate inc in both cases, which corresponds to the transition from 1 to 2;
• or interrogate get in both cases, which corresponds to the transition from 1 to 4.

In the first case, the evaluation of inc necessitates in both cases that the domain of the heap contains
respectively x1 and x2. In the first program, the value stored in x1 will be incremented, while in the

second program, it will be decremented. This is represented by the label
(x1 7→y1
x2 7→y2

)
⇛

(x1 7→y1+1
x2 7→y2−1

)
on

the transition. Since these evaluations return () (i.e. the unit value) in both cases, corresponding
to a Player Answer, we can indeed synchronize these interaction points. Then, Opponent has the
control, and can go back to the state 1 via an Oϵ-transition to continue the interaction.

In the second case the evaluation of get necessitates again in both cases that the domain of the
heap contains respectively x1 and x2. Each program returns the integer stored in xi , written yi ,
corresponding again to a Player Answer. However, in order to synchronize these interactions, y1
must be equal to −y2. The state 5 corresponds to this case. When it is not the case, the synchroniza-
tion fails, which correspond to the diamond state 6. Since the heap is not modified in both cases,
these transitions are thus labelled

(x1 7→y1
x2 7→y2

)
⇛

(x1 7→y1
x2 7→y2

)
. When it has been possible to synchronize

the interactions, corresponding to state 5, Opponent can continue the interaction by going back to
the state 1 via an Oϵ-transition.
Runs of such SMTMs systems work on configurations, that contains, in addition to a state s ,

two heaps h1,h2 whose evolution is dictated by the labels on the Player transitions. On Opponent
transitions, these heaps are left unchanged. Note that the variables x1, x2 are common to the labels
of all the Player transitions. To handle them, configurations also come with an environment η that
maps these variables to their values.
So an example of a run of this SMTM, corresponding to the interaction with the context C =

let⟨f, g⟩ = • in f(); g() that calls first inc then get, is given by:

(0, ε, ε, ε)
PA
−−→ (1,η, [ℓ1 7→ 0], [ℓ2 7→ 0])

OQ
−−→ (2,η, [ℓ1 7→ 0], [ℓ2 7→ 0])

PA
−−→ (3,η,h1,h2)

Oϵ
−−→ (1,η,h1,h2)

OQ
−−→ (4,η,h1,h2)

PA
−−→ (5,η,h1,h2)

with η = [x1 7→ ℓ1, x2 7→ ℓ2] with ℓ1, ℓ2 two locations, h1 = [ℓ1 7→ 1] and h2 = [ℓ2 7→ −1].

Notice that the last transition (4,η,h1,h2)
PA
−−→ (5,η,h1,h2) is possible because h1(ℓ1) = −h2(ℓ2),

otherwise we would have reached the failed configuration (6,η,h1,h2)
To prove thatMri

1 ,M
ri
2 are contextually equivalent, we then have to prove that there is no run

starting in a configuration whose state is 0 and ending in a configuration whose state is 6. To do
so, we can simply prove that the invariant

(x1 7→y1
x2 7→y2

)
,y1 = −y2 is true in all the configurations of any

run of the transition system after the initial configuration starting in 0, so that the a configuration
whose state is 4 cannot go to a configuration whose state is 6.

2.2 Well-Bracketed State Change Example

We now consider an example of higher-order programs that perform callbacks. It is called the
well-bracketed state change example, since it relies crucially on the fact that contexts must deal
with callbacks in a well-bracketed way, since they cannot use control operators.

Mwbsc
1 : 0let x = ref0 in

1fun f →2 x := 0;3f()4; x := 1;5f()6; !x7,8
Mwbsc

2 : 01fun f →2 3f()4;5f()6,7; 1

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 59. Publication date: January 2020.



59:6 Guilhem Jaber

In order to prove that Mwbsc
1 ,Mwbsc

2 are equivalent, one must show that after performing the

second callback to f inMwbsc
1 , the value stored in the reference x is equal to 1. The difficulty to do so

is that when the program performs a callback to f, the context has the control and can decide to call
reentrantly the function it got as a result of the evaluation ofMwbsc

1 . In such a case, the reference x
will be set temporarily back to 0. The SMTM we build to prove this example is the following:

0 1 2 3 4 5

67

8

ε⇛[x 7→0],[x 7→Loc],PA

OQ [x 7→y]⇛[x 7→0],PQ OA [x 7→y]⇛[x 7→1],PQ

OA

[x 7→y]⇛[x 7→y],y=1,PA

[x 7→y]⇛[x 7→y],y,1,PA

On Player transitions, we only give the evolution of the heap for the first program, since for the
second one the heap is always empty. The state 3 corresponds to the point where the two programs
have performed the first callback to f. At this point, Opponent can either answer back directly,
by taking the transition from 3 to 4, or go back to the state 1 via an Oϵ-transition, where he can
perform a reentrant call to the function. The same situation occurs in state 5, that corresponds to
the second callback to f for the two programs.
We want that for any run of this SMTM, there is indeed a context that produce the interaction

represented by this run. However, there exists a run going through the states:

0
PA
−−→ 1

OQ
−−→ 2

PQ
−−→ 3

Oϵ
−−→ 1

OQ
−−→ 2

PQ
−−→ 3

OA
−−→ 4

PQ
−−→ 5

OA
−−→ 6

PA
−−→ 7

Oϵ
−−→ 5

OA
−−→ 6 → . . .

The Player question 2
PQ
−−→ 3 is then answered by the transition 5

OA
−−→ 6, which operationally

corresponds to the fact that after performing the first callback to f, the context perform a reentrant
call, which once terminates return to the control point of the second callback. But the context
cannot do that, since it does not have access to control operator like call/cc.
To forbid such runs, we equip configurations c of the SMTM with a stack σ of states. Player

questions c
PQ
−−→ c ′ pushes on top of the stack of c ′ the state associated to c ′, and an Opponent

answer c
OA
−−→ c ′ can be taken only if the top of the stack of c is equal to the state associated to

c , in which case we pop the first element of the stack. The stack is also used to store the current
environment η before a callback and to restore it after.

So a possible run (where we do not indicate in configurations the always empty second heap) is:

(0, ε, [], ε)
PA
−−→ (1,η, [],h0)

OQ
−−→ (2,η, [],h0)

PQ
−−→ (3,η,σ ,h0)

Oϵ
−−→ (1,η,σ ,h0)

OQ
−−→ (2,η,σ ,h0)

PQ
−−→ (3,η, (3,η) :: σ ,h0)

OA
−−→ (4,η,σ ,h0)

PQ
−−→ (5,η, (5,η) :: σ ,h1)

OA
−−→ (6,η,σ ,h1)

PA
−−→ (7,η,σ ,h1)

with η = [x 7→ ℓ],h0 = [ℓ 7→ 0],h1 = [ℓ 7→ 1] and σ = [(3,η)].
Then from (7,η,σ ,h1) we could take the Oϵ-transition to go to the configuration (5,η,σ ,h1), but

we would get stuck here since we cannot go to (6,η, [],h1), because σ = [(3,η)]. But we could go to
the configuration (3,η,σ ,h1) and then to (4,η, [],h1), which correspond to a well-bracketed run.
Notice that for this example, since the environment η is always the same, the fact that we save it in
the stack after a Player Question and restore it after an Opponent Answer is not visible.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 59. Publication date: January 2020.
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M1 M2

Symbolic
Evaluation

Symbolic
Evaluation

Symbolic Kripke
Open Relations

S Fail

Automatic Generation
of the SMTM

MS Reachability Analysis

NoYes Fail

Fig. 1. Organization of SyTeCi

3 THE ARCHITECTURE OF SYTECI

To build automatically the SMTM M, our framework is organized in Figure 1 The first step is
Symbolic Kripke Open Relations (SKORs), introduced in Section 6. They are relational predicates
EJτ Kon programs of type τ , defined via a set of inference rules. Given two programsM1,M2, starting
from EJτ K(M1,M2), we build a derivation tree S using these rules. It enforces the synchronization
of the interaction points between each programM1,M2 and any context.

We then present in Section 7 how to transform this derivation treeS into a SMTMMS . Contextual
equivalence is then reduced to non-reachability of failed configurations inMS .
In Section 8, we extend our framework to handle recursion. For programs with recursion, the

symbolic evaluation could diverge, or be arbitrary long. To avoid this problem, the symbolic
evaluation gets stuck on recursive calls. Then, SKORs try to synchronize recursive calls between
the two programs. To do so, we generalize the inference system to allow back-edges, thus getting
derivation graphs. These back-edges correspond to circular reasoning, allowing us to terminate
the structure once we reach a formula already seen before.
In Section 9, we present how to encode the reachability of failed configurations as a set of

constrained Horn clauses, which are unsatisfiable when such failed configurations are unreachable.
This encoding is only possible when the heaps we get in the runs ofMS are bounded. We enforce
this condition by considering programs that never create references inside the body of functions.
We also deduce a decidability result for contextual equivalence when we restrict furthermore to
recursion-free closed programs that manipulate finite datatypes.
Finally, in Section 10, we sketch the proof of soundness, and completeness for recursion-free

programs, of our framework.
Note that we could have tried to give algorithm to buildMS directly fromM1,M2, without the

detour through S. But two reasons prevented us from doing this. First, it would not have been
possible to perform circular reasoning in this setting. Secondly, our soundness and completeness
proofs relies on the detour through S.

A prototype implementing this work, that generates the derivation graph S, the SMTMMS , and
the constrained Horn clauses associated to the reachability problem of the failed configurations of
MS , is available at https://github.com/g-jaber/SyTeCi.
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σ , τ ≜ Unit | Int | Bool | ref τ | τ × σ | τ → σ

u,v ≜ () | true | false | n̂ | x | ℓ | fun x → M | fix y (x) → M | ⟨u,v⟩

M,N≜ v | MN | M ⊕ N | M � N | refM | !M | | M := N | if M1 M2 M3 | ⟨M,N ⟩ | π1M | π2M

K ≜ • | vK | KM | ⟨v,K⟩ | ⟨K,M⟩ | ref K | !K | v := K | K := M | v ⊕ K | . . .

C ≜ • | fun x → C | fix y (x) → C | MC | CM | ⟨M,C⟩ | ⟨C,M⟩ | ref C | !C | M := C | . . .

Syntactic Sugar: let f x = M in N ≜ (fun f → N )(fun x → M)

let rec f x = M in N ≜ (fun f → N )(fix f (x) → M)

M ;N ≜ (fun x → N )M (with x < FV(N ))

Fig. 2. Definition of RefML (with n ∈ Z, ⊕ ∈ {+,−, ∗}, � ∈ {=, <}, x,y ∈ Var and ℓ ∈ Loc)

4 NOTATIONS

In the following, we make heavy use of partial maps with finite domain f : A ⇀ B between
two sets A,B. Such partial maps can be seen as functional relations between A and B, and we use
indifferently the two representations. We write ε for the empty partial map (corresponding to the
empty set ∅), and dom(f ), codom(f ) for the domain and the codomain of f . We define:

• the extension f · [a 7→ b] as f ∪ {(a,b)}, provided that a < dom(f );
• the modification f [a 7→ b] as {(x, f (x)) | x ∈ dom(f )\{x}} ∪ {(a,b)};
• the restriction f |A′ , when A′ ⊆ A, as {(x, f (x)) | x ∈ dom(f ) ∩A′}.

Taking two relations R1 : A × B and R2 : B ×C , we define their composition R1 ◦ R2 : A ×C as
{(a, c) | ∃b ∈ B, (a,b) ∈ R1 ∧ (b, c) ∈ R2}. For a relation R ⊆ A ×A and i ∈ N, we write R=,R+ and
R∗ respectively for the reflexive, the transitive and the reflexive-transitive closure of R.

We often manipulate large tuples, so we use an informal record-like notation {(a : A,b : B, . . .) |
. . .} to define them, whose meaning is {(a,b, . . .) ∈ A × B × . . . | . . .}. Then, for such a tuple x , we
write x .a, x .b, . . . for the various components (i.e. the fields) of x .

5 THE LANGUAGES: REFML & SIMPLEML

5.1 First Definitions

RefML is a typed call-by-value λ-calculus with full references (both ground and higher-order) and
explicit fixed points definitions. The grammars of its types, values, terms, evaluation contexts and
contexts is given in Figure 2. A term is said to be recursion-free if it does not have any subterms
of the form fix y (x) → M . In the following, we consider various forms of finite-domain partial
mapsm from variables to terms, called substitution, valuations or environments depending on the
constraints put on the codomain ofm. We then writeM{m} for the termM{x1 :=m(x1)} · · · {xn :=
m(xn)}, where dom(m) = {x1, . . . , xn}. It is uniquely defined (i.e. the order on the variables in
dom(m) is irrelevant in the definition ofM{m}) as soon as FV(codom(m)) ∩ dom(m) = ∅.
Typing judgements are of the form Σ; Γ ⊢ M : τ , where Σ is a location context and Γ a variable

context, i.e. finite partial function respectively from locations and variables to types. They are
standard and are given in Appendix A.
We then consider a fragment of RefML, called SimpleML, that corresponds to terms that only

create and manipulate private integer references.

Definition 5.1. SimpleML terms are terms M of RefML s.t. there exists a typing derivation
ε ; Γ ⊢ M : τ , where:

• The typing rule for ref N in the typing derivation ofM is restricted to ref Int;
• There is no occurrence of ref σ (even for σ = Int) in τ or in codom(Γ).

This last condition corresponds to the fact that the term cannot disclose any location to the context,
or get locations provided by the context.
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(K[(fun x → M)v],h)
r
−→(K[M[x := v]],h)

(K[if trueM1 M2]],h)
r
−→(K[M1],h)

(K[if falseM1 M2]],h)
r
−→(K[M2],h)

(K[n̂ ⊕ m̂],h)
r
−→(K[�n ⊕m],h)

(K[n̂ � m̂],h)
r
−→(K[b],h)

with b = true if n �m, otherwise b = false

(K[πi ⟨u1,u2⟩],h)
r
−→(K[ui ],h)

(K[!ℓ],h)
r
−→(K[h(ℓ)],h)

(K[refv],h)
r
−→(K[ℓ],h · [ℓ 7→ v])

(K[ℓ := v],h)
r
−→(K[()],h[ℓ 7→ v])

(K[ℓ = ℓ′],h)
r
−→(K[b],h)

with b = true if ℓ = ℓ′, otherwise b = false

(M,h)
r
−→ (M ′

,h′)

(M,h) → (M ′
,h′) (K[(

u
︷           ︸︸           ︷
fix y (x) → M)v],h) → (K[M{x := v,y := u}],h)

Fig. 3. Operational reduction for RefML

5.2 Operational Semantics and Contextual Equivalence

The operation semantics of RefML manipulates pairs (M,h) of a term M and a heap h, which is
a finite partial map Loc ⇀ Val from locations to values. The operational reduction is defined in
Figure 3 via two reductions

r
−→ and →. The reduction

r
−→ does not reduce fixed-points, while → is

the standard reduction. Using this full reduction, we define contextual equivalence for terms of
SimpleML, with contexts in RefML.

Definition 5.2. Taking two SimpleML terms M1,M2 s.t. ·; Γ ⊢ M1,M2 : τ , we say that M1 and
M2 are contextually equivalent, written Γ ⊢ M1≃ctxM2 : τ , when for all RefML contexts C s.t.
·;x : τ ⊢ C[x] : Unit with x < dom(Γ), (C[M1], ε) →

∗ ((),h1) iff (C[M2], ε) →
∗ ((),h2).

6 SYMBOLIC KRIPKE OPEN RELATIONS

We now introduce a symbolic framework to reason about contextual equivalence of programs. It is
based on a set of inference rules to reason about Symbolic Kripke Open Relations (SKORs). The main
idea is to find the interaction points (Player answer or questions) of the two programs considered,
in order to synchronize them. Symbolic evaluation is used to find such interaction points.

We introduce the symbolic values in Section 6.1, and the ground logic used to represent arithmetic
constraints and to reason about symbolic heaps in Section 6.2. Then we present the symbolic
evaluation of open terms in Section 6.3. In Section 6.4, we present the basic rules defining SKORs.
Finally, in Section 6.6 we show how to build automatically a derivation tree relating two terms.

6.1 Symbolic Values

Symbolic evaluation will handle terms with free variables. However, to make it simple, we only
allow free variable of type Int, ref Int or a functional type τ → σ . Ground variable contexts

∆ ∈ GContext are then used for variables of ground types Int and ref Int (so neither Bool nor
Int×Int are considered as ground!). We write ∆Loc for ∆

−1(ref Int) and ∆Int for ∆
−1(Int). Functional

variable contexts Ξ are used for variables of functional types.
We introduce symbolic values to represent symbolically (i.e. using variables) integers, locations

and functional values, and concretely pairs, booleans and unit. They are defined via the set SVal(τ )
formed by triples (u,Ξ,∆) of a value, a functional variable context and a ground variable context:

SVal(Unit) ≜ {((), ε, ε)} SVal(Bool) ≜ {(true, ε, ε), (false, ε, ε)}

SVal(Int) ≜ {(x, ε, [x 7→ Int]) | x ∈ Var}

SVal(τ → σ ) ≜ {(x, [x 7→ (τ → σ )], ε) | x ∈ Var}

SVal(σ1 × σ2) ≜{(⟨u1,u2⟩,Ξ1 ∪ Ξ2,∆1 ∪ ∆2) | ∀i ∈ {1, 2}, (ui ,Ξi ,∆i ) ∈ SVal(σi )
∧dom(∆1) ∩ dom(∆2) = ∅ ∧ dom(Ξ1) ∩ dom(Ξ2) = ∅}

So taking (u,Ξ,∆) ∈ SVal(τ ), all the (necessarily free) variables of u appear only once in u. Because
we do not allow boolean variables, we have to represent them concretely. Since symbolic values
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(M,∆,Hpre,Hpost,C) 7→s (M
′,∆,Hpre,Hpost,C) when (M, ε)

r
−→ (M ′, ε)

(K[t � t ′],∆,Hpre,Hpost,C) 7→s (K[true],∆,H
pre,Hpost,C ∪ {t � t ′})

(K[t � t ′],∆,Hpre,Hpost,C) 7→s (K[false],∆,H
pre,Hpost,C ∪ {¬(t � t ′)})

(K[t ⊕ t ′],∆,Hpre,Hpost,C) 7→s (K[x],∆ · [x 7→ Int],Hpre,Hpost,C ∪ {x = t ⊕ t ′})
(K[!x],∆,Hpre,Hpost,C) 7→s (K[H

post(x)],∆,Hpre,Hpost,C) if x ∈ dom(Hpost)
(K[!x],∆,Hpre,Hpost,C) 7→s (K[y],∆ · [y 7→ Int],Hpre · [x 7→ y],Hpost · [x 7→ y],C) otherwise
(K[x := u],∆,Hpre,Hpost,C)7→s (K[()],∆,H

pre,Hpost[x 7→ u],C) if x ∈ dom(Hpost)
(K[x := u],∆,Hpre,Hpost,C)7→s (K[()],∆ · [y 7→ Int],Hpre · [x 7→ y],Hpost · [x 7→ u],C) otherwise
(K[ref u],∆,Hpre,Hpost,C) 7→s (K[x],∆ · [x 7→ ref Int],Hpre

,H
post · [x 7→ u],C)

Fig. 4. Definition of Symbolic Reduction

will be used to represent values that the programs and the context exchange, we do not need to
define symbolic values for reference types, since types of programs of SimpleMLcannot contain
occurences of reference types.
We then introduce (typed) symbolic substitutions (µ,Ξ,∆) ∈ SSubst(Γ), which are used to

transform variables of type Unit, Bool and τ ×σ from Γ into variables of ground or functional types.

They are defined as SSubst(ε) ≜ {(ε, ε, ε)} and

SSubst(x : θ, Γ) ≜ {(µ · [x 7→ u],Ξ1 · Ξ2,∆1 · ∆2) | (u,Ξ1,∆1) ∈ SVal(θ ), (µ,Ξ2,∆2) ∈ SSubst(Γ)}

6.2 Ground Logic

We now introduce a logic to reason symbolically on variables of ground type. It is based on
arithmetic formula F ∈ AForms that manipulates ground terms t ∈ GTerms, which are terms of
ground type whose free variables are also of ground type. Their grammars are:

t, t ′ ≜ x | n̂ | t ⊕ t ′ with x ∈ Var,n ∈ Z and ⊕ ∈ {+,−, ∗}

F ≜ True | False | t � t ′ | ¬F with � ∈ {=, <}
We consider ground valuations η ∈ GVal(∆), which are maps from dom(∆) to values s.t. for all
x ∈ ∆Int,η(x) ∈ Int an for all x ∈ ∆Loc,η(x) ∈ Loc. Using a ground valuation η, we define the
semantics of ground terms JtKη and the validity of a formula |=η F :

JxKη ≜ η(x) Jt1 ⊕ t2Kη ≜ Jt1Kη ⊕ Jt2Kη JnKη ≜ n̂

|= True ≜ True |= False ≜ False |=η t1 � t2 ≜ Jt1Kη � Jt2Kη |=η ¬F ≜ ¬(|=η F )

In the following, we consider sets of arithmetic formulas C. We say that C is satisfiable (w.r.t.
a ground variable context ∆ ⊇ FV(C)) when there exists η ∈ GVal(∆) s.t. |=η F for all F ∈ C. We
write GVal(∆,C) for the set {η ∈ GVal(∆) | |=η C}.

To represent heaps, we introduce symbolic heaps H, which are finite partial maps Var ⇀
GTerms. From a symbolic heaps H and a ground typing context ∆ s.t. dom(H) ⊆ ∆Loc and
FV(codom(H)) ⊆ ∆Int, taking a ground valuation η ∈ GVal(∆), we may want to transform H into a
(concrete) heap using η. But applying such substitutions do not always produce a partial map, since
η may alias two different variables x,y to the same location ℓ. To avoid this problem, we need η to be

injective on ∆Loc. In such a case we define ↑η(H) as the heap h ≜ {(η(x), JH(x)Kη) | x ∈ dom(H)}.

6.3 Symbolic Evaluation

We now introduce in Figure 4 a way to compute symbolically the normal forms of a recursion-free
term M . This symbolic evaluation 7→s works on configuration (M,∆,Hpre,Hpost,C) where M is a
term whose free variables are either of ground type or of functional type; ∆ is a ground variable
context; Hpre and Hpost are two symbolic heaps; and C is a set of arithmetic formulas. We write
⇓s(M,∆) for the set of all the normal forms (w.r.t. 7→∗

s ) of the symbolic configurations (M,∆, ε, ε,∅).
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This reduction is non-deterministic and generates all possible terms and symbolic heaps that
can be obtained from M . Since M do not contain free variables of type Bool, we do not need to
incorporate specific rules for the reduction of the if construction (it will be reduced directly using

r
−→

via the first rule of Figure 4). Moreover, the symbolic reduction performs a small footprint analysis,
by computing the smallest symbolic heap Hpre that is necessary to reduce the term.

Considering the termM ≜ c :=!c + 1, one has:
(M, [c 7→ ref Int], ε, ε,∅)7→s (c := x + 1, [c 7→ ref Int] · [x 7→ Int], [c 7→ x], [c 7→ x],∅)

7→s (c := y, [c 7→ ref Int] · [x,y 7→ Int], [c 7→ x], [c 7→ x], {y = x + 1})
7→s ((), [c 7→ ref Int] · [x,y 7→ Int], [c 7→ x], [c 7→ y], {y = x + 1})

The following theorem, proven in Appendix C, relates the symbolic reduction to the operational
reduction

r
−→.

Theorem 6.1. Given:

• a term M̃ s.t. ∆ · Ξ ⊢ M̃ : τ where ∆ (resp. Ξ) is a ground (resp. functional) variable context;

• a ground valuation η ∈ GVal(∆) injective on ∆Loc and a heap h s.t. dom(h) = ∆Loc.

WritingM for M̃{η} we have (M,h)
r
−→∗ (M ′,h′) if and only if (M̃,∆, ε, ε,∅) 7→∗

s (M̃
′,∆′,Hpre,Hpost,C)

and there exists a ground valuation η′ ∈ GVal(∆′,C) s.t. η′ contains η and is injective on ∆
′
Loc;

M ′
= M̃ ′{η′}; and there exists a heap hf such that h =↑η

′
(Hpre) · hf and h′ =↑η

′
(Hpost) · hf .

6.4 Derivation Trees

We now introduce in Figure 5 the inference rules that define the Symbolic Kripke Open Relations.
They manipulate sequents of the form ∆α ;C ⊢ ϕ where:

• ∆ is a ground variable context, and C is a set of arithmetic formulas;
• α : ∆Loc → {1, 2} is a map that keep track of the owner (the left or the right term) of each
location variable, and is used to enforce non-aliasing;

• ϕ is a Symbolic Kripke Open Relation, which can be:
ś EJτ K

Ξ
(M1,M2), VJτ KΞ(v1,v2), or KJσ2, τ KΞ(K1,K2), which are predicates respectively on

pairs of terms, values and evaluation contexts;
ś SxJτ K

Ξ
(M1,M2) for x ∈ {PQ, PA, }, which are auxiliary relations on terms used to reason

about the various possible synchronization points, with S Jτ K
Ξ
(M1,M2) corresponding to

a failed synchronization.
From these inference rules, we build a derivation tree S, which is an oriented pointed tree

(N, r, Sequent, Edge,Annot) where:
• N is a finite set of nodes and r ∈ N is the root of the tree;
• Sequent is the function mapping nodes to sequents;
• Edge : N → P(N)×Rules is the edge function mapping a node n to a pair ({n1, . . . , nn}, L)
formed by the set of its sons and a label L.
Sequent(n1) . . . Sequent(nk )

Sequent(n)
must correspond to the rule of the given label L in Figure 5.

• Annot maps nodes to the extra annotations that appears in rules E.
We now detail the rules of Figure 5:

• Unsat terminates the tree once C is unsatisfiable.
• Vι terminates the tree once we have reached an equivalence of ground typed value. The
verification that v1 = v2 will then be done at a later stage, when reasoning on the runs of the
SMTM generated from the derivation tree. More precisely, when building this SMTM, a failed
state with a transition containing the constraint v1 , v2 will be generated, so that checking
that no configuration associated to this failed state is reachable will amount to check that
this constraint v1 = v2 is indeed always verified.
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Vι
ι ∈ {Unit, Bool, Int}

∆α ;C ⊢ VJιK
Ξ
(v1,v2)

C unsat.

∆α ;C ⊢ ϕ
Unsat

∆α ;C ⊢ S Jτ K
Ξ
(M1,M2)

S 

V×
∆α ;C ⊢ VJσ1KΞ(v1,v

′
1) ∆α ;C ⊢ VJσ2KΞ(v2,v

′
2)

∆α ;C ⊢ VJσ1 × σ2KΞ(⟨v1,v2⟩, ⟨v
′
1,v

′
2⟩)

∆α ;C ⊢ VJτ K
Ξ
(v1,v2)

∆α ;C ⊢ SPAJτ K
Ξ
(v1,v2)

SPA

∆α ;C ⊢ KJσ2, τ KΞ(K1,K2) ∆α ;C ⊢ VJσ1KΞ(v1,v2) Ξ(f ) = σ1 → σ2

∆α ;C ⊢ SPQJτ K
Ξ
(K1[f v1],K2[f v2])

SPQ

V→

for all (u,Ξ′
,∆

′) ∈ SVal(σ )
(∆ · ∆′)α ;C ⊢ EJτ K

Ξ·Ξ′(v1u,v2u)

∆α ;C ⊢ VJσ → τ K
Ξ
(v1,v2)

for all (u,Ξ′
,∆

′) ∈ SVal(σ )
(∆ · ∆′)α ;C ⊢ EJτ K

Ξ·Ξ′(K1[u],K2[u])

∆α ;C ⊢ KJσ , τ K
Ξ
(K1,K2)

K

E

for all (M ′
1,∆1,H

pre

1 ,H
post

1 ,C1) ∈ ⇓s(M1,∆),
for all (M ′

2,∆2,H
pre

2 ,H
post

2 ,C2) ∈ ⇓s(M2,∆),
(∆1 ∪ ∆2)α ′ ;C ∪ C1 ∪ C2 ⊢ S

xJτ K
Ξ
(M ′

1,M
′
2)

∆α ;C ⊢ EJτ K
Ξ
(M1,M2)

for all (µ,∆,Ξ) ∈ SSubst(Γ)
∆;∅ ⊢ EJτ K

Ξ
(M1{µ},M2{µ})

ε ;∅ ⊢ M1 ≃
Γ

skor M2 : τ
Init

when ∆1 ∩ ∆2 = ∆,with x = selectΞ(M
′
1,M

′
2) and

α ′
= α · {(y, i) | i ∈ {1, 2} ∧ y ∈ dom(H

post

i )\dom(H
pre

i )}.

selectΞ(K1[f1v1],K2[f2v2]) ≜ PQ when f1 = f2 ∈ dom(Ξ)

selectΞ(v1,v2) ≜ PA selectΞ(M1,M2) ≜  otherwise.

Fig. 5. Definition of the inference rules for reasoning on SKORs

• V→ is used to synchronize two functional values, by providing them a symbolic value coming
from the context, then trying to relate the produced terms. K follows the same pattern, but
for the return point of callbacks.

• E tries to relate any pair (M ′
1,M

′
2) formed by the result of the symbolic execution of re-

spectively M1 and M2. For any of these pairs, it uses the function select to decide which
synchronization point should be applied, using the symbol  for a failed synchronization.
If there arem1 elements in ⇓s(M1,∆1) andm2 in ⇓s(M2,∆2) (up to the renaming of variables),
we then have to deal with them1 ×m2 combinations. For each of these premises (represented
by a node ni , for i ∈ {1, . . . ,m1 ×m2}), we then put in Annot(ni ) the information associated
to the given symbolic reduction, i.e. the result xi of select and the four symbolic heaps
H = H

pre

1 ,H
pre

2 ,H
post

1 ,H
post

2 .
• Init is the root of the derivation tree and initiates the reasoning by picking a symbolic
substitution µ to transform the typing context Γ into a ground typing context ∆ and a
functional typing context Ξ, while eliminating variables of type Unit, Bool and τ × σ by
applying the substitution µ on the given terms.

If a derivation tree does not use the rule S , and in all the uses of the rule Vι whose sequent
is ∆α ;C ⊢ VJιK

Ξ
(v1,v2), for all η ∈ GVal(∆,C), one has |=η v1 = v2, then this derivation tree can

indeed be seen as a proof of contextual equivalence. However, in general the two terms initially
considered can be contextually equivalent even if the built derivation tree does not satisfy this
condition. Indeed, v1 or v2 could be variables corresponding to what is stored in the heap at a given
location. But since in the rule E, we consider all the possible executions of the two terms, without
any hypothesis on what is stored in the heaps when starting their execution, some of the branch of
the derivation tree will not correspond to real interaction between the two terms and a context.
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V×

E
PA(H2)

Vι
∆2;C ⊢ VJUnitK((), ())

V→
∆2;∅ ⊢ EJUnitK(vi

1 (),v
i
2 ())

∆1;∅ ⊢ VJUnit → UnitK(vi
1 ,v

i
2 )

PA(H3) ∆3; z = −y2 ⊢ VJIntK(y1, z)
Vι

∆1;∅ ⊢ EJIntK(vg

1 (),v
g

2 ())

∆1;∅ ⊢ VJUnit → IntK(vg

1 ,v
g

2 )
V→

E

E
PA(H1) ∆1;∅ ⊢ VJτ K(⟨vi

1 ,v
g

1 ⟩, ⟨v
i
2 ,v

g

2 ⟩)

Init
ε ;∅ ⊢ EJτ K(Mri

1 ,M
ri
2 )

ε ;∅ ⊢ Mri
1 ≃skor M

ri
2 : τ

with

τ = (Unit → Unit) × (Unit → Int) C = {z1 = y1 + 1, z2 = y2 − 1}
vi
1 = λ_.c1 :=!c1 + 1,v

i
2 = λ_.c1 :=!c2 − 1,v

g

1 = λ_.!c1,v
g

2 = λ_.−!c2
∆1 = [c1, c2 7→ ref Int] H1 = (ε, ε, [c1 7→ 0], [c2 7→ 0])
∆2 = ∆1 · [y1,y2, z1, z2 7→ Int] H2 = ([c1 7→ y1], [c2 7→ y2], [c1 7→ z1], [c1 7→ z2])
∆3 = ∆1 · [y1,y2, z 7→ Int] H3 = ([c1 7→ y1], [c2 7→ y2], [c1 7→ y1], [c1 7→ y2])

Fig. 6. Representation Independence Example

One could imagine using in the rule E the heaps we obtain in the previous use of the E. However,
doing this we would miss many possible interactions, so that this would not be sound.

6.5 Some Examples

We now give in Figure 6 the derivation tree for the Representation Independence example of
Section 2.1, and in Figure 7 the derivation tree for the Well-Bracketed State Change (WBSC)
example of Section 2.2. We have omitted the rules SPA, using SPAJτ Kas a shortcut for VJτ K. For the
WBSC example, we have also omitted in the premises of the rule SPQ the tree corresponding to the
equivalence VJUnitK

Ξ
((), ()) (which is directly concluded using the rule Vι ):

In the derivation tree of Figure 6, in the rule Vι that concludes the sequent ∆3; z = −y2 ⊢
VJIntK(y1, z), one can see that we cannot deduce y1 = z from z = −y2, so that the derivation tree

cannot be seen as a full proof of a contextual equivalence ofMri
1 ,M

ri
2 . The same is true for proving

y3 = 1 in the rule Vι of Figure 7.

6.6 Automatic Construction of Derivation Trees

To build a derivation tree, we have to use a SMT-solver to check if the logical context C is satisfiable,
to decide if we can use the rule Unsat. Since our language has multiplication, satisfiability is in
general undecidable. So we must allow the solver to fail to check if C is satisfiable, in which case
we do not use the rule Unsat and continue the construction.

Doing so, we are always able to build a derivation tree whose root is ⊢ M1 ≃
Γ

skor
M2 : τ , as soon

asM1,M2 are of the same type. This construction is deterministic up-to the results returned by the
SMT-solver we use.

7 STRUCTURED MEMORY TRANSITION MACHINES

We now introduce the central objects of our work, namely Structured Memory Transition

Machines (SMTM). There definition is given in Section 7.1, and the execution relation c →M c ′

between memory configurations, derived from such a SMTM M, is given in Section 7.2. This
execution relation is used to define the notion of runs ofM. Finally, in Section 7.3, we show how
to build a SMTMMS from a derivation tree S.
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H4 = ([x 7→ y3], ε, [x 7→ y3], ε)
∆4 = ∆3 · [y3 7→ Int]

K ′
1 = •; !x and K ′

2 = •; 1
H3 = ([x 7→ y2], ε, [x 7→ 1], ε)
∆3 = ∆2 · [y2 7→ Int]

K1 = •; x := 1; f(); !x and K2 = •; f(); 1
H2 = ([x 7→ y1], ε, [x 7→ 0], ε)
∆2 = ∆1 · [y1 7→ Int]

H1 = (ε, ε, [x 7→ 0], ε)
∆1 = [x 7→ ref Int]
Ξ = [f 7→ (Unit → Unit)]

vwbsc
1 ≜ λf .x := 0; f ();x := 1; f (); !x
τ = (Unit → Unit) → Unit

PA(H1)

PQ(H3)

PA(H4) ∆4;∅ ⊢ VJIntK
Ξ
(y3, 1)

Vι

∆3;∅ ⊢ EJIntK
Ξ
(K ′

1[()],K
′
2[()])

∆3;∅ ⊢ KJUnit, IntK
Ξ
(K ′

1,K
′
2)

∆3;∅ ⊢ SPQJIntK
Ξ
(K ′

1[f ()],K
′
2[f ()])

SPQ

K

E

∆2;∅ ⊢ EJIntK
Ξ
(K1[()],K2[()])

∆2;∅ ⊢ KJUnit, IntK
Ξ
(K1,K2)

PQ(H2) ∆2;∅ ⊢ SPQJIntK
Ξ
(K1[f ()],K2[f ()])

∆1;∅ ⊢ EJIntK
Ξ
(vwbsc

1 f ,Mwbsc
2 f )

∆1;∅ ⊢ VJτ K
Ξ
(vwbsc

1 ,Mwbsc
2 )

V→

E

SPQ

K

E

ε ;∅ ⊢ EJτ K(Mwbsc
1 ,Mwbsc

2 )

ε ;∅ ⊢ Mwbsc
1 ≃skor M

wbsc
2 : τ

Init

E

Fig. 7. Well-Bracketed State Change Example

7.1 Definition of SMTM

A Structured Memory Transition MachinesM is defined as a tuple (A,a0,A
 ,dP ,dO ,dOϵ ), where:

• A is a set of atomic states, and a0 ∈ A is the initial atomic state;
• A ⊆ A is the set of failed atomic states.
• dP : A×A⇀ (SHeap4×GContext2×P(AForms)×{PA, PQ}) is the Player transition function.
It maps pairs of atomic states to a tuple (Hpre

1 ,H
pre

2 ,H
post

1 ,H
post

2 ,C,∆L,∆S , x) formed by:

ś A quadruple of symbolic heaps Hpre

1 ,H
pre

2 ,H
post

1 ,H
post

2 and a set of arithmetic formulas C;
ś Two ground typing contexts ∆L,∆S ∈ GContext to distinguish between the variables that
are used only locally to enforce constraints on the heaps, and the variables that can łleakž
and be used in other transitions.

ś x ∈ {PA, PQ}.
• dO : A × A ⇀ GContext × {OA,OQ} is the Opponent transition function. It maps pairs of
atomic states to a pair (∆, x), where ∆ is a ground typing context corresponding to the fresh
variables introduced by Opponent to represent the symbolic values it provides to Player.

• dOϵ : A ×A is the Oϵ-transition function.
The SMTM that wewill build are bipartite, with Player states being the sources of Player transitions
and the targets of Opponent transitions, and Opponent states being the sources of Opponent
transitions and the targets of Player transitions.

7.2 Runs of SMTM

We now describe how to deduce from a SMTMM a relation c →M c ′ betweenmemory configu-

rations c, c ′, that are used to represent the runs of SMTM. A memory configuration c is a tuple
(a,η,σ ,κ,h1,h2), where:

• a is an atomic state ofM;
• η ∈ GVal is a ground valuation, which is used to interpret variables appearing in the symbolic
representation of transitions ofM;
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• σ is a stack (represented as a list) of pairs (a′,η′) of atomic states and ground valuation. It
is used to enforce the well-bracketed properties of the interaction, and to restore the right
valuation after a nested call;

• κ is the valuation knowledge, a partial function from Opponent states to sets of ground
valuations. It represents the current knowledge that Opponent has about Player closures.

• h1,h2 are two heaps.
The initial configuration c0 of a SMTMM is the tuple (a0, ε, [], {a0, ε}) with a0 the initial atomic
state ofM. A configuration whose atomic state is in A is also said to be failed.

In order to define c → c ′ from Player transitions in dP , one first need to transform the symbolic
constraints such transitions specifies into a predicate over tuples (h1,h2,h

′
1,h

′
2,η) formed by four

heaps and a ground valuation. So we define (h1,h2,h
′
1,h

′
2,η) |= (H

pre

1 ,H
pre

2 ,H
post

1 ,H
post

2 ,∆L,C) as

∃ηL ∈ GVal(∆L), |=(η ·ηL ) C ∧ ∀i ∈ {1, 2}, ∃h
f
i , (↑

(η ·ηL )(H
pre

i ) · h
f
i ) = hi ∧ (↑(η ·ηL )(H

post

i ) · h
f
i ) = h

′
i

Notice that the symbolic heaps given by dP does not constraint the whole heaps that the configura-
tion carries, but only the relevant part for this transition. To deal with this problem, we enforce a

framing property, by picking two heaps h
f
1 ,h

f
2 , that have to stay the same between the source and

the target configuration of the execution relation of configurations.

Definition 7.1. Taking a SMTM M and x ∈ {PA, PQ,OQ,OA,Oϵ}, we define the execution

relation
x

−→M on configurations in the following way:
• If dP (a,a

′) = (H
pre

1 ,H
pre

2 ,H
post

1 ,H
post

2 ,∆S ,∆L,C, x) with x ∈ {PA, PQ}, then one has:

ś (a,η,σ ,κ,h1,h2)
PA
−−→M (a′,η · η′,σ ,κ ∪ {(a′,η′),h′1,h

′
2) if x = PA;

ś (a,η,σ ,κ,h1,h2)
PQ
−−→M (a′,η · η′, (a′,η · η′) :: σ ,κ,h′1,h

′
2) if x = PQ

if in both cases η′ ∈ GVal(∆S ) and (h1,h2,h
′
1,h

′
2,η · η

′) |= (H
pre

1 ,H
pre

2 ,H
post

1 ,H
post

2 ,∆L,C).

• If (a,a′) ∈ dOϵ then one has (a,η,σ ,κ,h1,h2)
Oϵ
−−→M (a′,η,σ ,κ,h1,h2).

• If dO (a,a
′) = (∆S , x) with x ∈ {OA,OQ}, then one has:

ś (a,η,σ ,κ,h1,h2)
OQ
−−→M (a′,η′ · η′′,σ ,κ,h1,h2) if x = OA, η′ ∈ κ(a) and η′′ ∈ GVal(∆).

ś (a,η, (a′,η′) :: σ ,κ),h1,h2)
OA
−−→M (a′,η′,σ ,κ),h1,h2) if x = OA.

A run of aM is then a sequence of executions c1
x1
−→M c2 . . .

xn
−−→M cn+1.M is said to be safe when

there is no run starting from the initial configuration that reaches an inconsistant configuration.

When it is clear about which SMTMM we are talking about, we write
x

−→ for
x

−→M.

To define
PA
−−→ and

PQ
−−→ fromdP , one need to take a new valuationη′ for the new variables in∆S that

will be used in the other transitions (i.e. for the leaked variables). The variables in ∆L , that are local
to this transition, are handled by the definition of (h1,h2,h

′
1,h

′
2,η) |= (H

pre

1 ,H
pre

2 ,H
post

1 ,H
post

2 ,∆L,C), so
that the ground valuation corresponding to them does not have to be added to the new environment
of the resulting configuration.

The evolution of the stack σ and the valuation knowledge κ of a configuration is dictated by the
polarity of the transition:
PQ: we push on top of the stack the valuation and atomic state of the target configuration;
PA: we add the valuation and atomic state of the target configuration to κ;
OQ: we pick a valuation in κ, which becomes the new valuation of the target configuration;
OA: we pop from the top of the stack a valuation and an atomic state that become the ones of the

target configuration.
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7.3 Construction of the SMTM

The algorithm that builds a SMTM MS from a derivation tree S works in two steps. The first
step transforms S into a transition system, by merging some nodes of S into one state, and by
extracting arithmetic and heap constraints from the rules E,Vι . This transition system will thus
also be a tree, its runs corresponding to interactions with simple contexts that can interrogate
Player higher-order values only once, immediately when these values are provided.
The second step performs a closure by adding Oϵ-transitions to complete the behaviour of

Opponent, allowing contexts to interrogate Player higher-order values multiple times, possibly
reentrantly.

7.3.1 From Derivation Trees to Skeletal Representations. The algorithm manipulates skeletal rep-
resentation (M,Cf , F ), where:

• M is a SMTM with dOϵ left empty;
• Cf is a set of arithmetic formulas, that will have to be satisfied in the future, and whose
negation will be used to generate transitions to failed states;

• F : M.S → P(S.N) is a function mapping each atomic state of M to a set of nodes of S.
This function partitions S into subtrees.

The skeletal representation Skel(S, n) associated to a derivation tree S is constructed by induction
on the tree substructure of S. We write:

• (N , L) for Edge(n), with N = {n1, . . . , nm}, and ∆α ;C ⊢ ϕ for Sequent(n)
• (∆i )αi ;Ci ⊢ ϕi for Sequent(ni ), ∆

′
i for ∆i\∆ and C′i for Ci\C;

• (Mi ,C
f
i , Fi ) for Skel(S, ni ) with the initial atomic state of Mi written a

i
0, and we suppose

that the set of atomic states of each of theMi are disjoint.
Then, the construction is done by case analysis on L:

• If L = Unsat or L = Vι with ϕ = VJιKΞ(u1,u2), taking a0 a fresh atomic state, we return
(M, {P}, [a0 7→ {n}]), whereM is the SMTM with no transition and a unique atomic state a0
and

P ≜




True when L = Vι and ι ∈ {Unit, Bool} with u1 = u2

False when L = Unsat, or L = Vι and ι = Bool with u1 , u2

u1 = u2 when L = Vι and ι = Int

• If L ∈ {SPQ,V×}, we return the pointed union of (Skel(Si ))i ∈{1,2} , constructed by taking a

fresh atomic state a0, substituting the former initial atomic states ai0 by a0 everywhere, then
taking their union piecewise, and adding n to the set F (a0).

• If L ∈ {Init,V→,K} Then we write M′ and F ′ for the union respectively of the Mi and
the Fi , We write M′ as (S ′, _,A

′ ,d ′P ,d
′
O ). Taking a0 a fresh atomic state, we then return

(M,∅, F ′ · [a0 7→ {n}]), whereM is defined as (S ′ ∪ {a0},a0,A
′ ,d ′P ,dO ) with:

dO≜

{
d ′O ∪ {((a0,a

i
0), (∆

′
i ,OQ) | i ∈ {1, . . . ,m}} if L is Init or V→

d ′O ∪ {((a0,a
i
0), (∆

′
i ,OA) | i ∈ {1, . . . ,m}} if L is K

• if L=E with S.Annot(ni ) = xi (Hi ). Then we writeM′ and F ′ for the union respectively of
theMi and the Fi , We writeM′ as (S ′, _,A

′ ,d ′P ,d
′
O ). Taking a0 a fresh atomic state, we then

return (M,∅, F ′ · [a0 7→ {n}]), whereM is defined as (S,a0,A
 ,dP ,d

′
O ) with:

S ≜ S ′ ∪ {a0} ∪ {a
 
i | i ∈ {1, . . . ,m}} A ≜ A

′ ∪ {a
 
i | i ∈ {1, . . . ,m}}

dP ≜ d ′P ∪ {((a0,a
i
0), (Hi ,∆i ,∅,C

′
i ∧ C

f
i , xi )) | i ∈ {1, . . . ,m}}

∪{((a0,a
 
i ), (Hi ,C

′
i ∧ ¬C

f
i , xi )) | i ∈ {1, . . . ,m}}
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We then perform a post-treatment on the Player-transitions, modifying the ground typing
contexts ∆L,∆S of each of these transitions so that ∆L contains all the variables that are used only
in the considered transition, and ∆S the variables that can leak.

Player states correspond to rules E, while Opponent states correspond to rules K or V→.

7.3.2 Closure of the SMTM. So far, after each interaction point, the SMTM we have built allows
Opponent to only interrogate the higher-order values that has just been provided at this point.
However, Opponent should also be allowed to interrogate higher-order values that have been
provided before. To do so, we will add Oϵ-transitions to go back to states where these values have
been provided by Player. But when the interaction points fromwhere these newOϵ-transitions come
from are Player questions, we also have to add the corresponding Opponent answers necessary,
again using Oϵ-transitions.

To do so, we introduce a notion of external andwell-bracketed transition associated to a SMTM
M = (A,a0,A

 ,dP ,dO ,dOϵ ), defined as:
• de ≜ dom(dP ) ◦ dom(dO ) ◦ d

=

Oϵ ,

• dwb ≜ dom(dPA) ◦ (dom(dOA) ◦ d
=

Oϵ ◦ dom(dPQ))
∗ ◦ dom(dOQ) ◦ d

=

Oϵ where we write dx (with
x ∈ {PQ, PA,OQ,OA}) for the set of transitions labelled with x.

We can now define the second step, defined as a closure of a skeletal representation.

Definition 7.2. The closure M̄ of a SMTM M = (A,a0,A
 ,dP ,dO ,dOϵ ) is defined as the SMTM

(A,a0,A
 ,dP ,dO , d̄Oϵ ) with d̄Oϵ the smallest relation on atomic states containing dOϵ and s.t.

1. for all atomic states a1 ∈ π1(dom(dOQ)), for all atomic states a2 s.t. (a1,a2) ∈ dom(d̄+e ), we

have (a2,a1) ∈ d̄Oϵ (a2).
2. for all atomic states a1 ∈ π1(dom(dOA)), for all atomic states a2 s.t. (a1,a2) ∈ dom(d̄+

wb
), we

have (a2,a1) ∈ d̄Oϵ .
This closure only adds new Oϵ-transitions toM. We writeMS for the closure ofMwhere (M, _, _) =
Skel(S,S.r).

The first step of this closure allow Opponent to interrogate higher-order values previously
provided as soon as it has the control (i.e. when we are in an Opponent state), while the second
step allows Opponent to answer after such interrogations, to get well-bracketed interactions.

8 SYTECI FOR PROGRAMSWITH RECURSION

To prove contextual equivalence for programs with recursion, we introduce a technique to syn-

chronize recursive calls. To do so, we consider recursive calls as internal interaction points,
proper to the program. The first step is thus to capture these recursive calls in the operational
semantics and in the symbolic evaluation (Section 8.1). For that purpose, we introduce extended
terms (M,γ ), such that M can have free functional variable that are defined via the functional
environment γ . We then extend symbolic Kripke open relations to deal with such extended terms
in Section 8.2. The key points are to introduce rules to allow the unfolding of recursive calls, and to
generalize derivation trees into derivation graphs, in order to perform circular reasoning. We
then give the derivation graph associated to the stateful factorial example (Section 8.3), and provide
some heuristics to build automatically derivation graphs (Section 8.4). Finally, in Section 8.5, we
extend the construction of the state transition systems from derivation trees to derivation graphs.

8.1 Refining Operational Semantics and Symbolic Evaluation

We refine the operational semantics given in Section 5.2, to control the unfolding of fixed-points.
To do so, we define the operational reduction

c
−→ that blocks on recursive calls. It reduces extended
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terms (M,γ ), formed by a term M and a functional environments γ : Var ⇀ Val mapping
variables to higher-order values:

(K[(fixy (x) → M)v],γ ,h)
c
−→ (K[M{x := v}],γ ·[y 7→ (fun x → M)],h)

(M,h)
r
−→ (M ′

,h′)

(M,γ ,h)
c
−→ (M ′

,γ ,h′)

We then modify the symbolic evaluation to work on extended terms, by replacing the first
reduction rule by: (M,γ ,∆,Hpre,Hpost,C) 7→s (M

′,γ ′,∆,Hpre,Hpost,C) when (M,γ , ε)
c
−→ (M ′,γ ′, ε).

The other rules, that leave the functional environment γ unchanged, are straightforwardly adapted,
and can be found in the Appendix C.

8.2 Derivation Graph

To reason about recursive terms, we extend the Symbolic Kripke Open Relations to reason on
extended terms. To do so, we provide new rules to unfold recursive calls. We thus add a new
tag PI, corresponding to a Player Internal interaction point, together with an auxiliary SKOR
S
PIJτ K

Ξ
((M1,γ1), (K2[f2 v2],γ2)), whose new rule is:

Unf
∆α ;C ⊢ EJτ K

Ξ
((K1[γ1(f1) v1],γ1), (K2[γ2(f2) v2],γ2))

∆α ;C ⊢ SPIJτ K
Ξ
((K1[f1 v1],γ1), (K2[f2 v2],γ2))

We also extend the select function used in the rule E to work on extended terms:

selectΞ((v1,γ1), (v2,γ2)) ≜ PA

selectΞ((K1[f1v1],γ1), (M2,γ2)) ≜ PI when f1 ∈ dom(γ1)

selectΞ((M1,γ1), (K2[f2v2],γ2)) ≜ PI when f2 ∈ dom(γ2)

selectΞ((K1[f1v1],γ1), (K2[f2v2],γ2)) ≜ PQ when f1 = f2 ∈ dom(Ξ)

selectΞ((M1,γ1), (M2,γ2)) ≜  otherwise.

When we reason on recursive terms, there is in general no way to build a derivation tree. To
avoid this problem, we introduce a notion of circular reasoning, by generalizing derivation trees to
derivation graphs. Derivation graphs can use back-edges, represented by a rule labelled by Circ,
and the following new rule to generalize the terms we reason on:

(∆ · ∆′)α ;C ⊢ SPIJτ K
Ξ
((M1,γ1), (M2,γ2)) ∆ ⊢ ρ : ∆′

∆α ;C ⊢ SPIJτ K
Ξ
((M1{ρ},γ1), (M2{ρ},γ2))

Gen

The rules Gen and Circ use a ground substitution ∆ ⊢ ρ : ∆′, that is a map from dom(∆′) to
ground terms, s.t. codom(∆′) ⊆ Int and ∆ ⊢ ρ(x) : Int for all x ∈ dom(ρ). For sake of simplicity, we
allow back-edges (i.e. Circ rule) to only point to a Gen rule. The rule Gen is used to generalize
the current SKOR we reason on, in order to reach a point in the structure where we reason on the
same SKOR, so that the rule Circ can be used. This combination of generalization and back-edges
follows ideas developed with cyclic proofs in [Brotherston and Simpson 2011].

In practice, we may reach a point where we have łalmostž the same relation, up-to some abstract
reasoning. (like commutation of addition between a ground term and a term). So this inference
system is parametrized by a notion of reduction↬, that is used in the following rule Rewrite to
reason abstractly on terms:

∆α ;C ⊢ SPIJτ K
Ξ
((K1[M

′
1],γ1), (K2[M

′
2],γ2)) ∆ ⊢ M1 ↬ M ′

1 ∆ ⊢ M2 ↬ M ′
2

∆α ;C ⊢ SPIJτ K
Ξ
((K2[M1],γ1), (K1[M2],γ2))

Rewrite
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For the reasoning with SKORs to be sound, we have to enforce that ↬ preserve equivalence of
terms. This is detailed in Appendix F.

In the following, we suppose that↬ includes reasoning modulo associativity and commutativity
of arithmetic operations ⊕ ∈ {+, ∗}, represented by the rules:

• ∆ ⊢ K[M ⊕ t] ↬ K[t ⊕ M];
• ∆ ⊢ K[t1 ⊕ (t2 ⊕ M)] ↬ K[(t1 ⊕ t2) ⊕ M];

It is crucial that we do not transform K[M ⊕ M ′] into K[M ′ ⊕ M], since this does not preserve
contextual equivalence. This is why we only commute ground terms t with M , since t cannot
modify the heap.

Definition 8.1. a derivation graph S is an oriented pointed labelled graph
(N, r, Sequent, Edge,Annot) s.t.:

• When removing all the edges labelled with Circ, we get a tree, called the tree substructure
associated to S . Taking two nodes n1, n2 in S , we write n1 ≺S n2 if there exists a non-empty
path from n1 to n2 in this tree.

• For all nodes n labelled by Gen and Circ, Annot(n) contains the ground substitution ρ used
by this rule;

• For all n1, n2 ∈ N , if Edge(n1) = ({n2},Circ) then n2 ≺S n1 and there exists n0 s.t. Edge(n0) =
({n2},Gen). Writing (∆i )αi ;Ci ⊢ ϕ for Sequent(ni ) (with i ∈ {1, 2}) and ∆i ⊢ ρi : ∆′

i for
Annot(ni ) (with i ∈ {0, 1}), then ∆

′
0 = ∆

′
1, ϕ2{ρ2} = ϕ1. Moreover, the rule Unf is used on

the path between n2 and n1

This last condition ensuring the use of a rule Unf before using a back-edge is crucial to ensure
the soundness of our reasoning.

8.3 Stateful Factorial

We now build a derivation graph for two values vf
1 ,v

f
2 of type Int → Int that compute the factorial

function. The first one is a naive implementation, while the second one is an optimized version
that perform tail recursion and use a reference to store the result:

let rec fact1 n =

if (n ≤ 1) then 1

else (n ∗ fact1 (n − 1))

let fact2 n =

let acc = ref 1 in

let rec aux m =

if (m ≤ 1) then () else (acc := m∗!acc; aux (m − 1))

}
vaux

in aux n; !acc

It is worth noticing that the recursive calls of vf
1 and v

f
2 are of different type (resp. Int → Int and

Int → Unit). The first part of the derivation graph is:

E
H1
Vι

∆2; {n ≤ 1} ⊢ VJIntK((1, γ1), (1, γ2))

∆3 ⊢ ρ1 : ∆
′
1

S1

∆4;C1 ⊢ S
PIJIntK((m0 ∗ fact1 m1, γ1), (aux m2; !acc, γ2))

H2 ∆3;C1 ⊢ S
PIJIntK((n ∗ fact1 n1, γ1), (aux n2; !acc, γ2))

Gen,n

V→

∆1;∅ ⊢ EJIntK(vf
1 n, vf

2 n)

E
H0 ε ;∅ ⊢ VJInt → IntK(vf

1 , v
f
2 )

Init
ε ;∅ ⊢ EJInt → IntK(vf

1 , v
f
2 )

ε ;∅ ⊢ vf
1 ≃skor v

f
2 : Int → Int

where two premises of E are not indicated, corresponding to an unsatisfiable context {n ≤ 1,n > 1}
(and terminated via the rule Unsat), and:

• ∆1 = [n 7→ Int], ∆2 = ∆1 · [acc 7→ ref Int] and ∆3 = ∆2 · [y,y
′ 7→ Int]

• H0 = (ε, ε, ε, ε), H1 = (ε, [acc 7→ 1], ε, [acc 7→ 1]) and H2 = (ε, [x 7→ y], ε, [x 7→ y ′])
• ∆

′
1 = [m0,m1,m2 7→ Int], ∆4 = ∆3 · ∆

′
1 and ρ = [m0 7→ n] · [m1 7→ n1] · [m2 7→ n2];
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• C1 = {n > 1,n1 = n − 1,n2 = n − 1,y ′ = n ∗ y}.
S1 is defined as:

E

Vι
H3 ∆5;C2 ⊢ VJIntK((m1, γ1), (y2, γ2))

Circ to n with ρ2 = [m0 7→ (m0 ∗m1)] · [m1 7→m′
1] · [m2 7→m′

2]

∆6;C3 ⊢ S
PIJIntK(((m0 ∗ m1) ∗ fact1 m

′
1), γ1), (aux m

′
2; !acc, γ2))

H4 ∆6;C3 ⊢ S
PIJIntK((m0 ∗ (m1 ∗ fact1 m

′
1), γ1), (aux m

′
2; !acc, γ2))

Rewrite

Unf
∆4;C1 ⊢ EJIntK((m0 ∗ γ1(fact1) m1), γ1), (γ2(aux) m2; !acc, γ2))

∆4;C1 ⊢ S
PIJIntK((m0 ∗ fact1 m1, γ1), (aux m2; !acc, γ2))

where
∆5 = ∆4 · [y2 7→ Int],C2 = C1 ∪ {m1 ≤ 1,m2 ≤ 1} H3 = (ε, [acc 7→ y2], ε, [acc 7→ y2])
∆6 = ∆4 · [y2,y3,m

′
1,m

′
2 7→ Int] H4 = (ε, [acc 7→ y2], ε, [acc 7→ y3])

C3 = C2 ∪ {m1 > 1,m2 > 1,m′
1 =m1 − 1,m′

2 =m2 − 1,y3 = y2 ∗m2}
and where two of the premises of E are not indicated, corresponding to sequents whose contexts
are {m1 ≤ 1,m2 > 1} and {m1 > 1,m2 ≤ 1} and whose SKOR is S JIntK

Ξ
.

8.4 Automatic Construction of Derivation Graphs

We now present a way to build automatically a derivation graph, based on the automated con-
struction of a derivation tree presented in Section 6.6. Suppose that we are trying to prove
∆α ;C ⊢ SPIJτ K

Ξ
((M1,γ1), (M2,γ2)). We look at the path below this current node, looking for sequents

of the shape ∆′
α ;C

′ ⊢ SPIJτ K
Ξ
((M ′

1,γ1), (M
′
2,γ2)), with j < j

′.

Then, we try the following heuristic: we look for two termsM0
1,M

0
2 and two substitutions ρ, ρ ′

s.t.:Mi ↬ M0
i {ρ} andM

′
i ↬ M0

i {ρ
′}. if we can find such terms and substitutions, we then backtrack

to the point where the sequent ∆′
α ;C

′ ⊢ SPIJτ K
Ξ
((M ′

1,γ1), (M
′
2,γ2)) was introduced, and we apply

the rule Rewrite and Gen (with ρ ′) there. Using this heuristic, we are able to build automatically
the derivation graph for the factorial examples presented previously.
Compared to what we have done for derivation trees, this construction may fail, in which case

the user could provide some help by indicating which rules should be applied.

8.5 Construction of the SMTM

The use of ground substitutions in the rules Gen and Circ has to be reflected in the symbolic
transition system we build. To do so, we extend of the SMTM with Player τ -transitions dPτ :
A ×A⇀ GSubst. To define the execution relation associated to such transitions, one has to define
the closure cη(ρ) of a ground substitution ∆ ⊢ ρ : ∆′ associated to a ground valuation η ∈ GVal(∆),
which is the ground valuation {(x, t) | x ∈ dom(ρ), t = Jρ(x)Kη}.

From it, we define the execution relation (a,η,σ ,κ,h1,h2)
Pτ
−−→ (a′,η′,σ ,κ,h1,h2)whendPτ (a,a

′) =
∆ ⊢ ρ : ∆′ and η′ = η |∆ · cη(ρ)
We also allow Player transitions to be tagged as Player Internal (PI), following the fact that the

rules E of the derivation graphs can themselves be annotated with this tag.
From a derivation graph S, the construction of the skeletal representation Skel(S, n) is defined

by induction on the tree substructure of S, extending the construction given in Section 7.3 to the
new rules introduced previously. So writing (N , L) for Edge(n), with N = {n1, . . . , nm},

• If L=Circ, taking a0 a fresh atomic state, we return (M,∅, [a0 7→ {n}]), where M is the
SMTM with no transition and a unique atomic state a0.

• If L=Gen, taking a0 a fresh atomic state, we return (M,C
f
1 , F1 · [a0 7→ {n}]) where M is

the SMTM constructed from Skel(S, n1) = (M1,C
f
1 , F1) with a0 as new initial atomic state,

together with an Pτ -transition from a0 to a
1
0, labelled with ρ, the annotation of n.

• If L ∈ {Rewrite,Unf}, then we return Skel(S, n1).
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1,P
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ρ1
{(ac

c 7→y2)}
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y2,
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{C2∧(acc 7→y2 )}⇛{acc 7→y2 },C2∧y2=m1 ,PI

ρ2

Fig. 8. SMTM for the Stateful Factorial Example

Because of the new PI-transitions, the SMTMs are not bipartite anymore, however by ignoring
the internal atomic states we can recover this property. We thus introduce two transition functions
de,PA and de,PQ that compose the succession of PI transition of dP until a PA or a PQ transition is

reached. It is formally defined as de,x ≜ dom(dx) ◦ (dom(dPI) ◦ dom(d=Pτ ))
∗ (with x ∈ {PA, PQ}).

We then redefined de and dwb used to define the closure of a SMTM as:
• de ≜ (de,PA ∪ de,PQ) ◦ dom(dO ) ◦ d

=

Oϵ ;

• dwb ≜ de,PA ◦ (dom(dOA) ◦ d
=

Oϵ ◦ dom(de,PQ))
∗ ◦ dom(dOQ) ◦ d

=

Oϵ
Finally, an extra closure operation has to be performed to take into account the Circ rules in

S. It corresponds to adding a Pτ -transition from atomic states corresponding to Circ rules to the
corresponding Gen rules their backing edges are pointing to. Formally, it is defined as a new clause,
that is added to first two given in Section 7.3.2:
3. for all atomic states a1,a2 s.t. there exists n1 ∈ F (a1) and n2 ∈ F (a2) with S.Edge(n1) =

(Circ, {n2}) and S.Annot(n1) = ρ, we have d̄Pτ (a1,a2) = ρ.
A simplified version of the SMTM generated for the stateful factorial example is given in Figure 8.

9 NON-REACHABILITY ANALYSIS OF STRUCTURED-MEMORY TRANSITION

MACHINE

We now present some techniques to automatically check if there exists runs in SMTMs that
can reach failed configurations. One of the main source of difficulty to do so is the fact that
the size of the heaps that appear in the runs can be unbounded. Indeed, considering a program
fun _ → (let y = ref0 inM), since the context can call an unbounded number of time this
function, this will result in the creation of an unbounded number of references.
To avoid this problem, we will only consider for now programs that never create references

inside a function body. In this setting, all the references are created in the first Player transition of
the SMTM, that can be taken only one time.

This means that we can represent the heaps h carried in the configurations of the SMTMM as a
sequence y1, . . . ,yn of integer variables that represent the codomain of h.
The factorial example given in Section 8.3 does not satisfy this restriction, since the stateful

version does allocate a reference in its body. However, it is still possible to handle this example by
using the fact that these two programs are values rather than terms. So we can use the fact that
Γ ⊢ (fun x → M1)≃ctx(fun x → M2) : τ → σ iff Γ, x : τ ⊢ M1≃ctxM2 : σ .
We leave for future work the exploration of non-reachability analysis for programs that can

create references inside a function body.

9.1 Decidability Result

Restricting ourselves to a language with finite datatypes, and considering recursion-free closed
programs that never create references inside a function body, one get decidability of contextual
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equivalence. Indeed, in this setting, the heaps h1,h2, the environment η and the knowledge function
κ are all bounded. So we can represent all the runs of a SMTM as a non-deterministic pushdown
system, and use the fact that reachability is then decidable. We finally rely on the completeness
result of our framework for recursion-free programs, as proven in Section 10.

9.2 Translating Non-Reachability to Constrained Horn Clauses

We now present informally how to encode the reachability problem of failed configurations as a
set of constrained Horn clauses, such that if this set is unsatisfiable, then no failed configuration is
reachable.

A constrained Horn clause (CHC) [Bjùrner et al. 2015, 2013] is a formula ∀®x, ®y.G1 ∧ . . . ∧Gn ⇒
P(®x), where P is an uninterpreted predicate of aritym, and G1,Gn are atomic formulas written in
language of arithmetic together with such uninterpreted predicates. Such a CHC is abbreviated as
P(®x) ⇐ G1 ∧ . . . ∧Gn . In the following, we allow disjunctions in the formulasG1, . . . ,Gn , that can
then be eliminated in order to get a CHC [Bjùrner et al. 2015].

So we associate an uninterpreted predicate P(b,y1, . . . ,yn,y
′
1, . . . ,y

′
n) to each sequence of transi-

tions of a SMTMM that starts by an OQ-transition and ends by a PA-transition, with only PI, PQ
and OA-transitions in between. These sequences correspond to well-bracketed computations. The
integer variables y1, . . . ,yn correspond to the codomain of the two heaps provided as input of these
computations, while y ′1, . . . ,y

′
n correspond to the codomain of the two heaps we get as output of

these computations. The variable b is used to indicate if a failed configuration is reached.
We then collect the arithmetic and heap constraints of such a sequence of transitions to define

the body of the CHC. To deal with the Oϵ transitions and Pτ -transitions that we get from applying
the closure defined in the second step of the construction of the SMTM M, we perform non-
deterministically recursive calls associated to each of these transitions.

Coming back to the SMTM for the well-bracketed state change example introduced in Section 2.2,
the associated set of CHCs is:
P0(b,y

′) ⇐ (y ′ = 0 ∧ b) ∨ P1(b, 0,y
′)

P1(b,y,y
′) ⇐ y1 = 0 ∧ (y2 = y1 ∨ P1(True,y1,y2)) ∧ y3 = 1 ∧ (y4 = y3 ∨ P1(True, 1,y4))

∧((¬b ∧ y4 , 1 ∧ y4 = z) ∨ (y4 = 1 ∧ ((y4 = z ∧ b) ∨ P1(b,y4, z))))
Then if P0(False,y

′) is unsatisfiable, there is no run that can reach a configuration whose state is
8, so that indeed the two programs are contextually equivalent.

• P0(b,y
′) corresponds to the initial transition, with y ′ being the value stored in the reference

of the first program at the end of the run.
• P1(b,y,y

′) corresponds to runs starting in state 1.
• The formula (y2 = y1 ∨ P1(True,y1,y2)) corresponds to the two transitions for Opponent
in state 3: either take the OA transition and keep the heap unchanged, or follows the Oϵ-
transition back to state 1. The variabley2 thus corresponds to the value stored in the reference
of the first program after any of these two choices.

• Further in the clause, the formula (¬b ∧ y4 , 1 ∧ y4 = z) corresponds to reaching a configu-
ration whose state is 8, while the formula (y4 = 1 ∧ ((y4 = z ∧ b) ∨ P1(b,y4, z))) corresponds
to the choice in state 7, i.e. either stop there, so that b is true, or go back to state 1.

Our implementation is able to generate automatically such CHCs, whose satisfiability can then
be checked by solvers like z3 [Hoder et al. 2011] or SeaHorn [Gurfinkel et al. 2015]. Examples like
the irreversible and the well-bracketed state change examples can then be automatically checked,
but also more complex examples like the callback with lock example, given in Appendix K, or the
factorial example of Section 8.3.
Notice that our encoding of reachability into CHCs does not handle the valuation knowledge

κ. Indeed, the way we deal with OQ-transition would simply pick unrestricted variables for the
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valuation η needed at this point, without remembering the ones previously seen during the inter-
action. This means that we over-approximate the reachability problem, so that if the CHCs we
get from the encoding is indeed satisfiable, we cannot be sure that indeed a failed configuration is
reachable, i.e. that the two programs are not contextually equivalent. But in practice, this situation
does not happen in the example of the literature. We leave for future work the precise study of this
over-approximation and the design of techniques to tame it.

9.3 Evaluation of the Tool

The evaluation of our tool has to consider two steps: the generation phase of the Constrained
Horn Clauses (CHC) by SyTeCi, and the checking phase of these CHC by the z3 solver (v4.4.1). The
running times given below have been estimated on a laptop equipped with an Intel Core i5-5200U
(2.20GHz) with 8Gb of RAM.

Considering the standard examples of the literature, like the representation independence (Sec-
tion 2.1), the ławkwardž and the well-bracketed state change (Section 2.2) or the callback-with-lock
(Appendix K) examples, SyTeCi generates immediately (in less than 0.1s) the CHC. z3 then checks
also immediately that they are unsatisfiable, proving that they are indeed contextually equivalent.
Important example of inequivalence are the Kierstead terms Kn,i defined as:
fun f → fun x1 → f(fun x2 → f(. . . f(fun xn → xi())) . . .)

of type ((Unit → Unit) → Unit) → Unit. For (m, j) , (n, i) one has that Km, j ,Kn,i are not
contextually equivalent. The running times for SyTeCi to compare Kn, j and Kn,i , for i , j (which
are independent of i, j) are:

n number of state of the SMTM time to generate the CHC time to check the CHC (via z3)

10 42 < 0.1s < 0.1s
100 403 1.2s 0.8s
200 803 8.0s 3.6s

For programs with recursion, the situation is more complex, since the generation of the SMTM
relies on unfolding recursive calls, and may diverge if we do not bound this number of unfolding.
In practice, it appears that either SyTeCi succeeds to build the SMTM by unfolding one or two
times the recursive calls, or never succeeds to perform circular reasoning. When it succeeds, the
CHCs that SyTeCi generates can be hard to check for z3, even if they are succinct. This is the case
of the factorial example presented in Section 8.3, that takes 34s for z3 to check.
Existing tools to reason automatically on contextual equivalence of programs are based on

algorithmic game semantics, so they only work on restricted fragments on which contextual
equivalence is decidable. Among these tools, one can cite:

• HOMER for a fragment of Idealized Algol [Hopkins and Ong 2009];
• CONEQCT for a fragment of Java [Murawski et al. 2015];
• HECTOR, for a fragment of ML [Hopkins et al. 2012].

Importantly, their complexity depends heavily on the size of the data-types (integers) they consider,
while SyTeCi works with unbounded data-types, and so its complexity does not depend on their
size. HECTOR is the only tool that targets a similar programming language as SyTeCi. Considering
the examples presented in [Hopkins et al. 2012], SyTeCi is able to handle almost all of them, as
fast as HECTOR, and in the case of the Kierstead terms, an order of magnitude faster. There is
nonetheless one examples that SyTeCi cannot handle: the No-snapback example, that uses an
immediately diverging term. To handle it, one would need to implement the notion of "inconsistent
world" as presented in [Jaber and Tabareau 2015].
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10 SOUNDNESS AND COMPLETENESS OF SYTECI

Starting from the derivation graph S associated to two programsM1,M2, we now sketch how to
prove that ifMS is safe, thenM1,M2 are contextually equivalent (soundness). WhenM1,M2 are
recursion-free we also prove that if they are contextually equivalent thenMS is safe (completeness).

10.1 Concrete Kripke Open Relations

To prove these results, we rely on an operational technique to prove contextual equivalence of
programs, called Concrete Kripke Open Relations (CKORs). They are relations EAJτ Kw on extended
terms with free functional variables, but without free ground variables. They are a direct adaptation
of Kripke Open Bisimulations introduced in [Jaber and Tabareau 2015], but they use a step-indexed
definition rather than a coinductive one.

To reason on heaps, CKORs handles worlds w , which are triples (s,h1,h2) formed by a state and
two heaps. The definition of CKORs are indexed by a transition system of worlds (TSW) A. It
is is a tuple (S, S , s0, δ ) formed by a set of states S together with a subset S of failed states, an
initial state s0 and a transition relation δ ⊆ World×World. The initial world of a TSWA, written
w0, is defined as (A.s0, ε, ε). A failed world is a worldw s.t.w .s ∈ A.S . A TSW A is safe, when
there is no worldw ∈ A.δ ∗(w0). s.t. .
It is crucial to notice that one can build a TSW AM = (S, S , s0, δ ) from the execution relation

→M associated to a MSTMM = (A,a0,A
 ,dP ,dO ,dOϵ ), by taking:

• S = A × GVal × List(A × GVal) × (A⇀ P(GVal))
• S ≜ A × GVal × List(A × GVal) × (A⇀ P(GVal))

• s0 ≜ (a0, ε, [], {a0, ε}) and δ = (
PA
−−→ ∪

PQ
−−→) ◦ (

OA
−−→ ∪

OA
−−→)◦

Oϵ
−−→

=

.
Notice thatM is safe iff AM is safe.
The definition of CKORs is given in Appendix D. CKORs are shown to be sound and complete

using a correspondence with the fully abstract operational game model of RefML [Jaber 2015; Laird
2007]. We simplify this model for SimpleML programs with RefML contexts in Appendix B.

The proof of soundness and completeness proof of CKORs w.r.t. the operational game model is a
direct adaptation of soundness and completeness of Kripke Open Bisimulations proven in [Jaber
and Tabareau 2015].

10.2 Characteristic Formula

One then need to relate Symbolic Kripke Open Relations and Concrete Kripke Open Relations,
in order to import the soundness and completeness results of CKORs into SKORs. To do so, we
introduce the characteristic formula ψS associated to a derivation graph S. It is presented in
Appendix E. This formula is written in a logic mixing arithmetic predicates, quantification over
integers and locations, temporal modalities, and coinductive predicates. The notion of validity of
ψS w.r.t. a TSW A and a world w, written w |=A TS , is defined using a Kripke semantics.

SKORs provide a sound proof technique, as presented in Appendix F, in the sense that if there
exists a safe TSW A that validatesψS thenM1,M2 are contextually equivalent.

Theorem 10.1 (Soundness). Given a derivation graph S whose root is ⊢ M1 ≃
Γ

skor
M2 : τ , and a

safe TSW A, if w0 |=A TS , then Γ ⊢ M1≃ctxM2 : τ .

For recursion-free terms, we show in Appendix G that SKORs are also complete: ifM1,M2 are
contextually equivalent, then there exists a transition system A that validatesψS . This transition
system A does not correspond to AMS

for this result, but comes from a result proven in [Jaber and
Tabareau 2015], that does not provide an algorithmic way to build an effective representation of A.
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Theorem 10.2 (Completeness). Taking two recursion-free terms M1,M2 s.t. Γ ⊢ M1≃ctxM2 : τ ,
then there exists an (effectively constructible) derivation tree S whose root is ⊢ M1 ≃

Γ

skor
M2 : τ , and a

safe TSW A s.t. w0 |=A TS .

We then prove that the TSWAMS
associated to the SMTMMS always validates the characteristic

formulaψS extracted from S. This is the case even if the two programsM1,M2 that are related by
S are not contextually equivalent, because of the possible failed worlds in AMS

, that validate any
formulaψ in the Kripke semantics we use.

Theorem 10.3. Given S a derivation graph, then w0 |=AMS
TS .

It is proven in Appendix I.2 by induction over an order on the states of MS inherited from the
order over the nodes of the tree-substructure of S, via the mapping F .

Combining this result with Theorem 10.1 and the fact thatMS is safe iff AMS
is safe, we get the

following soundness result:

Corollary 10.4. Given a derivation graph S whose root is ⊢ M1 ≃
Γ

skor
M2 : τ , ifMS is safe, then

Γ ⊢ M1≃ctxM2 : τ .

Finally, for recursion-free terms, we prove that if there exists a safe transition system A that
validateψS , then AMS

is also safe, which gives us the wanted completeness result.

Theorem 10.5. Given S a derivation graph, suppose that there exists a safe TSW A ′ such that

w
′
0 |=A′ TS . Then AMS

is safe.

It is proven in Appendix J by introducing a notion of simulation between TSW. This means that
AMS

does not have unnecessary reachable failed worlds. Combining this result with Theorem 10.2,
we get the wanted completeness result:

Corollary 10.6. Taking two recursion-free termsM1,M2 s.t. Γ ⊢ M1≃ctxM2 : τ , then there exists
a derivation tree S s.t.MS is safe.

11 RELATED WORK

As sketched in the introduction, there is a vast literature on both logic for relational properties
and automatic techniques for equivalence of łfirst-orderž programs. We focus here only on works
about contextual equivalence.

11.1 Algorithmic Game Semantics

As we explained in the introduction, algorithmic game semantics (AGS) [Cotton-Barratt et al. 2015,
2017; Hopkins et al. 2011; Murawski 2005; Murawski and Tzevelekos 2011a, 2012] is a powerful
technique to decide contextual equivalence of ML programs. Our framework follows a different
purpose, by reducing contextual equivalence to a problem where approximations can then be
applied to check the equivalence.
While we associate a unique transition system to the two programs we try to relate, AGS

associates an automaton to each program, and then compare these automata. So they do not exploit
during the construction of the automata the various synchronization points (like callbacks or
reduction to values) that may exist. This explain the restriction they need on the type-theoretic
order, to be able to encode the pointer structure of the plays forming the denotation of terms, and
get decidability results. Moreover, AGS does not reason about ground values symbolically, and thus
needs to be restricted to language with finite data-types.
To deal with freshness of locations, they use nominal automata [Tzevelekos 2011]. It would be

interesting to see if this could also be used in our framework.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 59. Publication date: January 2020.



59:26 Guilhem Jaber

11.2 Logics to Reason on Kripke Logical Relations

Following the seminal work of Plotkin & Abadi [Plotkin and Abadi 1993] on logic for parametric
polymorphism, some logics have been designed to reason about KLRs, namely LSLR [Dreyer et al.
2009] and LADR [Dreyer et al. 2010b]. These logics are designed for richer language than SimpleML
(fragment of ML with recursive and polymorphic types, and higher-order references for LADR).
They try to prove contextual equivalence of programs directly in the logic, while our framework
rather seeks to reduce the problem to non-reachability in TSW. It does not seem easy to perform
automatic proof search in these logics, since they quantify over terms of the programming language.

Compared to our work, they abstract over step-indexes using guarded recursive definitions via
the modality ▷. It would be interesting to see if it is possible to design a system of circular proof for
such guarded recursive definitions.

LADR shares similarities with Symbolic Kripke Open Relations. Indeed, they use a S4 modality□
to reason about future worlds, which is similar to one of the modality we use to define characteristic
formulas. However, their reasoning over future worlds is done directly inside the logic, while in
our case it is done a posteriori when generating the temporal characteristic formula. Moreover,
LADR is probably not complete for recursion-free terms.

12 FUTURE WORK

12.1 Richer Languages

In order to consider programs that can disclose locations, we would need to carry a span of locations
in configurations, to keep track of the relation between the disclosed one. We also believe that
we can handle full ground references (i.e. references that can store locations) by a finer aliasing
analysis. Higher-order references are more challenging, since symbolic reduction would then need
to know what is stored in the heap. A possible solution would be to perform first a static-analysis on
programs to collect all the possible functions that could be stored in references. Finally, polymorphic
types may also fit in our framework, by using a nominal representation of polymorphic values,
following [Jaber and Tzevelekos 2016].

12.2 Finer Treatment of Recursion

Our construction of the derivation graph associated to two programs with recursion only works
when recursive calls of the two programs can be directly synchronized. It would be interesting to
design heuristic to deal with examples where recursive calls of the two programs has to be unfolded
at a different pace, in order to synchronize them. It should also be possible to use our framework to
reason on contextual approximation up-to a bounded number of unfolding of recursive calls made
by the program, and explore decidability results in this case.

12.3 Program Transformations

We would like to explore the possible uses of our framework to prove soundness of program
transformations like CPS-translations or defunctionalization. More precisely, considering a program
program transformation T , we would like to prove that ifM≃ctxN , then T (M)≃ctxT (N ). To do so,
we could study the transformation on the derivation graphs that such a program transformation T
would induced.
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