HENA, heterogeneous network-based data set for Alzheimer’s disease - Archive ouverte HAL
Article Dans Une Revue Scientific Data Année : 2019

HENA, heterogeneous network-based data set for Alzheimer’s disease

Jerome Dauvillier
  • Fonction : Auteur
Anna Leontjeva
  • Fonction : Auteur
Thomas Moncion
  • Fonction : Auteur
  • PersonId : 855817
Tal Pupko
  • Fonction : Auteur
Jean-Christophe Rain
  • Fonction : Auteur
  • PersonId : 908719

Résumé

Alzheimer's disease and other types of dementia are the top cause for disabilities in later life and various types of experiments have been performed to understand the underlying mechanisms of the disease with the aim of coming up with potential drug targets. These experiments have been carried out by scientists working in different domains such as proteomics, molecular biology, clinical diagnostics and genomics. The results of such experiments are stored in the databases designed for collecting data of similar types. However, in order to get a systematic view of the disease from these independent but complementary data sets, it is necessary to combine them. In this study we describe a heterogeneous network-based data set for Alzheimer's disease (HENA). Additionally, we demonstrate the application of state-of-the-art graph convolutional networks, i.e. deep learning methods for the analysis of such large heterogeneous biological data sets. We expect HENA to allow scientists to explore and analyze their own results in the broader context of Alzheimer's disease research
Fichier principal
Vignette du fichier
Hena_heterogeneous_network-based_data_set_for_Alzheimer.pdf (2.87 Mo) Télécharger le fichier
Origine Publication financée par une institution
Loading...

Dates et versions

hal-02388589 , version 1 (03-12-2019)

Licence

Identifiants

Citer

Elena Sügis, Jerome Dauvillier, Anna Leontjeva, Priit Adler, Valérie Hindie, et al.. HENA, heterogeneous network-based data set for Alzheimer’s disease. Scientific Data , 2019, 6 (1), pp.151. ⟨10.1038/s41597-019-0152-0⟩. ⟨hal-02388589⟩
131 Consultations
81 Téléchargements

Altmetric

Partager

More