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Controle de Caos em Sistemas Dinâmicos Não Lineares: aplicações a coletores de energia

Objetivo

• Controlar a dinâmica caótica para uma dinâmica regular periódica.

• Melhorar a qualidade do sinal elétrico gerado.

• Verificar o que acontece para diferentes casos de controle e condições externas de intensidade de forçamento e frequência.

• Analisar a potência gerada pelo sistema e a desprendida pelo controlador, calculando assim a potência efetiva gerada. • Os dois imãs introduzem um termo não linear à dinâmica do sistema.

Dinamica e Controle do Sistema

Dinâmica da estrutura

Equações adimensionalizadas:

ẍ + 2 ξ ẋ - 1 2 x (1 -x 2 ) -χ v = f cos Ω t, v + λ v + κ ẋ = 0
Representam o acoplamento da dinâmica mecânica com a elétrica. Valores adotados: ξ = 0.01, κ = 0.5, χ = 0.05, λ = 0.05, Ω = 0.8, Com condições iniciais (x 0 , ẋ0 , v 0 ) = (1, 0, 0)

Controle de caos -método OGY

• O controle se baseia na detecção de pontos recorrentes em um mapa de Poincaré a cada intervalo 2π Ω de tempo (um "ciclo"). • Até haver a detecção de dados pontos, o sistema permanece caótico.

Esta é a fase de aprendizado.

• Um vez detectados, o controlador atua com pequenos impulsos para manter o sistema na órbita desejada.

• O controle se aproveita das infinitas órbitas periódicas instáveis presentes no atrator caótico.

• Mapa de Poincaré ξ n+1 = g(ξ n , p)

Com p e g sendo os parâmetros do modelo e a função responsável por capturar os pontos no mapa de Poincaré e ξ denota o estado do sistema.

• Desvio em relação à órbita desejada ξ * ξ n+1 -ξ * = J(ξ n -ξ * ) + C(p -p * )
Onde J é a jacobiana do sistema, calculado a cada ciclo, C o vetor de forças e p * os parâmetros da órbita desejada. O objetivo é fazer ξ n+1 -ξ * decrescer.

• Ganho K do sistema de controle p -p * = -K T (ξ n -ξ * )
• Condição de estabilização para a órbita desejada

||K T || ≤ 1-||J|| ||C||
Escolhendo valores de K que satisfaçam a inequação, o sistema se estabilizará na órbita selecionada.

Órbitas de múltiplos períodos

É possível se obter a estabilização em órbitas de múltiplos períodos ao mudar a restrição dos pontos recorrentes no mapa de Poincaré, ajustando para a órbita desejada, caso exista.

|ξ i -ξ i+n | N p -n i=1 ≤ tol
Pontos recorrentes são pontos que, após um ciclo do sistema, estão suficientemente pertos um do outro, por uma tolerância imposta.

• Potência gerada pelo sistema

P G avg = 1 T ∫ T 0 λv 2 dt • Potência consumida P C avg = 1 T ∫ T 0 (ControlF orce) • ẋdt

Simulações Numéricas

Órbitas no espaço de fase (f=0.090, Ω=0.8)

O retrato de fase mostra a evolução do sistema dinâmico, indicando claramente se o mesmo está num regime caótico ou não.

Sistema natural -caótico Sistema controlado Estabilização da voltagem (f=0.083, Ω=0.8)

Um dos objetivos da implementação do controle de caos é a melhora na qualidade do sinal da voltagem.

• Gerar energia adequada para o uso em equipamentos eletrônicos.

• Nas imagens abaixo, é notável a melhora na qualidade do sinal tanto em periodicidade quanto em amplitude.

Sistema natural -caótico Sistema controlado Efeitos de melhora e piora na potência gerada Nem sempre a estabilização tem como consequência uma melhora na intensidade do sinal.

• Sistemas controlados com amplitude de deslocamento baixa geram baixas voltagens por parte dos materiais piezoelétricos.

• Algumas estabilizações podem fazer o sistema não ter uma melhora significativa em relação ao caso caótico. Tabela -Potências e melhora relativa ao caso caótico Na tabela acima, na última coluna, é possível ver casos de grande melhora, piora e pouco aprimoramento em relação ao caso caótico.

  de energia piezoelétrico bi-estável • A estrutura se baseia numa viga vertical, ferromagnética, com dois imãs na base, que oscila ao ter sua base excitada.
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