
HAL Id: hal-02388512
https://hal.science/hal-02388512

Submitted on 2 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Probabilistic design and uncertainty quantification of
the structure of a monopile offshore wind turbine

Abraham Nispel, Stephen Ekwaro-Osire, João Paulo Dias, Americo Cunha Jr

To cite this version:
Abraham Nispel, Stephen Ekwaro-Osire, João Paulo Dias, Americo Cunha Jr. Probabilistic design
and uncertainty quantification of the structure of a monopile offshore wind turbine. ASME 2019
International Mechanical Engineering Congress and Exposition (IMECE2019), Nov 2019, Salt Lake
City, United States. �hal-02388512�

https://hal.science/hal-02388512
https://hal.archives-ouvertes.fr


 1 © 2019 by ASME 

 
Proceedings of the ASME 2019  

International Mechanical Engineering Congress and Exposition   
IMECE2019 

 November 11-14, 2019, Salt Lake City, UT, USA 
 
 

IMECE2019-11862 

PROBABILISTIC DESIGN AND UNCERTAINTY QUANTIFICATION OF THE STRUCTURE OF 
A MONOPILE OFFSHORE WIND TURBINE 

 
 

Abraham Nispel, Stephen Ekwaro-Osire1, João Paulo Dias 
Department of Mechanical Engineering 

Texas Tech University 
Lubbock, TX, USA 

Americo Cunha Jr. 
Institute of Mathematics and Statistics 

Rio de Janeiro State University 
Rio de Janeiro, RJ, Brazil 

ABSTRACT 
Despite the increasing demand for offshore energy, 

structural components of offshore wind turbines (OWT), such as 
the tower and foundation, are considered the most critical parts 
of the turbine. In fact, uncertainties regarding load conditions, 
soil and structural properties highly undermine the OWT 
structural reliability. In this scenario, in order to obtain more 
accurate results, rigorous probabilistic analyses are necessary. 
In this study, a probabilistic analysis of the dynamic response of 
a monopile OWT is conducted by using a systematic uncertainty 
quantification (UQ) framework to deal with the uncertainty 
assessment of the model input parameters. The proposed 
dynamic model computes the dynamic response of the turbine 
due to wind and waves loads on the monopile structure utilizing 
a simple cantilever beam analytical model. The distributions of 
the model input parameters are determined using (1) non-
parametric statistics for a large dataset, and (2) the maximum 
entropy principle for a small dataset. Monte Carlo simulations 
are performed to propagate the uncertainties of the model inputs 
and to determine the system reliability expressed in terms of their 
probability of failure for the serviceability limit state design 
criterion. Finally, to demonstrate the shortcomings of traditional 
approaches that assume standard distributions to model 
uncertainties, a UQ approach modeling the uncertainties of the 
parameters using normal distributions is contrasted with our 
framework. From the results, significant differences between the 
distribution shape and values of the probability of failure can be 
observed; thus, it demonstrates the importance of developing 
probabilistic frameworks with systematic UQ to have more 
realistic approximations of the reliability of the OWT structure.   
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1. INTRODUCTION 
Renewable energies have arisen as a solid alternative to 

satisfy the growing demand for energy around the globe. Factors 
such as global warming, economic volatility of fossil fuels and 
technology developments have made renewable energies 
competitive to conventional energies. Among the variety of 
clean sources of energy, offshore wind power is the sector that 
has grown significantly over the last decades [1]. In contrast with 
onshore applications, offshore wind energy present significant 
advantages, such as the lower risk for human life, fewer space 
constraints, less turbulent winds, and wind availability at higher 
speeds [2]. Despite the associated benefits of offshore wind 
energy, the overall cost of the projects is higher than for the 
onshore counterparts. Offshore wind turbines (OWT) deal with 
issues regarding extreme environmental loads, and complicated 
geographical locations, which result in a noticeable impact over 
the design, installation, and maintenance of offshore wind plants 
[3].  In terms of design, the turbine foundation is critical and may 
reach a cost of the order of 25 to 35% of the whole system [4], 
[5]. Foundations are the elements of the structure that connect 
the upper part of the structure to the ground. Their function is to 
transmit the combinations of loads exerted over the structure to 
the ground and to provide the sufficient stiffness to reduce 
deformations at the lower level, which in turn, prevent large 
deformations at the highest parts of the structure. Nevertheless, 
the installation of OWT towers in poor quality terrains requires 
deeper substructure penetrations into the seabed, as well as 
stiffer and taller substructures to meet the design standards. 
Hence, despite the considerable the research made on the design 
of OWT foundations, there are no significant improvements in 
the system reliability, which leads to the necessity of research in 
this area. 

As seen in the literature, a significant number of studies 
which are primarily focused on the behavior of monopile-
foundations are found in comparison with other substructures. In 
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fact, monopiles are the most utilized OWT foundation type in 
shallow waters, (i.e., less than 30 meters depth) due to their 
simplicity in terms of manufacturing, installation, and 
deinstallation [2], [6]. The majority of the current models of 
monopile foundations rely on studies developed essentially for 
monopiles substructures designed for either oil or gas offshore 
platforms [7], [8]. However, these approaches are questioned by 
other authors because the intended purpose for an oil platform 
differs significantly from an OWT. Because of that, it is still 
necessary to identify the most sensitive parameters for OWT 
foundation that have a major impact on the foundation reliability. 

The standards to design foundations included in the main 
design codes are primarily divided into four criteria, namely, 
ultimate-limit state (ULS), resonance or the fundamental 
frequency criterion, fatigue limit state (FLS), and serviceability 
limit state (SLS) [4]–[6]. Among these criteria, the SLS, which 
define the maximum deflections and rotations that the structure 
may have, has been described as the most stringent. The SLS 
criteria gain more attention particularly due to the tendency of 
the offshore wind industry to build taller towers and larger blades 
which leads to excessive deflection at the wind turbine hub [3], 
[4], [6]. To satisfy this criterion, designers may be forced to 
increase the geometric parameters of the pile, which increase the 
material, transportation, and installation costs. Hence, more 
studies need to be conducted in order to establish the most 
appropriate combination of parameters that maximize the 
stiffness of the structure without increasing the overall cost of 
the turbine.  

Improvements in the deterministic models (both analytical 
and numerical) have been conducted to reduce the foundation 
cost considering the SLS criteria. Several researchers studied the 
interaction between soil and pile using finite element (FE) 
models and quasi-static loads [3], [9]. Posterior researches 
focused on the effects of the dynamic loading, due to wave and 
wind excitations, over the foundation response considering 
parked-conditions, which is the assumption that the rotor 
behaves as a lumped mass at the hub of the OWT [4], [10]. Zuo 
et al. [11] on the other hand, developed an FE model that enables 
the study of the dynamic response of an OWT, while including 
the effects that the blades exert over the OWT when they are 
rotating, i.e. non-parking condition. They found that the 
assumption of parking conditions, widely employed in early 
research, may result in serious effects on the deflections of the 
OWT structure. Although improvements in the deterministic 
models provide valuable information about the shortcomings in 
the monopile foundations, uncertainties in the model inputs are 
usually not taken into consideration. As a result, the reliability of 
the OWT may not be computed properly. 

Despite the recognized importance of uncertainty 
quantification (UQ) in the reliability of the system, few research 
works have been published which take into consideration the 
variability of the inputs parameters in OWT foundations [3], [5]. 
All these studies concluded that the system reached higher 
deflections employing probabilistic analysis in comparison with 
deterministic analysis. Moreover, the reliability of the system 
dropped down when additional sources of uncertainty, were 

added to the probabilistic analysis. Although these researches 
attempted to study the effects of uncertainties on the tower 
deflections, they do not provide a systematic procedure to 
quantify the uncertainties of the input parameters in an efficient 
manner other than just assuming probability distributions for 
these parameters. As a result, there is still a gap in the field of 
OWT foundations that must be addressed in order to allow 
design engineers to design cheaper OWT substructures without 
undermining the system reliability. 

In this study, a probabilistic analysis of the dynamic 
response of a monopile OWT is conducted by using a systematic 
UQ framework to deal with the uncertainty assessment of the 
model input parameters. The proposed dynamic model computes 
the dynamic response of the turbine due to wind and waves loads 
on the monopile structure utilizing a simple cantilever beam 
analytical model. The uncertainties of the model input 
parameters are determined considering the scenarios where: (1) 
significant amount of data is available using non-parametric 
statistics, and (2) few data are available by means of the 
maximum entropy principle (MaxEnt). Monte Carlo simulations 
are performed to propagate the uncertainties of the model inputs 
and determine the reliability of the system in terms of the SLS 
criteria. Comparison of our results with other approaches which 
assume that the model input parameters are normally distributed 
shows the validity of the proposed probabilistic framework to 
ensure the structural reliability of OWT.  

 
2. METHODOLOGY 

In this work, a probabilistic framework to determine the 
probability of failure of the structure based on the SLS criterion 
for a 5[MW] OWT with monopile foundation embedded in clay 
soil is developed. The framework is carried out in MATLAB and 
combines a deterministic model to determine the dynamic 
response of the turbine, and a probabilistic model to quantify and 
propagate the uncertainties into the deterministic model to obtain 
the probability density function (PDF) of the model response.  

 
2.1 Deterministic Model 

The framework used in the deterministic analysis is 
illustrated in FIGURE 1. The analysis is divided primarily in a 
load model and a dynamic model. The load model aims to 
determine the loads exerted on the structure due to the action of 
the environmental loads, whereas the second one aims to 
establish the maximum displacement at the hub of the OWT. The 
surrogate dynamic model, thereafter, is verified and its response 
is contrasted with the SLS design criterion.  
 
2.1.1 Wind and Wave Load Models 

The main loads exerted on the structure correspond to 
environmental loads, aerodynamic and hydrodynamic, which in 
this work are assumed to be acting in the same direction that in 
turn represent the most conservative scenario [9], [10]. The wind 
load exerting on the structure is modeled using the thrust force 
which can be estimated using Eq. (1) as is suggested in [4], [5], 
[10]. The turbulent wind speed time series, 𝑈(𝑧, 𝑡), at rated 
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conditions (12 m/s) is simulated using the software FAST 
coupled with TurbSim  

 
𝐹𝑈 = 0.5𝜋𝑅𝑡

2𝜌𝑎𝑐𝑡𝑈2(𝑧, 𝑡).                       (1) 
 

The wave loads exerted on the pile are modeled as a point 
load at the mean sea level using the Morison’s equation that is 
given by 

 
𝐹𝑤 = 𝐹𝑤𝑖 + 𝐹𝑤𝑑,                          (2) 

 
where the inertial and drag components of the wave loads, 𝐹𝑤𝑖 
and 𝐹𝑤𝑑 are 
 
                     𝐹𝑤𝑖 = ∫ 0.25𝜂(𝑧)

−ℎ 𝜌𝑊𝑐𝑚𝜋𝐷2𝑊̈(𝑧, 𝑡) 𝑑𝑧               (3) 
 
         𝐹𝑤𝑑 = ∫ 0.5𝜂(𝑧)

−ℎ ∗ 𝜌𝑊 ∗ 𝑐𝑑 ∗ 𝐷 ∗ |𝑊̇(𝑧, 𝑡)| 𝑊̇(𝑧, 𝑡)𝑑𝑧    (4) 
 
wherein the wave speed and acceleration, 𝑊̇(𝑧, 𝑡) & 𝑊̈(𝑧, 𝑡), 
components were computed assuming the Airy wave theory [5], 
[6], [9]. A summary of the rest of the parameters employed in 
this model such as air density, 𝜌𝑎, water density, 𝜌𝑤, thrust 
coefficient, 𝑐𝑡, turbine parameters, such as rotor radius, 𝑅𝑡, and 
material properties  are summarized in Table 1. 
 

 
FIGURE 1: DETERMINISTIC FRAMEWORK OF THE OWT 
MODEL 

2.1.2 Dynamic Model of the Monopile Structure 
The tower-pile structure is modeled as a single degree of 

freedom oscillator with constant thickness and fixed to the 
seabed. The model represented in equation (3) is employed to 
compute the tower displacement at a hub height using time 

intervals of 0.05s, and a time span of 30s. The selection of the 
analytical model arises from the need to curb the significant 
computational cost of that an FE transient analysis requires to 
obtain the turbine response; however, to ensure the accuracy of 
the proposed analytical dynamical model, a FE model is carried 
out in ANSYS to compare and verify the suitability of the 
proposed analytical model 
 

𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 𝐹𝑈(𝑡) + 𝐹𝑤(𝑡).                       (5) 
 

Table 1: DETERMINISTIC PARAMETERS USED IN THE 
SIMULATIONS 

Parameter Value 
Air density (𝝆𝒂)   1.23 kg/m3 
Sea water density (𝝆𝒘)   1,027 kg/m3 
Thrust coefficient (𝒄𝒕)    0.75 
Drag coefficient (𝒄𝒅)    0.7 
Mass coefficient (𝒄𝒎)    2 
Turbulence intensity factor    16% 
Significant wave height   6 m 
Spectral peak frequency 0.1 Hz 
Rotor radius (𝑹𝒕) 63 m 
Tower and Pile diameter (D) 6 m 
Steel density (𝝆𝒔) 7850 kg/m3 

Damping ratio (ζ) 12% 
Young modulus (E)  200 GPa 

 
2.2 Probabilistic Model 

The probabilistic model presented in this work comprises a 
UQ scheme to systematically assess and propagate the 
uncertainties of the input random variables (RV) through the 
deterministic solvers, and a statistical certification measurement 
to establish the reliability of the structure based on the six RV 
employed in this analysis. A schematic illustration of the model 
can be seen in FIGURE 2, in which the light blue boxes represent 
the UQ of the model inputs and the yellow boxes the uncertainty 
propagation approach to obtain the PDF of the response. 
 
2.2.2 Uncertainty Quantification Scheme  

The proposed UQ scheme considered in this study can be 
seen in FIGURE 3. The first step in the scheme is to classify the 
type of information associated with the input random variables 
(RV). Based on that information, the UQ approach in terms of 
the PDF for each input parameter is selected. The information 
related to the input random variables can be divided into two 
main categories, namely, (1) theoretical information (e.g. 
support, mean, variance) and, (2) experimental-monitored 
information (significant datasets from experiments or field 
measurements). As a result, two different approaches are 
proposed to handle such uncertainties in the least bias fashion. 
The first approach arises from the information theory and is 
called MaxEnt. This method aims to establish the PDF of the 
input RV that maximizes the PDF entropy based on the level of 
information collected at the moment of the analysis. 
Mathematically, the MaxEnt is expressed by 
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𝑆 = − ∫ 𝑓𝑋 (𝑥)𝑙𝑛 𝑓𝑋(𝑥) 𝑑𝑥                              (6) 

 
where 𝑓𝑋(𝑥) is the joint PDF of the random vector 𝑋 composed 
by the input RV, and respect the 𝑀 + 1 constraints defined by 
the known information about 𝑋 
 

∫ 𝑔𝑘(𝑥) 𝑓𝑋(𝑥) 𝑑𝑥 = 𝑚𝑘,                             (7) 
 

where 𝑔𝑘(𝑥) and 𝑚𝑘 for 𝑘 = 0,1, … , 𝑀 are known real functions 
and values, respectively with 𝑔0(𝑥) = 1 and 𝑚0 = 1. The 
maximization problem is solved using the Lagrange multipliers 
𝜆𝑘 for 𝑘 = 0,1, … , 𝑀 as [12], [13] 
 

𝑓𝑋(𝑥) = 𝕀[𝑎,𝑏](𝑥)exp (−𝜆0) exp[∑ −𝜆𝑘
𝑁
𝑘=1 𝑔𝑘(𝑥)]    (8) 

 
where [a, b] is the know information about the support of the 
RV. The second approach uses non-parametric (NP) techniques 
to establish the uncertainty of the input RV. In the present study, 
the NP techniques used are the kernel density estimator (KDE) 
and empirical cumulative distribution function (ECDF). NP 
approaches produce a realistic representation of the random 
process that generates the population data only when the sampled 
data is proved to be statistically significant. The significance of 
a dataset is tested using the mean-square convergence criterion. 
This criterion, essentially, look at the convergence of the sample 
statistics (mean and standard deviation) at a certain number of 
samples 𝑛 𝑐, which is independent of the size of the dataset [13]. 

As mentioned before, seven parameters from the load 
models (𝜌𝑤, 𝜌𝑎, 𝑐𝑡, 𝑐𝑑, 𝑐𝑚, 𝑈(𝑥, 𝑡)) and three from the dynamic 
model (𝜌𝑠, ζ, 𝐸), are considered as independent random variables. 
Furthermore, two deterministic models are considered for 
uncertainty propagation (FIGURE 2). The PDFs of air and water 
densities are determined using MaxEnt with the obtained 
information for their respective supports and mean values. The 
PDFs of the thrust, drag, and mass coefficients are also modeled 
using MaxEnt, but including an extra piece of information 
related to the support for the coefficient of variation (COV). 
Additionally, the variability of the wind inflow is modeled 
following a similar approach, in which the turbulence intensity 
factor (TIF) is assumed to be proportional to the COV of the 
wind speed. The Young modulus (E), on the contrary, is the only 
one estimated using a kernel density approach - that is-  because 
a significant data set of  E for structural steel was available for 
this analysis[14]. A summary of all RVs considered in the 
simulations, the available information, and the method used to 
model their uncertainties can be found in Table 2. 

Once the PDF of the input RVs are determined either by the 
MaxEnt or the KDE, random samples are drawn from each 

PDFs using the inverse transform method. Those samples are 
then used to propagate uncertainties in the input RVs to the 

response parameters using Monte Carlo simulation (MCS). The 
last step of the framework is post processing, in which the 

samples of the response parameters are employed to construct 
the non-parametric PDFs using KDE and ECDF [13].

 
FIGURE 2: PROBABILISTIC FRAMEWORK OF THE OWT 
MODEL 

 
 

 
FIGURE 3: UNCERTAINTY QUANTIFICATION SCHEME OF 
THE RANDOM VARIABLES CONSIDERED IN THIS STUDY 
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2.3 Statistical Certification (Probabilistic Response) 
The statistical certification of the results is represented in 

terms of a confidence bound plot, and the structural probability 
of failure associated with the SLS criterion. In this work, a 98% 
confidence bound plot is developed based on the sample 
information at each time step of the displacement stochastic 
process PDF {𝑋𝑑(𝑥, 𝑡)}. On the other hand, the probability of 
failure of the structure, 𝑝𝑓 (which is also defined as 1 − 𝑅, where 
𝑅 is the reliability of the structure), is determined by computing 
the probability that the limit state function, 𝑍, of the response 
would be equal to zero for a time step 𝑡𝑖 [10]  

 
𝑍 = SLS − 𝑋𝑑(𝑥, 𝑡𝑖).                                       (9) 

 
Table 2: INFORMATION ABOUT THE RANDOM VARIABLES 

USED IN THE SIMULATIONS 
RV Information Method 

𝝆𝒘 Mean: 1,027 kg/m3 
Limits: [1,020-1,030] kg/m3 MaxEnt 

𝝆𝒂 Mean: 1.23 kg/m3 
Limits: [1.146-1.315] kg/m3 MaxEnt 

𝒄𝒕 
Mean: 0.75 

Limits: [0 -1] 
COV: [0.2-10] % 

MaxEnt 

𝒄𝒅 
Mean: 0.7 

Limits: [0 -1] 
COV: [0.2-10] % 

MaxEnt 

𝒄𝒎 
Mean: 0.2 

Limits: [0-1] 
COV = [0.2-10] % 

MaxEnt 

𝑼(𝒙, 𝒕𝒊) 
Mean: 𝑈(𝑡𝑖) 

Limits: [𝑈(𝑡𝑖)+/- 0.4*𝑈(𝑡𝑖)] 
              TIF = [10-22] % 

MaxEnt 

𝝆𝒔 
Mean: 7850 kg/m3 

Limits: [5495-10205] kg/m3 
COV = [0.5-15] % 

MaxEnt 

ζ 
Mean: 0.16 

Limits: [0.72-1.68] 
COV = [0.5-15] % 

MaxEnt 

E Dataset of 41[samples] Non-
Parametric 

 
3. RESULTS AND DISCUSSION 

In this work a probabilistic framework considering an 
analytical dynamic model to compute the total displacement at 
hub height applied for an OWT is proposed.  
 
3.1 Deterministic Results 

The verification of the analytical model using an FE model 
can be seen in FIGURE 4. From the graph, it is apparent that 
after the transient effects from 0 to 8 seconds approximately, the 
FE model and the analytical model responses have virtually the 
same mean and relatively follows the same trend. Hence, the 
proposed analytical may be employed as a suitable 
approximation for computing the turbine response instead of 

computationally expensive FE simulations, wherein several 
simulations are required. 

 

 
FIGURE 4: DETERMINISTIC SOLUTION OF THE TOWER 
DISPLACEMENT AT THE HUB HIGHT USING THE FINITE 
ELEMENT MODEL AND THE ANALYTICAL MODEL  

3.2 UQ Results 
       FIGURE 5 shows the PDFs (and the random samples drew 
out of them) of the input RVs determined using either the 
MaxEnt or the KDE approaches. For the air density and seawater 
density PDFs shown in FIGURE 5(a) and (b) the MaxEnt with 
information about their support and mean values are used; as a 
result, truncated exponential distributions with the curve rise 
close to the mean value are obtained. In FIGURE 5(c), (d), (e), 
(f)   and (g), the parameters 𝑐𝑡, 𝑐𝑑, 𝑐𝑚, 𝜌𝑠 and ξ, are determined 
using the MaxEnt with information regarding their mean, limits 
and a variable coefficient of variation (COV) ranging from 2 to 
15%. From the graphs, it is clearly seen that the shape of the 
MaxEnt PDF determined out this information shows a defined 
bell curve, wherein the peak of the distribution coincides the 
model parameter mean value. Despite the apparent similarities 
with either a Gaussian distribution or any other standard 
distribution, the MaxEnt PDFs are calculated considering the 
maximum level of uncertainty based on the available 
information. Consequently, the MaxEnt, in contrast with 
assumed distributions, ensures the minimum level of bias on the 
analysis. 

On the other hand, FIGURE 5(h) shows the PDF obtained 
using the KDE for a statistically significant sample of the 
material Young modulus. FIGURE 6 shows the convergence 
plots of three random arrangements of the same dataset in order 
to find the number of samples wherein convergence is achieved, 
which is approximately 35 samples for the analyzed dataset. It is 
important to mention that although NP methods are the best 
estimators when data is available, the failure to establish the 
convergence of the dataset would produce a bias non-parametric 
approximation of the true distribution. Therefore, when mean-
squared convergence is not achieved, NP methods may result in 
inaccurate probability distributions for the hub height 
displacement. 
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FIGURE 5: PROBABILITY DENSITIES OF THE MODEL INPUT 
RANDOM VARIABLES: (a) AIR DENSITY, (b) SEA WATER 
DENSITY, (c) THRUST COEFFICIENT, (d) DRAG COEFFICIENT, 
(e) MASS COEFFICIENT, (f) YOUNG MODULUS, (g) STEEL 
DENSITY, AND (h) DAMPING RATIO  

 

 
FIGURE 6: CONVERGENCE OF THE ESTIMATORS: (a) MEAN 
VALUE AND (b) STANDARD DEVIATION) OF THE YOUNG 
MODULUS DATASET USING THE MEAN-SQUARE CRITERION 

 

 
FIGURE 7: PROBABILISTIC RESULTS FOR THE OWT HUB 
DISPLACEMENT WITH 98% CONFIDENCE BOUND 
 
3.3 Probabilistic Results 
       FIGURE 7 shows the 98% confidence bound of the mean 
displacement response of the turbine at the hub height. The 
confidence bound indicates that 98% of the points around the 
sample mean (blue line) are included in the band. Such limits 
may vary if (1) more sources of uncertainty are added in the 
analysis, i.e. wave load, or (2) more accurate information, i.e. 
experiments, regarding the parameters included in the analysis 
are included. Both cases are considered as future research. 
 
3.3.1 Effects of Simplified UQ Schemes in the 
Probabilistic Response  
       In an attempt to quantitative illustrate the shortcoming of the 
utilization of a simplified UQ scheme, the proposed framework 
is contrasted with a simulation that is carried out assuming 
normality for the RVs considering in this study. FIGURE 8, for 
instance, shows the differences between the PDFs and samples 
when the model parameter distributions are determined using the 
MaxEnt (FIGURE 8a) and arbitrarily assumed as a normal 
distribution (FIGURE 8b). From the graph, it is clearly seen the 
scattering of the samples (from 0.8 to 1.7 approximately) 
generated from the normal distribution is considerably larger 
than the ones out of the MaxEnt distribution counterpart (roughly 
1.15 to 1.3). Such differences may add bias and extra variability 
to the analysis because the samples generated outside of the 
stated air density limits, i.e.1.15 to 1.3, are rarely or highly 
unlikely to be observed in reality. 
       In addition, the selection of the approach has significant 
importance in the determination of the probability of failure 
based on the SLS criterion. In order to show the influence of 
applying other approaches, a reliability analysis is conducted at 
𝑡𝑖 = 4[𝑠]. The results of the prior analysis, such as the entire  
cumulative distribution function (CDF) of the 𝑍 function (Z), 
and a zoom of the left tail of the CDF that highlight the PF of the 
OWT structure can be seen in FIGURE 9(a) and (b), 

(a) (b)

(c) (d)

(e)

(h)

(f)

(g)
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respectively. From FIGURE 9(a) it is apparent that the CDF 
computed based on a normal distribution (NCDF) differs 
significantly from the ECDF computed from the samples 
obtained from MC simulations in the tails, in which the value of 
the 𝑃𝑓 (or reliability) is established. Such offset can be illustrated 
in detail in FIGURE 9(b), in which it is clearly seen that the 𝑃𝑓 
calculated utilizing the NCDF (5.5%) is considerably lower than 
the 𝑃𝑓 obtained from the ECDF (8.8%). As a result, the arbitrary 
assumption of distributions can result in an underestimation of 
the structural probability of failure, which in turn may mean an 
underestimation of the reliability of the structure. 
 

 
FIGURE 8: PROBABILITY DENSITIES OF THE AIR DENSITY 
USING: (a) MAXENT AND, (b) NORMAL DISTRIBUTION 
 

 
FIGURE 9: CDF COMPARISON OF THE LIMIT STATE 
FUNCTION OF THE DISPLACEMENT AT 5[s]: (a) ENTIRE CDF 
AND, (b) ZOOM OF THE CDF LEFT TAIL.  
 
4. CONCLUSION 
       In conclusion, the inherent variability of the parameters that 
comprise the different models to determine the OWT dynamic 
response can yield the highest values than their deterministic 
counterpart. Additionally, the arbitrary selection of PDF can 
produce misleading estimations of the reliability of the system. 
Therefore, further research will have (1) a more realistic 
deterministic model, which will include the tower shadowing 
effects, a stochastic wave model and soil model; (2) a more 
accurate stochastic model that accounts for more sources of 
uncertainties; (3) and other failure modes, i.e. fatigue. All the 
aforementioned strategies aim to improve the proposed UQ 
framework in order to obtain more robust reliability estimations. 
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