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Abstract: Hybrid Electron Microscopy Normal Mode Analysis (HEMNMA) method was 

introduced in 2014. HEMNMA computes normal modes of a reference model (an atomic 

structure or an electron microscopy map) of a molecular complex and uses this model and its 

normal modes to analyze single-particle images of the complex to obtain information on its 

continuous conformational changes, by determining the full distribution of conformational 

variability from the images. An advantage of HEMNMA is a simultaneous determination of 

all parameters of each image (particle conformation, orientation, and shift) through their 

iterative optimization, which allows applications of HEMNMA even when the effects of 

conformational changes dominate those of orientational changes. HEMNMA was first 

implemented in Xmipp and was using MATLAB for statistical analysis of obtained 

conformational distributions and for fitting of underlying trajectories of conformational 

changes. A HEMNMA implementation independent of MATLAB is now available as part of a 

plugin of Scipion V2.0 (http://scipion.i2pc.es). This plugin, named ContinuousFlex, can be 

installed by following the instructions at https://pypi.org/project/scipion-em-continuousflex. 

In this article, we present this new HEMNMA software, which is user-friendly, totally free, 

and open-source. 

 

Keywords: cryo-electron microscopy; single particle analysis; continuous conformational 

changes; normal mode analysis; structure; dynamics; software 

 

50-75 word statement for a broader audience: This article presents Hybrid Electron 

Microscopy Normal Mode Analysis (HEMNMA) software that allows analyzing single-

particle images of a complex to obtain information on continuous conformational changes of 

the complex, by determining the full distribution of conformational variability from the 

images. The HEMNMA software is user-friendly, totally free, open-source, and available as 

http://scipion.i2pc.es/
https://pypi.org/project/scipion-em-continuousflex
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part of ContinuousFlex plugin (https://pypi.org/project/scipion-em-continuousflex) of Scipion 

V2.0 (http://scipion.i2pc.es). 

 

https://pypi.org/project/scipion-em-continuousflex
http://scipion.i2pc.es/
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INTRODUCTION 

Cryo-electron microscopy (cryo-EM) has become comparable to X-ray crystallography with 

regards to the obtainable resolution of structures of biomolecular complexes, which are now 

increasingly determined at near-atomic resolution.
1-10

 No requirement for sample 

crystallization and the possibility to elucidate multiple conformations of a complex from the 

same sample are among the main advantages of cryo-EM. Characterizing the different 

conformations that can coexist is essential for understanding how the complexes function and 

addressing their dynamics.  

 

To achieve near-atomic resolution of 3D reconstructions, the classical approach is to collect a 

large number of images of complexes (particles) at random and unknown orientations within a 

thin layer of vitreous ice, then, perform 2D and 3D classifications into an initially set number 

of classes and, finally, perform 3D reconstruction using only those particles that have the most 

consistent views and conformations (those that contribute to the highest-resolution class 

averages) while removing all other particles.
8-14

 Such “selection” of particles may obscure 

information on a possibly larger conformational variability as some conformational states may 

be thrown away blindly instead of being elucidated. Therefore, non-classification-based 

methods are required to extract from images the full distribution of conformational variability 

(the so-called conformational space or landscape in which the images are mapped) and to 

assemble 3D reconstructions from identified, more or less dense regions in this space (denser 

regions contain more frequent conformational states and less dense regions contain less 

frequent states). Such methods are necessary for studying continuous conformational changes 

of complexes (the concept including the possibility of unequally distributed conformers, e.g. 

possible existence of more stable conformers) and are referred to as continuous-state methods. 

Many classification-based methods (referred to as discrete-state methods) can be found in the 
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literature.
15-28

 While the majority of the discrete-state methods require that the number of 

classes is set initially, setting this number in some of the methods is less arbitrary as it is based 

on making a balance between intraclass and interclass variances after a statistical analysis of 

the data, typically using an eigenvector analysis of the covariance estimated from images or 

from volumes reconstructed from random subsets of images.
18; 19; 21

 The covariance 

eigenvectors estimation has also been introduced in the context of continuous conformational 

heterogeneity.
29; 30

 The latter methods are closely related to continuous-state methods whose 

development started recently and is currently an active field of research.
31-37

  

 

We introduced the continuous-state method referred to as Hybrid Electron Microscopy 

Normal Mode Analysis (HEMNMA) in 2014.
31; 32

 HEMNMA computes normal modes of a 

reference model (an atomic structure or an EM map) of a molecular complex and uses this 

model and its normal modes to analyze single-particle images of the complex iteratively in 

order to extract information on the full distribution of conformational variability from these 

images. In each iteration, HEMNMA aims at simultaneously solving both orientational and 

conformational heterogeneity of images using the reference model and its normal modes.  

 

Although often considered as “model-free”, the continuous-state methods from other groups 

do use a model (e.g., the model used by Dashti et al (2014)
33

 is EMDB-1067 density map). 

This model is used to first solve the orientational heterogeneity of images, by determining the 

particle 3D orientation and 2D shift in each image assuming conformational homogeneity of 

images (e.g., the particle orientation and shift in each image can be determined by the 

standard projection matching of the image with the model). Then, the conformational 

heterogeneity of images is solved (i.e., the conformations are determined) using the image 

orientations and shifts determined in the previous step. These methods do not refine 
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orientations and shifts when determining conformations, assuming that the effects of 

orientational changes dominate those of conformational changes so that each image can be 

associated with the correct orientation.  

 

An advantage of HEMNMA is a simultaneous determination of all parameters of each image 

(particle conformation, orientation, and shift) through their iterative optimization, which 

allows applications of HEMNMA even when the effects of conformational changes dominate 

those of orientational changes. The simultaneous determination of the parameters is done by 

iterative matching of the image with projections of the reference model being deformed using 

a linear combination of normal modes (the conformation is estimated by determining the 

unknown coefficients of the linear combination, i.e. by determining the displacement 

amplitudes along normal modes). The reference model does not need to be an atomic-

resolution model and can also be an EM map. This EM map can be obtained by 3D 

reconstruction from combined data as if the data was conformationally homogeneous (e.g., by 

the so-called random sample consensus approach that identifies the best EM maps from those 

reconstructed using random subsets of images and random image orientations,
38

 maximum 

likelihood optimization of a number of 3D reconstructions starting from random data 

subsets,
39

 or other methods
40

).  

 

HEMNMA and other continuous-state methods are fundamentally different from 

classification-based (discrete-state) methods. For instance, the discrete-state method of 

Haselbach et al (2018)
27

 uses standard Relion
39

 software for discrete classification of images 

into a number of 3D maps and standard principal component analysis to cluster the maps. As 

similar classification-based methods, it is prone to assigning images to lower-noise density 

maps independently of whether or not the images belong there. For further reading on the 
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different methods, the reader can refer to some of the recent methods reviews.
41-45

 

 

The first version of HEMNMA was implemented in Xmipp
46

 and was using MATLAB for 

statistical analysis of obtained conformational distributions and for fitting of underlying 

trajectories of conformational changes.
31; 32

 A MATLAB-independent version of HEMNMA 

was recently implemented in Scipion
47

 and is currently available as part of a plugin of Scipion 

V2.0 (http://scipion.i2pc.es). This plugin, named ContinuousFlex, can be installed by 

following the instructions at https://pypi.org/project/scipion-em-continuousflex. The new 

HEMNMA software is totally free and open-source, and the new graphical interface is even 

more user-friendly than the previous one. In this article, we present this new HEMNMA 

software.  

 

HEMNMA WITHIN SCIPION: STEPS, PARAMETERS, GRAPHICAL INTERFACE  

The steps to follow are listed in the HEMNMA menu on the left side of the Scipion project 

window and are numbered from 1 to 6. When the different steps are executed, a tree-like 

structure of the project appears on the right side of the window, with each block 

corresponding to a step or a substep (Figs. 1-2). In this section, we describe the steps (Steps 1-

6), parameters, and graphical interface of HEMNMA. Each parameter is also described in the 

graphical interface, via a help message that can be displayed by clicking on the question mark 

next to the corresponding parameter field. The majority of the parameters are set to the values 

that usually produce good results. These default values are visible in the graphical interface 

and can be modified by the user. The parameters whose values are expected to be less 

frequently changed are hidden by default. By selecting “Advanced” as “Expert Level” mode 

(“Normal” is the default mode), the values of these “advanced” parameters can be visualized 

(the parameter names showing up on a grey background) and modified (e.g., Fig 3A). 

http://scipion.i2pc.es/
https://pypi.org/project/scipion-em-continuousflex
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Step 1. Reference model: The reference model to import can be a PDB file with atomic 

coordinates or a density volume (e.g., an EM map or a simulated map from a PDB structure). 

Both import options are provided (steps 1.a and 1.b1 in the project tree, Figs. 1-2). Fig. 1 and 

Fig. 2 show the project tree for an input atomic structure and for an input density volume, 

respectively. Before the next step, the input density volume must be converted into a PDB-

format file. We provide a tool for the volume conversion into a set of 3D Gaussian functions 

(step 1.b2 in the project tree, Fig. 2), the so-called pseudoatoms,
48

 whose coordinates are 

written into a PDB file. More precisely, the conversion is performed so that the input density 

volume is represented with Gaussian functions of a given (input) standard deviation 

(“Pseudoatom radius” input parameter expressed in voxels), by minimizing the normalized 

volume approximation error
48

 to reach a given (input) value of this error (“Volume 

approximation error” parameter expressed in percent) (Fig. 3). Note that the default value of 

the “Volume approximation error” parameter is 5 %, which can be modified by first selecting 

“Advanced” as “Expert Level” mode to visualize the parameter (Fig. 3A). Through this 

conversion procedure, some noise may be removed from the input density volume, as shown 

elsewhere.
49

 However, strong particle background noise should be removed using external 

tools or the masking procedures available in HEMNMA (“Mask mode” parameter in Fig. 3A 

allows entering the name of a binary mask file or the threshold value below which the 

densities should be removed). For faster processing, the volume-to-pseudoatoms conversion 

was parallelized and should be run using several CPU threads (sharing the same memory). 

The number of threads can be specified via the “Threads” parameter (Fig. 3A). The results of 

the volume-to-pseudoatoms conversion can be visualized with Chimera
50

 (Fig. 3B) by 

clicking on “Analyze Results” button in the project window (Fig. 2).   
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After a displacement with normal modes, both an atomic reference model and a pseudoatomic 

reference model (from a reference density volume) are converted into a density volume whose 

projections are compared with images to determine the conformations in these images (Step 

5). The higher the resolution of the reference model, the more accurate the normal modes and 

the conformational determination will be. Thus, the most accurate conformational 

determination is expected with input atomic models and high-resolution EM maps.  

 

The reference atomic model can be a full-atomic model or a coarse-grained model (e.g., 

containing Cα atoms only). The computation of normal modes (Step 2) requires information 

on the shape of the entire complex. An atomic model lacking a few small regions (e.g., 

disordered regions) may still be used as the reference model. If the atomic model lacks large 

portions of a complex and an EM map can be obtained for the entire complex, this EM map 

should be used as the reference model. An alternative reference model could be a hybrid 

model of the entire complex obtained by modeling the missing parts in the atomic model or 

the density volume computed from this hybrid model. 

 

Classical, classification-based approaches can be used to obtain a reference EM map for 

HEMNMA to analyze the entire heterogeneous set of images or an image subset with 

heterogeneity reduced through classification, as shown elsewhere
31

. The use of classification-

based approaches before HEMNMA may be particularly useful in the case of combined 

discrete and continuous conformational heterogeneity (e.g., a mixture of flexible complexes 

bound and unbound with ligands).  

 

There are no restrictions regarding the number of atoms in input PDB files or the size of input 

EM maps, except that the maps should have a cubic shape. There are no restrictions regarding 
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the content of the atomic model, such as the presence of DNA, ligands, etc. However, in the 

case of a heterogeneous set of particles bound and unbound with ligands, it may be interesting 

to remove the ligand from the reference model, as shown elsewhere.
31; 51

 

 

Step 2. Normal mode analysis (NMA): Normal modes of the atomic or pseudoatomic 

representation of the reference model (“Input structure” field in Fig. 4A) are computed using 

Tirion’s elastic network model
52

. In this model, atoms or pseudoatoms interact if they are 

connected with elastic springs. The interaction cut-off distance parameter determines how 

many atoms or pseudoatoms will be connected with elastic springs. The following two 

options exist for setting this value, via “Cut-off mode” parameter (Fig. 4A): “absolute” and 

“relative”. If “absolute” is chosen for “Cut-off mode” (unshown in Fig. 4A), the interaction 

cut-off distance value is an input parameter that should be set directly by the user (by setting 

“Cut-off distance” parameter, expressed in angstroms, which shows up only if “absolute” is 

chosen for “Cut-off mode”). The default value of “Cut-off distance” is 8 Å, which is the 

empirical recommended value for atomic structures. The “Cut-off distance” value of 8 Å 

implies building an elastic network in which two atoms are connected with a spring (interact 

with each other) only if their distance is smaller than 8 Å. If “relative” is chosen for “Cut-off 

mode”, the interaction cut-off distance value is computed automatically based on a given 

(input) percentage of distances (“Cut-off percentage” parameter expressed in percent, Fig. 

4A) that should be below this value. The default value of “Cut-off percentage” is 95 %, which 

is the empirical recommended value for pseudoatomic structures. The “Cut-off percentage” 

value of 95 % implies building an elastic network in which two pseudoatoms are connected 

with a spring only if their distance is smaller than the one below which 95 % of distances are. 

The larger the interaction cut-off distance for a given complex, the more rigid the elastic 

network will be. A too large interaction cut-off distance produces a too rigid elastic network, 
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which can be detected and corrected by analyzing the normal-mode animations with the 

provided graphical interface (NMA results viewer in Fig. 4B).  

 

Normal modes are computed by diagonalizing a square matrix of second derivatives of the 

potential energy function of the structure (Hessian matrix). One dimension of the Hessian 

matrix is 3 times the number of atoms or pseudoatoms. For faster Hessian diagonalization 

with input atomic structures (large Hessians due to large numbers of atoms), the structure is 

split into blocks of several residues, each block having 6 degrees of freedom (3 rotations and 

3 translations), which reduces the Hessian dimension to 6 times the number of blocks and is 

known as Rotation Translation Block (RTB) method.
53

 The number of residues per RTB block 

should be set by the user, and its default value in the graphical interface is 10 (Fig. 4A). The 

larger the number of residues per block (i.e., the smaller the number of blocks), the faster the 

computation of normal modes and the more rigid the elastic network will be. A too large 

number of residues per block will produce a too rigid elastic network, which can be detected 

and corrected by analyzing the normal-mode animations with the provided graphical interface 

(NMA results viewer, Fig. 4B). 

 

The number of computed normal modes is 3 times the number of pseudoatoms (for a 

pseudoatomic structure) or 6 times the number of RTB blocks (for an atomic structure). 

However, the number of modes written on the disk and animated should be set by the user 

(“Number of modes” parameter, Fig. 4A). It is usually enough to save animations for 20-100 

modes (e.g., the most relevant modes to experimentally observed conformational changes of 

low-symmetry structures are generally among the first 10-20 lowest-frequency non-rigid-

body modes). The computed normal modes can be inspected by visualizing their animations, 

collectivities
54

 and scores
32

, via the NMA results viewer (Fig. 4B) that can be obtained by 
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clicking on “Analyze Results” button in the project window. The collectivity
54

 indicates how 

much the atoms or pseudoatoms move together with a given mode. It is computed for the 

entire complex without differentiating between its domains and it is normalized between 1/N 

(maximally localized motion) and 1 (maximally collective motion), where N is the number of 

atoms or pseudoatoms. Highly collective low-frequency modes have been shown to be 

functionally relevant
55-58

. Therefore, we also provide the score
32

 that combines the collectivity 

and frequency criteria, by penalizing the modes with higher frequencies and lower 

collectivities. The score is normalized between 1/M (highest collectivity and lowest frequency 

motion) and 1 (lowest collectivity and highest frequency motion), where M is the number of 

modes. 

 

The list of modes, with their collectivities and scores, can be obtained using “Display output 

Normal Modes?” in the NMA results viewer (Fig. 4B). The interface allows ordering the 

modes according to the increasing or decreasing values of the collectivity or score measures. 

The modes most relevant to the actual conformational change are expected to be among those 

with the lowest scores. The number of the lowest-score modes to inspect should be larger in 

the case of highly symmetrical structures (e.g., icosahedral-symmetry viruses) as highly 

collective modes may also exist at higher frequencies in such cases. To help the user decide 

which modes should certainly not be selected for the image analysis (Step 5), the modes with 

collectivities below 0.15 (very localized motions) are unchecked in the list of modes obtained 

via “Display output Normal Modes?” (Fig. 4B). The value of 0.15 for this collectivity 

threshold can be modified by the user (“Threshold on collectivity” parameter, Fig. 4A). 

 

The motion trajectory along a normal mode is saved in a text file by concatenating the frames 

(in PDB format) of the coordinate displacement along this mode. The default number of 
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frames is 10 and the default amplitude of the displacement along normal mode is 50 (these 

parameters can be modified via the “Animation” tab, unopened in Fig. 4A). This trajectory 

file is animated with VMD,
59

 by selecting “Display mode animation with VMD?” and 

specifying the mode to be animated in the “Mode number” field (Fig. 4B). VMD provides 

tools to save the motion trajectories in Animated GIF or MPEG movie formats that can be 

played with more standard movie players.   

 

The modes can also be inspected by plotting the shifts of atoms (or pseudoatoms) along the 

specified mode and by plotting their maximum shifts over all modes via “Plot mode distance 

profile?” and “Plot max distance profile?”, respectively (Fig. 4B). For instance, a too large 

shift of one or a very few atoms (or pseudoatoms) with respect to the shift of other atoms (or 

other pseudoatoms) is typically a sign that the value of the atomic (or pseudoatomic) 

interaction cut-off distance used for computing normal modes is not optimal. In this case, 

normal modes should be recomputed using a modified value of this parameter.   

 

Step 3. Information: At this step, entitled “Stop here or continue” in the HEMNMA menu 

(Figs. 1-2), we remind the user that HEMNMA software may also be used for NMA only (the 

processing can be stopped after computing and analyzing normal modes at Step 2). The 

following steps should be performed if aiming at analyzing conformational heterogeneity in 

images using the normal modes computed in Step 2.  

 

Step 4. Images: This step allows importing images that will be analyzed with normal modes. 

The images should have a square shape. They should have a power of 2 pixels in each 

dimension when using the so-called “wavelet & splines” method for rigid-body alignment in 

combination with the elastic alignment (see Step 5 for more information about the alignment 
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methods). The larger the size of images, the longer the image analysis time will be. The image 

size can be reduced if the speed is an issue. The image size of 128x128 pixels is usually a 

good compromise. 

 

Step 5. Conformational distribution: In this step, a combined elastic and rigid-body 

alignment is performed between particle images and the reference model to calculate the 

parameters of orientation, translation, and elastic deformation (amplitudes of normal modes) 

of the reference model that best describe the given particle image.  

 

Fig. 5A shows the interface (“Input” tab) for selecting the images to be analyzed (“Input 

particles” parameter) and the normal modes to use for the image analysis (“Modes selection” 

parameter) from an entire list of computed normal modes (“Normal modes” parameter). The 

modes to use for the image analysis can be selected as the modes with the highest 

collectivities or least scores, with or without using previous knowledge about possible 

movements. The 6 lowest-frequency modes (modes 1-6, where the index of the mode 

corresponds to the mode order according to the increasing frequency) describe rigid-body 

movements of the structure and are often referred to as rigid-body normal modes. These 

modes should not be selected because rigid-body movements are taken into account through 

the iterative combined rigid-body and elastic alignment, as explained in the next paragraph. 

Usually, this alignment is performed with 1-10 selected normal modes excluding modes 1-6. 

 

The interface for setting the parameters of the combined elastic and rigid-body alignment is 

shown in Fig. 5B (“Combined elastic and rigid-body alignment” tab). We use Powell’s 

optimization (more precisely, Powell’s trust region method
60

) to iteratively estimate the elastic 

deformation (normal-mode amplitudes) of the reference model by maximizing the similarity 
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between the particle image and the best matching projection of the deformed model (objective 

function, in optimization terminology). In each iteration of Powell’s method, an estimate of 

the normal-mode amplitudes is used to displace the atoms or the pseudoatoms along normal 

modes and the obtained, elastically deformed structure is converted into a density volume that 

is then rigid-body aligned with the particle image. The rigid-body alignment allows the 

determination of the orientation and translation parameters (rigid-body parameters) and the 

objective-function evaluation that is then used to better estimate the normal-mode amplitudes 

(elastic deformation parameters) for the next iteration of Powell’s method.  

 

The values of the parameters of Powell’s method are set internally in the code and are not 

modifiable via the interface except for the scaling factor of the initial trust-region radius 

(“Elastic-alignment trust region scale” parameter in Fig. 5B). The default value of the scaling 

factor is 1, which generally works well. When expecting larger conformational changes, it 

may be interesting to increase the scaling factor (typically to a value between 1 and 2). The 

rigid-body alignment can be performed using one of the following two methods: 1) 

“projection matching” that stands for the standard reference-library-based (discrete) 

projection matching in real space (faster but less accurate method); and 2) “wavelets & 

splines” that stands for a discrete projection matching in wavelet space
61

 followed by a 

continuous matching in 3D Fourier space based on spline interpolation
62

 (slower but more 

accurate method; in particular, more robust to noise). The default choice is “wavelets & 

splines” (“Rigid-body alignment method” in Fig. 5B). The angular sampling step
61

 for the 

reference projection library computation is 10° by default and can be modified via the 

interface (“Discrete angular sampling” parameter expressed in degrees, Fig. 5B).  

 

This combined rigid-body and elastic alignment is the task that requires the most 
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computation. Therefore, it was MPI parallelized to simultaneously process N particle images 

using N MPI cores on CPU computers, clusters or supercomputers. The user specifies the 

number of MPI cores to be used (“MPI” parameter in Fig. 5A). On an Intel Xeon CPU at 2.9 

GHz, the analysis of one particle image of size 128×128 pixels with 3, 6, and 9 normal modes 

may respectively take 2, 5, and 10 min when using “projection matching” rigid-body 

alignment and 5, 13, and 25 min when using “wavelets & splines” rigid-body alignment. 

 

Normal-mode amplitudes resulting from the image analysis with normal modes can be 

visualized in 1 dimension (histogram) as well as in 2 or 3 dimensions (Fig. 5C). Points in a 

2D and 3D space correspond to images with assigned orientations, translations, and normal-

mode displacement amplitudes with respect to the reference model. Close points in this space 

correspond to similar conformations and vice versa.  

 

Step 6. Dimension reduction, clusters, and trajectories: The normal-mode displacement 

amplitudes obtained by image analysis in Step 5 can be projected onto a space of lower 

dimension (1D, 2D, or 3D) (Fig. 6), using the technique of principal component analysis 

(PCA) or one of several other dimension reduction techniques.
63

 To perform the dimension 

reduction, the user specifies the conformational distribution to be analyzed (the image 

analysis results obtained in Step 5), the desired lower dimension, and one of the available 

linear or non-linear dimensionality reduction techniques via “Conformational distribution”, 

“Reduced dimension”, and “Dimensionality reduction method” fields, respectively (Fig. 6A). 

The “Extra params” field (Fig. 6A) allows modifying the parameters of the dimensionality 

reduction techniques (the parameters and their default values are listed in the help message 

linked to the “Dimensionality reduction method” field). The available dimensionality 

reduction techniques are PCA, Kernel PCA, Probabilistic PCA, Local Tangent Space 
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Alignment (LTSA), Linear LTSA, Diffusion Map, Linearity Preserving Projection, Laplacian 

Eigenmap, Hessian Locally Linear Embedding, Stochastic Proximity Embedding, and 

Neighborhood Preserving Embedding.
63

 The dimension reduction viewer (Fig. 6B) can be 

obtained by clicking on “Analyze Results” button in the project window. It allows displaying 

the axes of the low-dimensional space (Fig. 6C) specified via the “Display normal-mode 

amplitudes in the low-dimensional space” field (Fig. 6B). Also, the dimension reduction 

viewer (Fig. 6B) allows opening the tool for making animations (“Trajectories Tool”, Fig. 

7A) and the tool for computing 3D reconstructions (“Clustering Tool”, Fig. 8A). 

 

While the advantage of non-linear dimensionality reduction techniques is better suitability to 

non-linear manifold data representations, the advantage of linear dimensionality reduction 

techniques (PCA, Linear LTSA, Linearity Preserving Projection, Probabilistic PCA, and 

Neighborhood Preserving Embedding) is that they allow mapping from the low-dimensional 

space back to the original space. HEMNMA uses this property to generate animated 

trajectories of conformational changes. More precisely, “Trajectories Tool” (Fig. 7A) allows 

recording and visualizing the displacement of the reference model in the low-dimensional 

space. The specification of the displacement trajectory to be animated requires the user’s 

interaction. The outlier data points can be removed by providing logical (Boolean) 

expressions (“Expression” field in Fig. 7A). The trajectory is specified by the coordinates of 

10 points in the low-dimensional space (red points in Fig. 7B). The user may select all of 

these 10 points (by clicking on the plot to select each point) or 8 points may be automatically 

placed on a line between 2 points selected by the user (the first and last points of the 

trajectory). The position of the initially placed points may be changed by dragging the points. 

As in the case of animations of normal modes in Step 2, the trajectory is saved in a text file by 

concatenating the PDB-format frames of the coordinate displacement. The trajectory can be 
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animated with VMD (Fig. 7C) or saved with VMD in Animated GIF or MPEG movie formats 

for playing with other movie players.   

 

Additionally, conformational changes can be analyzed in terms of 3D reconstructions from 

images in the low-dimensional space. “Clustering Tool” (Fig. 8A) allows making groups of 

close points (Fig. 8B), corresponding to images with similar conformational states, and 

computing 3D reconstructions from these groups (Fig. 8C). A group of points is specified by 

providing logical (Boolean) expressions (“Expression” field in Fig. 8A) or by clicking on the 

plot and dragging to add points to the group. Each point in the selected group of points is 

denoted by a yellow circle (Fig. 8B). Clicking on “Create Cluster” button (Fig. 8A) saves the 

selected group of points and performs 3D reconstruction from this group. The saved group 

can be inspected by displaying the 3D reconstruction results (slices and isosurface of the 

reconstructed volume, Fig. 8C) and the images present in the group (the images are not 

shown in Fig. 8). HEMNMA uses a fast Fourier-space method for 3D reconstruction from the 

selected group of points. The 3D reconstruction can be performed with other reconstruction 

methods (available in Scipion or other software packages), using the output metadata (text) 

file with the rigid-body and elastic alignment parameters corresponding to the selected group 

of points. The 3D reconstructions represent the average states from the corresponding groups 

of images. One should make as homogeneous groups of points as possible with a sufficient 

number of points per group in order to obtain high-resolution 3D reconstructions (note that 

the example in Fig. 8B does not show the most optimal grouping of points).  

 

As explained, HEMNMA provides a full conformational variability landscape before 

grouping images into 3D reconstructions (images with similar conformations on the 

landscape). As such, HEMNMA can detect the conformations and motions that are 
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undetectable with traditional classification-based approaches, which was extensively studied 

elsewhere.
31

  

 

PERSPECTIVES 

A full description of conformational heterogeneity is important for both biology and drug 

design. Cryo-EM has been under continuous development since its beginning (early ‘80s), 

which was even accelerated with the latest instrumental developments including direct 

electron detector devices (DDD cameras). Allowing a routine near-atomic resolution of 

structures and a routine full description of conformational variability are currently two main 

challenges. Indeed, the recent cryo-EM advances such as DDD cameras, phase plates, and 

sample motion correction have reduced noise and improved contrast in images, which makes 

elucidation of conformations from images more accurate. Methods for a full description of 

continuous conformational variability are being developed. However, these methods will need 

to be more efficient and user-friendly to allow routine use of cryo-EM for such studies. 

HEMNMA is user-friendly software that has been developed for determining the full 

distribution of continuous conformational variability from cryo-EM images. Still, HEMNMA 

needs to be made faster in order to allow an efficient high-resolution description of this 

variability. For instance, the analysis of 10
4
 particle images based on the elastic alignment 

with 6 normal modes and the “wavelets & splines” rigid-body alignment may take 17 h using 

128 MPI cores on 2.9 GHz Intel Xeon CPUs, which means that the analysis of 10
6
 particle 

images would require around 70 days of use of the same 128 MPI cores. To get a high-

resolution description of the full conformational landscape of a complex, several millions of 

particle images would need to be analyzed. A combination of HEMNMA with a deep learning 

approach will be implemented in the future to speed up processing of such large numbers of 

particle images. 
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HEMNMA is well suited to compact-support particle shapes and may be adapted to deal with 

helical symmetry particles in the future. 
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FIGURE LEGENDS 

 

Figure 1: HEMNMA project tree for the case of analyzing images using an atomic structure 

as the reference model.  

Figure 2: HEMNMA project tree for the case of analyzing images using a density volume as 

the reference model. The volume is converted into 3D Gaussian functions (the so-called 

pseudoatoms). 

Figure 3: Volume-to-pseudoatoms conversion. (A) Dialog box. (B) Superposition of an input 

density volume (transparent grey) and its pseudoatomic representation (spheres where the 

amplitudes of Gaussian functions are color-coded from white (smallest) to red (largest)). In 

this example, the Gaussian-function standard deviation (pseudoatom radius) and the desired 

volume approximation error are 2 voxels and 5%, respectively. The desired volume 

approximation error parameter is hidden by default (“Expert Level” is set to “Normal”) and 

can be visualized by setting “Expert Level” to “Advanced” (panel A). The volume-to-

pseudoatoms conversion is parallelized using threads (parallel processes sharing the same 

memory) and the number of threads to use can be specified in the “Threads” field (panel A). 

The masking options to remove background noise from the input volume are explained in the 

help message under the corresponding question mark (panel A).  

Figure 4: Normal mode analysis and visualization. (A) Dialog box (note that “Cut-off mode” 

selected here is “relative” and that the interface allows selecting the cut-off mode “absolute” 
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as well). (B) Normal modes viewer allowing visualizing animations of normal modes (using 

“Display mode animation with VMD?” for the mode specified in “Mode number”) and 

checking their collectivities and scores (using “Display output Normal Modes?”). 

Figure 5: Image analysis with normal modes. (A)-(B) Two sections of the dialog box, 

regarding input (panel A) and alignment (panel B). (C) Example of visualization of image 

analysis results in 3 dimensions (amplitudes along 3 normal modes). The image analysis task 

is parallelized using MPI protocol and the number of MPI cores (parallel processes that do not 

necessarily share the same memory) can be specified in the MPI field (panel A). In panel B, 

the default choice for “Rigid-body alignment method” is “wavelets & splines” (the alternative 

method is “projection matching”) and the elastic alignment is performed by Powell’s trust 

region method. In panel C, each point corresponds to a particle image with assigned 

orientations, translations, and normal-mode displacement amplitudes with respect to the 

reference model (close points correspond to similar conformations and vice versa).  

Figure 6: Dimension reduction. (A) Dialog box for projecting normal-mode amplitudes 

computed by image analysis onto a space of lower dimension using principal component 

analysis (here, 2 in “Reduced dimension” means projecting onto a 2D space) or one of several 

other dimension reduction methods selected via “Dimensionality reduction method” (the 

default values of parameters of these methods are provided in the help message displayable by 

clicking on the corresponding question mark). (B) Dimension reduction viewer allowing 

visualizing normal-mode amplitudes in the low-dimensional space (here, a 2D space specified 

by axes 1 and 2) as well as opening the clustering (grouping) and trajectories tools. (C) 

Example of projecting normal-mode amplitudes onto a low-dimensional space (here, 2D 

space specified in panel B). In panel A, the methods available for the dimension reduction are 

Principal Component Analysis (PCA), Kernel PCA, Probabilistic PCA, Local Tangent Space 

Alignment (LTSA), Linear LTSA, Diffusion Map, Linearity Preserving Projection, Laplacian 
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Eigenmap, Hessian Locally Linear Embedding, Stochastic Proximity Embedding, and 

Neighborhood Preserving Embedding.  

Figure 7: Animations after image analysis. (A) Trajectories Tool. (B) Example of trajectory 

(10 red points, see the text for more details). (C) Trajectory animation using VMD.  

Figure 8: 3D reconstructions after image analysis. (A) Clustering Tool for grouping close 

points (images with similar conformations). (B) Example of selecting a group of points 

(circled in yellow) for 3D reconstruction. (C) Chimera superposition of three 3D 

reconstructions (yellow, cyan and gray isosurfaces) from the corresponding groups of images 

denoted in panel B (points surrounded by yellow, cyan and gray ellipses, panel B), with the 

most dominant motion shown by red arrows. The group of points saved using “Create 

Cluster” button (panel A) appears as a new box in the project tree (panel C), possibly after 

using “Refresh” button from the project window. The saved group of points can be inspected 

using “Analyze Results” button from the project window, which shows images in this group 

(not shown here) and slices of the volume reconstructed from these images (panel C). The 

volume isosurface can be visualized by clicking on Chimera icon in the slices display menu 

(panel C). 

 


















