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25 de novembro a 27 de novembro de 2019 – São Carlos/SP

Employing 0-1 test for chaos to characterize the chaotic

dynamics of a generalized Gauss iterated map

Michel Tosin1

Marcos Vinicius Issa2

Diego Matos3

Alexandre do Nascimento4

Americo Cunha Jr5

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Abstract. This work deals with the numerical analysis of the nonlinear dynamics of a Gauss
iterated map in a generalized form, obtained with the inclusion of two extra parameters,
which makes the map dynamic behavior quite different from the original system. For the
exploration of such dynamics, the 0-1 test for chaos is employed to identify intervals of
parameters associated with chaotic and regular behavior. The validity of the chaoticity-
regularity classification obtained with 0-1 test is confirmed by comparison with bifurcation
diagrams. Contour maps reveal regions where chaotic behavior could be observed when two
parameters are considered for the analysis.
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1 Introduction

Nonlinear systems are constantly studied in the scientific literature as attempts to
reproduce complex phenomena with greater reliability. Several of these systems are highly
dependent on the parameters and/or initial conditions and may exhibit chaotic behavior for
some configurations [3,6]. Since chaotic behavior may or may not be useful in applications
of interest, it is crucial to identify under what conditions such behavior can manifest
in a dynamical system. Such knowledge is also important because, depending on the
system response sensitivity to minor disturbances, considerations should be given to the
measurement errors effects on the nominal values of the system parameters or initial
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conditions, in order to ensure the consistency between theoretical and computational model
predictions for the real system behavior [9, 10].

When dealing with a system for which the dynamics is unknown, the exponents of
Lyapunov [3, 6] are often used for classification of the dynamic regime of operation in
regular or chaotic. However, the computational cost associated with this method is very
high, due to the required eigenvalue calculations. So, when in possession of a large system
or costly computing system, the proposed 0-1 test for chaos by Gottwald and Melbourne [4]
shows up a good balance between theoretical certification and fast processing. The 0-1
test for chaos has been widely used to identify areas of interest from system parameters
and initial conditions, as well as discrimination of attractors [2, 7]. In this sense, this
paper intend to use the 0-1 test for chaos to identify regions of chaos or regularity for the
parameters of a generalized Gauss iterated map, in an attempt to obtain to get a better
understanding about its qualitative behavior in comparison with the standard Gauss map.

2 Gauss iterated map

2.1 Map description

The standard Gauss iterated map uses a zero-mean unit-amplitude Gaussian as evolu-
tion law, having only two parameters: (i) the width α, interpreted as the variance inverse
in a probabilistic contexts; and (ii) the offset β [8]. Therefore, the map evolution law is
written as

xn+1 = exp
(
−αx2n

)
+ β . (1)

Here this map generalized by adding two other parameters, the scale γ, and the mean
δ. Supplementing this map with an initial condition x0 = a, the evolution law of this new
generalized Gauss map is described by the following (discrete) initial value problem

{
xn+1 = γ exp

(
−α(xn − δ)2

)
+ β ,

x0 = a .
(2)

2.2 Presence of chaos and regularity

Although regions of chaotic behavior are well known for the standard Gauss map, the
addition of two new parameters open a range of possible new scenarios. To demonstrate
this greater versatility, Figure 1 shows a bifurcation diagram of the dynamical system
described (2), where it can be observed a qualitative variation of the response as γ assumes
3001 values in the range −10 ≤ γ ≤ 10, with α = 4.9, β = 0.5, δ = 0, x0 = 0.2, for a
temporal evolution of the map with 5000 steps. In this figure, three scenarios can be
highlighted: (i) regular dynamics of period 1 at γ = 1; (ii) regular dynamics of period 10
at γ = −2.9; (iii) achaotic dynamics at γ = −1.05. Also remember that, with δ = 0 and
γ = 1, the response is equivalent to that of the standard Gauss map.
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Figure 1: Bifurcation diagram of the generalized Gauss iterated map with α = 4.9, β = 0.5, δ = 0,

x0 = 0.2 and −10 ≤ γ ≤ 10.

3 The 0-1 test for chaos

As can be seen in Figure 1, varying γ one can find complex behavior, with regions
of chaos and regularity switching faster. Thus, it is complicated to use only bifurcation
diagrams to identify them. To address this kind of problem more conclusively, classification
tests are valuable allies. In general, the most widespread method in the literature is the
classification by Lyapunov exponents [3,6], which is based on measuring sensitivity of the
response by means of a construction made with the eigenvalues of the gradient of the
system evolution law, from which a negative value is a discriminator in cases of chaotic
dynamics. However, the processing associated with calculating eigenvalues for a high
number of problems is very costly. So lower computational cost alternatives have been
sought in the literature. One that has been well used is the 0-1 test for chaos developed
by Gottwald and Melbourne [4].

This binary test for chaos identification applies a change of coordinates from physical
coordinates (φ(t), φ̇(t)) to a pair of extened coordinates (pc, qc), parameterized by an
angle c (see [1] for details). From this new coordinates, a time-averaged mean square
displacement Mc is extracted, and the classifier Kc can be calculated. The test is repeated
for several values of c, and K = median{Kc} is employed as the classifier for the dynamic
regime of the time-series φ(t). It can be demonstrated that, theoretically that Kc ∈ {0, 1},
so that, numerically K ≈ 0 for regular dynamics, and K ≈ 1 in the chaotic case [4].



Algorithmically, the method depends on the information from three input information,
the time-series φ(t), the number of time-steps Ndt, and number of c values Nc. The output
is the classifier K. The algorithm steps can be seen in the pseudo code shown in Figure 2.

1 Discretize �(t) to �j = �(tj), j = 1 : Ndt

Data: �j , Ndt, Nc

2 for m = 1:Nc do
3 Chosen a value for c 2 [0, 2⇡)
4 for n = 1:Ndt do
5 pn(c) Pn

j=1 �(tj)cos(jc) // Apply the change

6 qn(c) Pn
j=1 �(tj)sin(jc) // of coordinates

7 Mn(c) 1
N

Pn
j=1

�
[pj+n(c)� pj(c)]

2 + . . . // Compute the time-averaged

8 [qj+n(c)� qj(c)]
2 // mean square displacement

9 end
10 M (M1, M2, . . . , MNdt

) // Assign mean square displacements vector
11 t (t1, t2, . . . , tNdt

) // Assign the discrete time vector

12 Km  cov(t,M)p
var(t) var(M)

// Assign m-th value of classification

13 end
14 K (K1, K2, . . . , KNc) // Assign classifiers vector
15 K  median(K) // Compute final classifier

Result: K

Figure 2: Pseudo code for 0-1 test for chaos algorithm.

4 Numerical experiments

4.1 Validation of 0-1 test classifier

The theoretical certification that the chaos classification method used in this work is
guaranteed when the Ndt and Nc are well chosen. Small or large values of these param-
eters can compromise the convergence of the estimator. Thus, a balance between these
quantities must be found for classification to be reliable. Obviously, the optimal values
for then is problem dependent.

A large dataset for c values is used for test the accuracy of the 0-1 test for chaos in the
generalized Gauss map. Some results are shown in Figures 3 and 4, where one can see the
extended dynamics in (p, q) coordinates, the evolution of the square distance MSD, and
the classifier samples Kc as function of the values of c. In Figure 3 one can see that, for
α = 4.9, β = 0.5, γ = −1.05 and δ = 0, the system behavior is chaotic, since the extended
dynamics in (p, q) coordinates is diffusive [1, 4]. Note from Figures 3b and 3c that 0-1
test for chaos correctly detect chaotic behavior. On other hand, regularity can observed
in Figure 4, once the extended dynamics is limited [1, 4].

4.2 Contour maps

With the classification test properly calibrated, more extensive results about the dy-
namics of the generalized Gauss map with respect to the values of γ and δ can be extracted.
A broad analysis is indicated by the contour maps in Figure 5. The regular behavior is
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Figure 3: Test 0-1 for chaos with α = 4.9, β = 0.5, γ = −1.05 and δ = 0. (a) extended
dynamics in (p, q) coordinates, (b) the evolution of the square distance MSD, and (c) the
classifier samples Kc as function of the values of c.
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Figure 4: Test 0-1 for chaos with α = 4.9, β = 0.5, γ = 1 and δ = 0. (a) extended
dynamics in (p, q) coordinates, (b) the evolution of the square distance MSD, and (c) the
classifier samples Kc as function of the values of c.

indicated by the darkest blue points and chaos by the red ones. The parameters used are
α = 4.9, β = 0.5, γ ∈ [−5, 5], δ ∈ [−1, 1], x0 = 0.2, with 5000 iterations, Nc = 300, and a
resolution of 100× 100 points in (γ, δ) space. The result revels two regions where chaos is
more present: (γ, δ) ∈ [−3, 1]× [−1, 0] and (γ, δ) ∈ [4, 5]× [0, 0.5].

5 Final remarks

In this work a generalization for the Gauss iterated map is proposed. As the dynamics
becomes more complex in this generalized form, a careful analysis of the possible dynamic
regimes is necessary. The 0-1 test for chaos is explored to classify the system dynamics
and used to generate contour maps that revel chaotic regions in the parameters space.
These results allowed conclude that two regions with a huge presence of chaos exist.

In future works the authors intend to use the 0-1 test to generate basins of attraction
with respect to the parameters in order to study the system sensitivity to small chances
on their nominal values.



Figure 5: Contour maps for −5 ≤ γ ≤ 5, −5 ≤ δ ≤ 5, with α = 4.9, β = 0.5, and x0 = 0.2.
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