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Abstract. Model selection and parameter identification are challenging tasks in drill string dynamics due to
the high degree of nonlinearity that abound the diverse and complex mechanisms involved. This work explores
the application of a stochastic metaheuristic procedure for parameter identification over the torsional mode of
drill string vibration. A proposed model is calibrated with data from a validated experimental set-up, adjusting
stiffness, damping and friction parameters. The resulting simulations display a reasonable fit with almost ideal
correlation coefficients even in the presence of stick-slip. The optimization strategy is compared with an Genetic
Algorithm, revealing significantly greater efficiency and showcasing how the cross-entropy method may be a viable
tool in the demanding context of drill string modeling.
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1. INTRODUCTION

The equipment used in oil prospecting operations, called drill string, is a long, slender structure under
rotation, connected by drill-pipes and auxiliary apparatus. Diverse mechanisms influence in its performance:
nonlinear interaction of multiple vibration modes, friction and shock effects, internal and external non-Newtonian
flow, hysteretic interaction on the rock contact, etc (Wiercigroch et al., 2018; Spanos et al., 2003). The com-
plexity of its dynamics warrants further works on the modeling approach and the use of numerical procedures
that are efficient on the identification of its underlying values (Cunha Jr et al., 2015; Liao et al., 2018; Aguiar,
2010). For analysis over any dynamical system, calibration is fundamental. The correct assessment of parameter
values is necessary to judge the capacity of a model in simulating phenomena under realistic measures; it is,
in fact, a first step in a validation process concerning its properties and feasibility of its predictions (Pereira
et al., 2018; Real et al., 2018). It is also a prerequisite in many uncertainty quantification techniques, where
sensitivity analysis and the incorporation of variabilities may be developed over the best combination of inputs
that reproduce a desired system response (Cunha Jr, 2015; Real et al., 2019).

The Cross-Entropy (CE) method is a stochastic metaheuristic global search algorithm that originated on the
topics of rare-event simulation (Rubinstein, 1997; Rubinstein and Kroese, 2004) and combinatorial optimization
(Eshragh et al., 2009), showing promising results and adaptability also to continuous optimization (Rubinstein,
1999; Rubinstein et al., 2006). However, in the subject of parameter identification, the method has not achieved
common use as other metaheuristic algorithms. The easy implementation and conceptual insight of the proce-
dure are very motivating reasons to check how it compares to similar optimization strategies that became classic
in this area.

This work is part of a current project investigating the usefulness of the CE method in engineering appli-
cations (Dantas et al., 2019; Dantas, 2019), which is used here for calibration in the context of drill string
dynamics. The global search capabilities and efficiency of the method are verified through the solution of an
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inverse problem that seeks to identify parameter values on the torsional dynamics of a validated experimental
set-up (Cayres, 2018; Cayres et al., 2019). For the torsional mode vibration, a common subject is the extreme
condition called stick-slip, wherein the drill-bit comes to a sudden stop but the top keeps in dynamic regime –
storing energy – until the tip overcomes the rock resistance (Ritto, 2010; Vaziri et al., 2018). This phenomenon
is present on the data and simulation of this work, modeled via dry friction. The efficiency of the CE method
is compared with an Genetic Algorithm also used to solve the inverse problem.

2. MODEL AND TEST RIG

(a)

(b)

(c)

Figure 1: Test rig used for the torsional mode of a drill string. Provided by Cayres (2018).
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Figure 2: Schematic representation of the experimental set-up. Adapted from Pereira et al. (2018).

The data was obtained from a experimental set-up previously used by Cayres (2018) for the study of torsional
vibration and stick-slip phenomenon, which can be seen in Figure 1. Figure 2 schematically summarizes the
test rig, which comprises a shaft connected to three discs. The third disc (Figure 1.c) is coupled to a DC-motor
that drives the dynamics. The first and second discs (Figure 1.a and 1.b, respectively) suffer dry friction via
the contact pins.

The dynamics of this 2-part system is modeled as in Cayres (2018):

J1 θ̈1 + d1 (θ̇1 − θ̇2) + k1 (θ1 − θ2) + Tr1(θ̇1) = 0 ,

J2 θ̈2 + d1 (θ̇2 − θ̇1) + d2 (θ̇2 − θ̇3) + k1 (θ2 − θ1) + k2 (θ2 − θ3) + Tr2(θ̇2) = 0 ,

d2 (θ̇3 − θ̇2) + k2 (θ3 − θ2) = η (KT i− Cm η θ̇3 − Tf − J3 θ̈3/η) ,

L
di

dt
+R i+KE η θ̇3 = u ,

(1)
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where J represents the moment of inertia of the discs; d and k mean the damping and stiffness coefficient of
each string segment; θ, θ̇ and θ̈ are angular displacement, velocity and acceleration; KT is torque constant, Cm
speed regulation constant, Tf friction torque on motor, KE means voltage constant (back-EMF constant), L
inductance, R resistance, i is the current and the transmission factor is denoted η. The subscripts signify, as seen
in Figure 2, 3 for the motor, 2 for Disc 2 (middle) and 1 for Disc 1 (end). The forcing voltage is denoted by u,
which is modulated by a PI-controller (making the system integro-differential and non-autonomous), explicitly

u = kp (ωref − θ̇3) + ki

∫ t

0

(ωref − θ̇3)dτ . (2)

where ωref = 30 RPM is the excitation frequency, kp and ki are the controller parameters. The resistive torques
applied by the contact pins provide the dry friction that enables observation of stick-slip. Tr1 is modeled as the
following (Cayres et al., 2019), with a chosen regularization of its discontinuity:

Tr1(θ̇1) =


N1 r1 µs θ̇1/ωs for |θ̇1| < ωs ,

N1 r1

(
µk + (µs − µk) e−vb |θ̇1|

)
sign(θ̇1) for |θ̇1| ≥ ωs ,

(3)

where N1 is the normal force applied by the pin on Disc 1, r1 is the distance of pin to the center of Disc 1
and the threshold ωs is set 10−3 rad/s. The torque on Disc 2 can be active controlled, but for the calibration
presented here, Tr2 = 0. The state vector of the system of Eqs. (1) consist in the relative angular displacements,
angular velocities and current. Values for the prescribed parameters and experimentally identified ones (blue)
can be seen in Table 1.

Table 1: Parameters of the experimental set-up of the drill string torsional dynamics. In blue, values of the
parameters experimentally identified in Cayres (2018).

Parameter Value Parameter Value

J1 0.0288 kgm2 L 8.437× 10−4H

J2 0.0149 kgm2 R 0.33 Ω

J3 0.0237 kgm2 KT 0.126N m/A

k1 1.1175N m/rad KE 0.0602 V s/rad

k2 0.3659N m/rad Tf 0.1196N m

d1 0.0202N ms/rad Cm 1.784× 10−4 N ms/rad

d2 0.0167N ms/rad kp 2.800

µs 0.4700 ki 3.500

µk 0.3000 r1 0.047m

N1 16.3N η 8

3. FORWARD AND INVERSE PROBLEM

The quantities of interest (QoI) in this work are the angular velocity of Disc 1 and 2. Time series for θ̇1

and θ̇2 are discretized in the time instants corresponding to the experimentally measured values. The forward
problem consists in taking the input parameters x = {k1, k2, d1, d2, µs, µk} and obtaining y = {θ̇1, θ̇2} through
numerical integration. The remaining parameters of the system are kept constant.

The inverse problem aims at finding the vector x that matches the real and simulated responses. A misfit
function J is set such that its maximization provides this, in the form of

J(x) = |ρ1(x)|+ |ρ2(x)| − α ||x− xr|| , (4)

where ρi, the Pearson correlation coefficient, signifies a perfect fit at 1, and is calculated through the expression

ρi(x) = cov(Yi(x), Y expi )

/(
σYi σY exp

i

)
, (5)

with Yi relating to the discretized time series of θ̇i; σ and cov are the usual standard deviation and covariance.
The last term in Eq. (4) is a classical Tikhonov regularization (Engl et al., 2005) to establish a well-posed
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problem (existence, uniqueness and regularity of solution) around the background information xr: the values
of the previous identified parameters (blue) in Table 1. The regularization constant α was chosen heuristically,
via multiple trials, taking the stability of the solution provided by the methods into account.

4. CROSS-ENTROPY METHOD

The main idea of the cross-entropy method consists in recasting the optimization of the misfit function as a
problem of estimating the probability of a rare-event. By treating the input vector as a random variable, X, the
misfit function J(X) rarely achieves its maximum if only one exists, i.e., J(X) ≥ γ is a rare event for a given level
γ ≈ γ∗ = maxJ(x). A technique known as importance sampling can estimate this probability at a faster rate
than a crude Monte Carlo strategy if an optimal sampling distribution is found first (D. P. Kroese, 2011). The
computation of this sampling density, in turn, is related to the minimization of cross-entropy between candidate
sampling densities and the (unknown) optimal one, leading to the stochastic estimator (de Boer et al., 2005)

v∗ = arg max
v

1

N

N∑
i=1

I{J(Xi≥)γ} ln f(Xi; v) , (6)

where IΘ is the indicator function for a given event Θ, N is number of samples, v is the hyperparameter of the
probability density function (PDF) and v∗ is the hyperparameter of the best possible sampling PDF for this
assumed family of densities.

Algorithm 1 summarizes the multi-layered procedure based on these concepts. At each step, the current
PDF is used to sample parameters. Then J(x) is evaluated and a elite group is selected, comprised by the
parameters that provide its highest values. The PDF is updated via Eq. (6) using only the elite group. This is
repeated until the density is concentrated around the optimal parameters.

Algorithm 1 Cross-entropy method for optimization

1: Set initial PDF f(·; v) under hyperparameter vector v0. Set counter t = 1.
2: Generate samples of system parameters X1, ...,XN ∼ f(·; vt−1). Compute the performance function J(X)

for each sample and select the elite samples for the set εt (highest values of J).

3: Solve the stochastic program max
v

∑
Xi∈εt

ln f(Xi; v) to obtain vt. Increase counter by 1.

4: Repeat from step 2 until some stop criterion is met.
5: The final elite set contains an estimation of optimal system parameters.

Usually, a smoothing updating rule is employed when calculating vt, and has relevant impact on convergence.
A common stopping criteria, known as normal updating, is to pause the algorithm when the sum of the standard
deviations is smaller than some tolerance. Both notions were used for the results of following section.

The algorithm progressively concentrates the distribution of each iteration around the unknown value x∗ =
arg maxJ(x). In fact, the method is based on minimizing the Kullback-Leibler divergence between sampling
PDFs and the Dirac delta distribution centered at the optimal parameter value x∗ (D. P. Kroese, 2011), which
“approximates” these densities at each step.

The interesting features of the CE method is that it behaves like a global search algorithm that boasts
theoretical assurance to find the global optimum, if only one global optimum exists (Margolin, 2005). It also
attains very easy implementation, with analytical formulas for Eq. (6); specifically, if normal distributions
are used, the estimator is equivalent to the maximum likelihood estimators for mean and standard deviation
(Rubinstein, 1999). Besides, it has in general very few, intuitive and defined control parameters, namely, sample
size, elite set size, tolerance and smoothing parameters, which is not a common feature for other meta-heuristic
procedures.

The results ahead for the context of drill string dynamics show how the efficiency of the method is comparable
to a common metaheuristic strategy.

5. RESULTS

The inverse problem proposed by the misfit function in Eq. (4) was solved using the cross-entropy method,
via Algorithm 1, for three cases, tackling an increasing number of parameters. Case A uses x = {k1, k2}, Case
B, x = {k1, k2, d1, d2}, and Case C, x = {k1, k2, d1, d2, µs, µk}. The upper and lower bounds considered for
each parameter were 0.1− 10N m/rad for the stiffness, 0.01− 1N ms/rad for the damping and 0.01− 1 for the
friction coefficients. Figures 3 to 5 present the fitting of θ̇1 and θ̇2 for each Case.
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Figure 3: Calibration of angular velocities in Case A (x = {k1, k2}). Zoomed time series on the right.

Figure 4: Calibration of angular velocities in Case B (x = {k1, k2, d1, d2}). Zoomed time series on the right.
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Figure 5: Calibration of angular velocities in Case C (x = {k1, k2, d1, d2, µs, µk}). Zoomed time series on the
right.

The figures clearly show an adequate solution in terms of calibrating θ̇1 and θ̇2, matching the overall frequency
and amplitude in all cases. The lowest Pearson coefficient among all six fits was 0.9532, thus depicting a near-
perfect match. Notably, when allowing more parameters to be changed, the amplitude of the oscillation is better
matched, and Case C even tries to replicate the high frequency variations in θ̇2, which seem to be absent in the
model responses of Case A and B. This initial result reveals, as expected, that the model is capable of reproducing
characteristics of the associated event, and showcase the potential for the CE method as a calibration tool for
the complex torsional dynamics of drill strings, since the experimental time series is in general followed by
the simulated one. This procedure can be used to fine-tune values firstly obtained empirically, to enhance a
simulation. Table 2 compares the resulting values from the inverse problem with the prescribed ones found via
experimental measures, and attests how the global search finds parameters close, in general, to the empirically
estimated.

Table 2: Calibrated parameters for each Case of the inverse problem using the CE method. The blue values
are the experimentally identified ones. Func.Eval. states how many times the forward problem was solved to
reach the optimum.

Parameter Experimental Case A Case B Case C

k1 (N m/rad) 1.1175 1.5185 1.2533 1.4434

k2 (N m/rad) 0.3659 0.3580 0.3667 0.3698

d1 (N ms/rad) 0.0202 0.0202 0.0224 0.0612

d2 (N ms/rad) 0.0167 0.0167 0.0194 0.0312

µs 0.4700 0.4700 0.4700 0.7015

µk 0.3000 0.3000 0.3000 0.3511

Func.Eval −− 700 730 1,125

In comparison, k1 seems to be the hardest parameter to match the experimental values, becoming significant
distant for Case C. This may be due to this input being not so sensible as the others, requiring greater changes
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in value, or may indicate the necessity of reevaluating his experimental estimate or physical modeling, since
a sole parameter appeared problematic in numerical result. The fine-tuning aspect is remarkable when taking
into account the validation presented in Cayres (2018), which notifies that model simulations had a significant
frequency mismatch with the data during the dynamics, only to match it again later in time. While this
tendency can be briefly observed in the time series shown here, such difference was greatly minimized after
numerically calibrating the values. More important, it seems the frequency is maintained but the oscillation
phase is significant to keep the data and model unfitted. Additionally, for a result related to the general behavior,
and considering the stiff property of this system, the model appears to handle well the proposed QoIs.

An efficiency comparison with the standard Genetic Algorithm (GA) from MATLAB is presented in Table 3.
The same stopping criteria was set for GA. The population size was chosen after multiple trials, seeking optimal
convergence in average.

Table 3: Comparison of number of function evaluations required for CE method and GA (300 individuals per
generations).

Case A B C

CE 700 730 1,125

GA 3,300 4,200 3,000

The CE method appears to be significantly faster as a meta-heuristic procedure in its simplest form, gaining
in thousands of required function evaluations. This suggests that further modifications of the method, increasing
its efficiency and making its convergence more robust, may be fruitful to tackle more complex problems.

6. CONCLUDING REMARKS

Identification of stiffness, damping and friction parameters for a drill string experimental set-up simulating
torsional dynamics was presented, showing good fit of the results even in the presence of slip-stick phenomenon.
The proposed values are realistically plausible when compared with experimental identification from a previous
work. The solution of this inverse problem for a (stiff) non-autonomous dynamical system, in presence of friction
effects and noisy data, suggests the utility of the cross method for this context. The comparison with Genetic
Algorithm also showcases how the cross-entropy method is a comparable numerical tool even in its simplistic
form. In future works, the authors intend to extend the parameter search for the motor constants using the
current response, and implement variations of the cross-entropy strategy to evaluate the applicability of the
method.
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