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INTRODUCTION

The equipment used in oil prospecting operations, called drill string, is a long, slender structure under rotation, connected by drill-pipes and auxiliary apparatus. Diverse mechanisms influence in its performance: nonlinear interaction of multiple vibration modes, friction and shock effects, internal and external non-Newtonian flow, hysteretic interaction on the rock contact, etc [START_REF] Wiercigroch | Complex dynamics of drill-strings: Theory and experiments[END_REF][START_REF] Spanos | Oil and gas well drilling: A vibrations perspective[END_REF]. The complexity of its dynamics warrants further works on the modeling approach and the use of numerical procedures that are efficient on the identification of its underlying values [START_REF] Cunha | Computational modeling of the nonlinear stochastic dynamics of horizontal drillstrings[END_REF][START_REF] Liao | Dynamics of vibro-impact drilling with linear and nonlinear rock models[END_REF][START_REF] References Aguiar | Experimental investigation and numerical analysis of the vibro-impact phenomenon[END_REF]. For analysis over any dynamical system, calibration is fundamental. The correct assessment of parameter values is necessary to judge the capacity of a model in simulating phenomena under realistic measures; it is, in fact, a first step in a validation process concerning its properties and feasibility of its predictions [START_REF] Pereira | Numerical application of a stick-slip control and experimental analysis using a test rig[END_REF][START_REF] Real | Experimental analysis of stick-slip in drilling dynamics in a laboratory test-rig[END_REF]. It is also a prerequisite in many uncertainty quantification techniques, where sensitivity analysis and the incorporation of variabilities may be developed over the best combination of inputs that reproduce a desired system response [START_REF] Cunha | Modeling and Uncertainty Quantification in the Nonlinear Stochastic Dynamics of a Horizontal Dsrillstrings[END_REF][START_REF] Real | Stochastic modeling for hysteretic bit-rock interaction of a drill string under torsional vibrations[END_REF].

The Cross-Entropy (CE) method is a stochastic metaheuristic global search algorithm that originated on the topics of rare-event simulation [START_REF] Rubinstein | Optimization of computer simulation models with rare events[END_REF]Rubinstein and Kroese, 2004) and combinatorial optimization [START_REF] Eshragh | A hybrid simulation-optimization algorithm for the hamiltonian cycle problem[END_REF], showing promising results and adaptability also to continuous optimization [START_REF] Rubinstein | The cross-entropy method for combinatorial and continuous optimization[END_REF][START_REF] Rubinstein | The cross-entropy method for continuous multi-extremal optimization[END_REF]. However, in the subject of parameter identification, the method has not achieved common use as other metaheuristic algorithms. The easy implementation and conceptual insight of the procedure are very motivating reasons to check how it compares to similar optimization strategies that became classic in this area.

This work is part of a current project investigating the usefulness of the CE method in engineering applications [START_REF] Dantas | A numerical procedure based on cross-entropy method for stiffness identification[END_REF][START_REF] Dantas | A cross-entropy strategy for parameters identification problems[END_REF], which is used here for calibration in the context of drill string dynamics. The global search capabilities and efficiency of the method are verified through the solution of an inverse problem that seeks to identify parameter values on the torsional dynamics of a validated experimental set-up [START_REF] Cayres | Nonlinear dynamic analysis of dry friction-induced torsional vibration in a drill-string experimental set-up[END_REF][START_REF] Cayres | Analysis of a drill-string experimental set-up with dry friction-induced torsional vibration[END_REF]. For the torsional mode vibration, a common subject is the extreme condition called stick-slip, wherein the drill-bit comes to a sudden stop but the top keeps in dynamic regimestoring energy -until the tip overcomes the rock resistance [START_REF] Ritto | Numerical Analysis of the Nonlinear Dynamics of a Drill-string with Uncertainty Modeling[END_REF][START_REF] Vaziri | Suppression of drill-string stick-slip vibration by sliding mode control: Numerical and experimental studies[END_REF]. This phenomenon is present on the data and simulation of this work, modeled via dry friction. The efficiency of the CE method is compared with an Genetic Algorithm also used to solve the inverse problem. The data was obtained from a experimental set-up previously used by [START_REF] Cayres | Nonlinear dynamic analysis of dry friction-induced torsional vibration in a drill-string experimental set-up[END_REF] for the study of torsional vibration and stick-slip phenomenon, which can be seen in Figure 1. Figure 2 schematically summarizes the test rig, which comprises a shaft connected to three discs. The third disc (Figure 1.c) is coupled to a DC-motor that drives the dynamics. The first and second discs (Figure 1.a and 1.b, respectively) suffer dry friction via the contact pins.

The dynamics of this 2-part system is modeled as in [START_REF] Cayres | Nonlinear dynamic analysis of dry friction-induced torsional vibration in a drill-string experimental set-up[END_REF]:

J 1 θ1 + d 1 ( θ1 -θ2 ) + k 1 (θ 1 -θ 2 ) + T r1 ( θ1 ) = 0 , J 2 θ2 + d 1 ( θ2 -θ1 ) + d 2 ( θ2 -θ3 ) + k 1 (θ 2 -θ 1 ) + k 2 (θ 2 -θ 3 ) + T r2 ( θ2 ) = 0 , d 2 ( θ3 -θ2 ) + k 2 (θ 3 -θ 2 ) = η (K T i -C m η θ3 -T f -J 3 θ3 /η) , L di dt + R i + K E η θ3 = u , (1) 
where J represents the moment of inertia of the discs; d and k mean the damping and stiffness coefficient of each string segment; θ, θ and θ are angular displacement, velocity and acceleration; K T is torque constant, C m speed regulation constant, T f friction torque on motor, K E means voltage constant (back-EMF constant), L inductance, R resistance, i is the current and the transmission factor is denoted η. The subscripts signify, as seen in Figure 2, 3 for the motor, 2 for Disc 2 (middle) and 1 for Disc 1 (end). The forcing voltage is denoted by u, which is modulated by a PI-controller (making the system integro-differential and non-autonomous), explicitly

u = k p (ω ref -θ3 ) + k i t 0 (ω ref -θ3 )dτ . ( 2 
)
where ω ref = 30 RPM is the excitation frequency, k p and k i are the controller parameters. The resistive torques applied by the contact pins provide the dry friction that enables observation of stick-slip. T r1 is modeled as the following [START_REF] Cayres | Analysis of a drill-string experimental set-up with dry friction-induced torsional vibration[END_REF], with a chosen regularization of its discontinuity:

T r1 ( θ1 ) =      N 1 r 1 µ s θ1 /ω s for | θ1 | < ω s , N 1 r 1 µ k + (µ s -µ k ) e -v b | θ1| sign( θ1 ) for | θ1 | ≥ ω s , (3) 
where N 1 is the normal force applied by the pin on Disc 1, r 1 is the distance of pin to the center of Disc 1 and the threshold ω s is set 10 -3 rad/s. The torque on Disc 2 can be active controlled, but for the calibration presented here, T r2 = 0. The state vector of the system of Eqs.

(1) consist in the relative angular displacements, angular velocities and current. Values for the prescribed parameters and experimentally identified ones (blue) can be seen in Table 1. 

FORWARD AND INVERSE PROBLEM

The quantities of interest (QoI) in this work are the angular velocity of Disc 1 and 2. Time series for θ1 and θ2 are discretized in the time instants corresponding to the experimentally measured values. The forward problem consists in taking the input parameters x = {k 1 , k 2 , d 1 , d 2 , µ s , µ k } and obtaining y = { θ1 , θ2 } through numerical integration. The remaining parameters of the system are kept constant.

The inverse problem aims at finding the vector x that matches the real and simulated responses. A misfit function J is set such that its maximization provides this, in the form of

J(x) = |ρ 1 (x)| + |ρ 2 (x)| -α ||x -x r || , (4) 
where ρ i , the Pearson correlation coefficient, signifies a perfect fit at 1, and is calculated through the expression

ρ i (x) = cov(Y i (x), Y exp i ) σ Yi σ Y exp i , (5) 
with Y i relating to the discretized time series of θi ; σ and cov are the usual standard deviation and covariance. The last term in Eq. ( 4) is a classical Tikhonov regularization [START_REF] Engl | Regularization of Inverse Problems[END_REF] to establish a well-posed problem (existence, uniqueness and regularity of solution) around the background information x r : the values of the previous identified parameters (blue) in Table 1. The regularization constant α was chosen heuristically, via multiple trials, taking the stability of the solution provided by the methods into account.

CROSS-ENTROPY METHOD

The main idea of the cross-entropy method consists in recasting the optimization of the misfit function as a problem of estimating the probability of a rare-event. By treating the input vector as a random variable, X, the misfit function J(X) rarely achieves its maximum if only one exists, i.e., J(X) ≥ γ is a rare event for a given level γ ≈ γ * = max J(x). A technique known as importance sampling can estimate this probability at a faster rate than a crude Monte Carlo strategy if an optimal sampling distribution is found first (D. P. [START_REF] Kroese | Handbook of Monte Carlo Methods[END_REF]. The computation of this sampling density, in turn, is related to the minimization of cross-entropy between candidate sampling densities and the (unknown) optimal one, leading to the stochastic estimator (de Boer et al., 2005)

v * = arg max v 1 N N i=1 I {J(X i ≥)γ} ln f (X i ; v) , (6) 
where I Θ is the indicator function for a given event Θ, N is number of samples, v is the hyperparameter of the probability density function (PDF) and v * is the hyperparameter of the best possible sampling PDF for this assumed family of densities. Algorithm 1 summarizes the multi-layered procedure based on these concepts. At each step, the current PDF is used to sample parameters. Then J(x) is evaluated and a elite group is selected, comprised by the parameters that provide its highest values. The PDF is updated via Eq. ( 6) using only the elite group. This is repeated until the density is concentrated around the optimal parameters. Algorithm 1 Cross-entropy method for optimization 1: Set initial PDF f (•; v) under hyperparameter vector v 0 . Set counter t = 1. 2: Generate samples of system parameters X 1 , ..., X N ∼ f (•; v t-1 ). Compute the performance function J(X)

for each sample and select the elite samples for the set t (highest values of J).

3: Solve the stochastic program max v Xi∈ t ln f (X i ; v) to obtain v t . Increase counter by 1.

4: Repeat from step 2 until some stop criterion is met. 5: The final elite set contains an estimation of optimal system parameters.

Usually, a smoothing updating rule is employed when calculating v t , and has relevant impact on convergence. A common stopping criteria, known as normal updating, is to pause the algorithm when the sum of the standard deviations is smaller than some tolerance. Both notions were used for the results of following section.

The algorithm progressively concentrates the distribution of each iteration around the unknown value x * = arg max J(x). In fact, the method is based on minimizing the Kullback-Leibler divergence between sampling PDFs and the Dirac delta distribution centered at the optimal parameter value x * (D. P. [START_REF] Kroese | Handbook of Monte Carlo Methods[END_REF], which "approximates" these densities at each step.

The interesting features of the CE method is that it behaves like a global search algorithm that boasts theoretical assurance to find the global optimum, if only one global optimum exists [START_REF] Margolin | On the convergence of the cross-entropy method[END_REF]. It also attains very easy implementation, with analytical formulas for Eq. ( 6); specifically, if normal distributions are used, the estimator is equivalent to the maximum likelihood estimators for mean and standard deviation [START_REF] Rubinstein | The cross-entropy method for combinatorial and continuous optimization[END_REF]. Besides, it has in general very few, intuitive and defined control parameters, namely, sample size, elite set size, tolerance and smoothing parameters, which is not a common feature for other meta-heuristic procedures.

The results ahead for the context of drill string dynamics show how the efficiency of the method is comparable to a common metaheuristic strategy.

RESULTS

The inverse problem proposed by the misfit function in Eq. ( 4) was solved using the cross-entropy method, via Algorithm 1, for three cases, tackling an increasing number of parameters. Case A uses

x = {k 1 , k 2 }, Case B, x = {k 1 , k 2 , d 1 , d 2 }, and Case C, x = {k 1 , k 2 , d 1 , d 2 , µ s , µ k }.
The upper and lower bounds considered for each parameter were 0.1 -10 N m/rad for the stiffness, 0.01 -1N m s/rad for the damping and 0.01 -1 for the friction coefficients. Figures 3 to 5 present the fitting of θ1 and θ2 for each Case. The figures clearly show an adequate solution in terms of calibrating θ1 and θ2 , matching the overall frequency and amplitude in all cases. The lowest Pearson coefficient among all six fits was 0.9532, thus depicting a nearperfect match. Notably, when allowing more parameters to be changed, the amplitude of the oscillation is better matched, and Case C even tries to replicate the high frequency variations in θ2 , which seem to be absent in the model responses of Case A and B. This initial result reveals, as expected, that the model is capable of reproducing characteristics of the associated event, and showcase the potential for the CE method as a calibration tool for the complex torsional dynamics of drill strings, since the experimental time series is in general followed by the simulated one. This procedure can be used to fine-tune values firstly obtained empirically, to enhance a simulation. Table 2 compares the resulting values from the inverse problem with the prescribed ones found via experimental measures, and attests how the global search finds parameters close, in general, to the empirically estimated. In comparison, k 1 seems to be the hardest parameter to match the experimental values, becoming significant distant for Case C. This may be due to this input being not so sensible as the others, requiring greater changes in value, or may indicate the necessity of reevaluating his experimental estimate or physical modeling, since a sole parameter appeared problematic in numerical result. The fine-tuning aspect is remarkable when taking into account the validation presented in [START_REF] Cayres | Nonlinear dynamic analysis of dry friction-induced torsional vibration in a drill-string experimental set-up[END_REF], which notifies that model simulations had a significant frequency mismatch with the data during the dynamics, only to match it again later in time. While this tendency can be briefly observed in the time series shown here, such difference was greatly minimized after numerically calibrating the values. More important, it seems the frequency is maintained but the oscillation phase is significant to keep the data and model unfitted. Additionally, for a result related to the general behavior, and considering the stiff property of this system, the model appears to handle well the proposed QoIs.

An efficiency comparison with the standard Genetic Algorithm (GA) from MATLAB is presented in Table 3. The same stopping criteria was set for GA. The population size was chosen after multiple trials, seeking optimal convergence in average. The CE method appears to be significantly faster as a meta-heuristic procedure in its simplest form, gaining in thousands of required function evaluations. This suggests that further modifications of the method, increasing its efficiency and making its convergence more robust, may be fruitful to tackle more complex problems.

CONCLUDING REMARKS

Identification of stiffness, damping and friction parameters for a drill string experimental set-up simulating torsional dynamics was presented, showing good fit of the results even in the presence of slip-stick phenomenon. The proposed values are realistically plausible when compared with experimental identification from a previous work. The solution of this inverse problem for a (stiff) non-autonomous dynamical system, in presence of friction effects and noisy data, suggests the utility of the cross method for this context. The comparison with Genetic Algorithm also showcases how the cross-entropy method is a comparable numerical tool even in its simplistic form. In future works, the authors intend to extend the parameter search for the motor constants using the current response, and implement variations of the cross-entropy strategy to evaluate the applicability of the method.

Figure 1 :

 1 Figure 1: Test rig used for the torsional mode of a drill string. Provided by Cayres (2018).

Figure 2 :

 2 Figure 2: Schematic representation of the experimental set-up. Adapted from Pereira et al. (2018).

Figure 3 :

 3 Figure 3: Calibration of angular velocities in Case A (x = {k 1 , k 2 }). Zoomed time series on the right.

Figure 4 :

 4 Figure 4: Calibration of angular velocities in Case B (x = {k 1 , k 2 , d 1 , d 2 }). Zoomed time series on the right.

Figure 5 :

 5 Figure 5: Calibration of angular velocities in Case C (x = {k 1 , k 2 , d 1 , d 2 , µ s , µ k }). Zoomed time series on the right.

Table 1 :

 1 Parameters of the experimental set-up of the drill string torsional dynamics. In blue, values of the parameters experimentally identified in[START_REF] Cayres | Nonlinear dynamic analysis of dry friction-induced torsional vibration in a drill-string experimental set-up[END_REF].

	Parameter Value	Parameter Value
	J 1	0.0288 kg m 2	L	8.437 × 10 -4 H
	J 2	0.0149 kg m 2	R	0.33 Ω
	J 3	0.0237 kg m 2	K T	0.126 N m/A
	k 1	1.1175 N m/rad	K E	0.0602 V s/rad
	k 2	0.3659 N m/rad	T f	0.1196 N m
	d 1	0.0202 N m s/rad	C m	1.784 × 10 -4 N m s/rad
	d 2	0.0167 N m s/rad	k p	2.800
	µ s	0.4700	k i	3.500
	µ k	0.3000	r 1	0.047 m
	N 1	16.3 N	η	8

Table 2 :

 2 Calibrated parameters for each Case of the inverse problem using the CE method. The blue values are the experimentally identified ones. F unc.Eval. states how many times the forward problem was solved to reach the optimum.

	Parameter	Experimental Case A Case B Case C
	k 1 (N m/rad)	1.1175	1.5185	1.2533	1.4434
	k 2 (N m/rad)	0.3659	0.3580	0.3667	0.3698
	d 1 (N m s/rad)	0.0202	0.0202	0.0224	0.0612
	d 2 (N m s/rad)	0.0167	0.0167	0.0194	0.0312
	µ s	0.4700	0.4700	0.4700	0.7015
	µ k	0.3000	0.3000	0.3000	0.3511
	F unc.Eval	--	700	730	1,125

Table 3 :

 3 Comparison of number of function evaluations required for CE method and GA (300 individuals per generations).

	Case	A	B	C
	CE	700	730	1,125
	GA 3,300 4,200 3,000
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