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Abstract 

The development of efficient and low-cost electrocatalysts for oxygen evolution reaction  is 

critical for improving the water electrolysis efficiency. Here we report a strategy using Fe 

substitution to enable the inactive spinel CoAl2O4 to become highly active and superior to the 

benchmark IrO2. The Fe substitution is revealed to facilitate the surface reconstruction into 

active Co oxyhydroxides under OER conditions. It also activates the deprotonation on the 

reconstructed oxyhydroxide to induce negatively charged oxygen as active site, thus 

significantly enhancing the OER activity of CoAl2O4. Furthermore, it promotes the 

pre-oxidation of Co and introduces great structural flexibility due to the uplift of the O 2p 

levels. This results in an accumulation of surface oxygen vacancy along with lattice oxygen 

oxidation that terminates as Al
3+

 leaches, preventing further reconstruction. We showcase a 

promising way to achieve tunable electrochemical reconstruction by optimizing the electronic 

structure for low-cost and robust spinel oxide OER catalysts.  
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Hydrogen has been proposed for long as an energy carrier for a sustainable and clean energy 1 

infrastructure. However, such a hydrogen energy infrastructure has not been realized yet even so 2 

many years have passed since its first proposal. One of the major reasons is the low efficiency and 3 

high material cost of water electrolysis, which is a mean to sustainably produce hydrogen fuel from 4 

water using the electrical energy generated by sustainable resources like solar panels.
1
 The low 5 

energy efficiency for such system is mainly caused by the sluggish reaction kinetics at the anode side 6 

of water electrolyzer,
2
 i.e. where water is oxidized and the oxygen evolution reaction (OER) occurs. 7 

The benchmark anode electrocatalysts are noble metal-based oxides, such as IrO2 and RuO2,
3-4

 which, 8 

however, aggravates the cost problem for water electrolysis. In recent years, great efforts have been 9 

made to explore first-row 3d transition metal oxides as low-cost alternatives for OER.
1, 5

 Toward that 10 

goal, one important progress was made in identifying the active sites for some Co-containing oxides 11 

as oxyhydroxides generated under operando condition.
6-10

 Specifically, many Co-based oxides were 12 

reported to undergo surface self-reconstruction of Co sites to Co (III) oxyhydroxides, offering a 13 

higher activity
6, 9-10

 arising from the di-μ-oxo bridged Co-Co sites.
11

 However, despite revealing the 14 

critical role of the surface reconstruction into oxyhydroxides, such reconstruction sometimes 15 

compromises a stable OER catalysis due to instable surface chemistry.
12

 In addition, how to properly 16 

facilitate the surface reconstruction is still elusive. 17 

Here, we report an approach to promote the surface reconstruction on inactive but low-cost CoAl2O4 18 

(see Supplementary Note 1 for more about CoAl2O4) and to boost its OER performance by 19 

substituting Al with a small amount of Fe. The partially substituted CoFe0.25Al1.75O4 outperforms 20 

IrO2. We demonstrate here that a low level of Fe substitution is able to facilitate the surface 21 

reconstruction of CoAl2O4 by activating the pre-oxidation of Co and optimizing the O 2p level of 22 
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oxide for greater structural flexibility. More importantly, a distinctive reconstruction behavior with 23 

self-termination has been revealed on CoFe0.25Al1.75O4, which enables a stable surface chemistry. In 24 

addition, we suggest that, on the reconstructed surface, the Fe substitution facilitates a two-step 25 

deprotonation process, which leads to the formation of active oxygen sites at a low overpotential and 26 

thus greatly promotes the OER. Finally, the electrolysis application of CoFe0.25Al1.75O4 as OER 27 

catalyst was demonstrated in membrane electrode assembly (MEA) configuration.  28 

 29 

Results  30 

Crystal structure characterization  31 

The CoFexAl2-xO4 (x=0~2.0) oxides were synthesized by a sol-gel method. The crystal structures of 32 

CoFexAl2-xO4 oxides were characterized by powder X-ray diffraction (XRD). As displayed in Fig. 1a, the 33 

diffraction peaks of the as-prepared CoAl2O4 and CoFe2O4 match well with that of the standard cubic spinel 34 

(Fd-3m) oxides. CoFexAl2-xO4 oxides with different Fe substitution amount remain in cubic spinel structure. 35 

Besides, the diffraction peak exhibits certain shift to lower angle with the increase of Fe substitution amount 36 

in the range of 0.25<x<2 (Supplementary Fig. 1). Such peak shift could be ascribed to changes in lattice 37 

parameters induced by different ionic radius of Fe and Al cations and suggests a solid solution property. 38 

However, when the Co local atomic structure was investigated by EXAFS (Fig. 1b, Supplementary Fig. 2), 39 

certain isobestic points, such as at 4.5 Å
-1

, are remarkable, implying a complex property with Co in different 40 

components.
26

 As further observed in Fourier transform (FT) Co K-edge EXAFS (Fig. 1c), two separated 41 

peaks, i.e. Peak II and Peak III, at 2.4~3.1 Å are assigned to the features of CoOh (in octahedral site) and CoTd 42 

(in tetrahedral site). At x≤0.25, no obvious changes are observed for peak II and peak III compared to pristine 43 
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CoAl2O4, indicating that low-level Fe substitution does not change the occupation of Co. The obvious uplift of 44 

these two peaks starts from x=0.5, which could be attributed to the segregation of a component that comprises 45 

more octahedrally coordinated Co. This segregated component is inferred as CoFe2O4 which is in inversed 46 

spinel structure where Co occupy the octahedral site.
27

 Such inference is further evidenced by a Co K-edge 47 

XANES linear combination fitting (LCF) with CoAl2O4, CoFe2O4 and CoFe0.25Al1.75O4 as standard 48 

(Supplementary Fig. 3). The fitting delivers an extremely low R factor, indicating that Co is primarily in 49 

CoAl2O4, CoFe2O4 and CoFe0.25Al1.75O4 components throughout the oxides.  50 

 51 

In addition to the complex behavior of Fe-containing components throughout the oxides, the Fe substitution in 52 

CoAl2O4 also alters the local atomic structure of Co. As observed in Co K-edge EXAFS (Fig. 1c), the 53 

first-shell peak at ~1.5 Å, representative of the metal-oxygen bond, is weakened by Fe substitution, suggesting 54 

lower metal-oxygen coordination number and more oxygen vacancy
28

. Specifically, the EXAFS fitting result 55 

(Supplementary Table 1) of the first-shell peak for CoFexAl2-xO4 and CoAl2O4 reveals that Fe substitution 56 

reduced the average coordination number by ~0.4 at maximum. Such effect, indicating an increase in oxygen 57 

vacancy, is consistent with a decrease in cobalt valence state after Fe substitution which is evidenced by the 58 

shift to lower energy of the Co K-edge XANES (Fig. 1d). The nominal Co valence states (Supplementary 59 

Table 2) are indicated by the K-edge positions when compared to references CoAl2O4 and Co3O4 (see details 60 

in SI). While Fe
3+

 is more electronegative than Al
3+

, after Fe substitution, the K-edge energies of Co slightly 61 

shift to lower absorption energy compared to CoAl2O4, indicating a decrease in Co valence state. This 62 

counterintuitive phenomenon could be rationalized by the creation of oxygen vacancies,
5
 which is also 63 

supported by theoretical calculation (Supplementary Table 3). Indeed, the Fe substitution in CoAl2O4 was 64 

found to reduce the formation enthalpy of oxygen vacancy, which indicates easier formation for oxygen 65 
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vacancy.  66 

 67 

Fig. 1 | Structural characterizations and OER performances of as-prepared CoFexAl2-xO4 catalysts. a, 68 

The powder X-ray diffraction (XRD) patterns of as synthesized CoFexAl2-xO4 (x=0.0~2.0) oxides. b, The Co 69 

K-edge EXAFS spectra of CoFexAl2-xO4 (x=0.1~2.0). c, The Fourier transform (FT) k3χ(R) Co K-edge 70 

EXAFS of CoFexAl2-xO4 (x=0.1~2.0). The inset is schematics of the compositions in the CoFexAl2-xO4 oxide. 71 

d, The normalized Co K-edge XANES spectra of CoFexAl2-xO4 samples and the standard Co3O4 (Sigma 72 

Aldrich) as the references. The K-edge position is determined by an integral method
29

 as described in Methods, 73 

and the details about edge positions and nominal valence state of Co and Fe are shown in Supplementary 74 

Table 2. e, The cyclic voltammetry curves of CoFexAl2-xO4 (x=0, 0.25, and 2) in O2 saturated 1 M KOH with a 75 

scan rate of 10 mV s
-1

. The inset is the corresponding Tafel plots after oxide surface area normalization, 76 

capacitance correction, and iR correction. The error bars represent the standard deviation from three 77 

independent measurements. The grey dashed line shows the best IrO2 OER performance reported to date.
4
 f, 78 

The OER current densities (left axis) of CoFexAl2-xO4 at 1.55 V vs. RHE. The composition ratio of 79 

CoFe0.25Al1.75O4 component (right axis) in CoFexAl2-xO4 oxides is plotted to show its correlation with the 80 

OER activity. g, The cyclic voltammetry curves of CoFexAl2-xO4 (x = 0~ 2) in O2 saturated 1 M KOH with a 81 

scan rate of 10 mV s
-1

 between 0.8 and 1.5 V vs RHE. The upper limit of the potential window is capped to 82 

show the pseudocapacitive behavior preceding to OER. 83 

 84 

 85 
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OER activity  86 

The spinel CoFexAl2-xO4 oxides were then measured for their electrocatalytic OER performances under 87 

alkaline condition (see details in Methods). Supplementary Fig. 4 shows their steady OER cyclic voltammetry 88 

(CV) curves. The current density was normalized to the surface area of oxides to present the intrinsic activity, 89 

with the surface area of oxides being determined by Brunauer-Emmett-Teller (BET) measurements 90 

(Supplementary Fig. 5 and Supplementary Table 4). Ohmic drop iR correction was applied to compensate the 91 

potential loss from the resistance of the electrolyte solution. As observed in Supplementary Fig. 4, among these 92 

spinel oxides, CoFe0.25Al1.75O4 is the best-performing one. Comparable OER performance is also observed for 93 

low-level Fe substituted oxides at x=0.1 and 0.5. In contrast, when further increasing the Fe substitution, 94 

significant drop in activity is found as x exceeds 0.5 in CoFexAl2-xO4. Fig. 1e shows the selected OER CV 95 

curves for x= 0, 0.25, and 2. Much better OER activity is found for x=0.25 than for x=0 and x=2. As seen in 96 

the Tafel plots given in the inset of Fig. 1e, the OER overpotential for CoFe0.25Al1.75O4 (at 10 μA cm
-2

oxide) is 97 

approximately 70 mV lower than that for CoAl2O4 and CoFe2O4 (Supplementary Fig. 6). Such activity contrast 98 

indicates a special role of Fe in oxides at the low substitution level. In addition, IrO2 previously benchmarked 99 

is also shown in the Tafel plot for comparison.
4
 As observed, the electrocatalytic activity of the 100 

best-performing CoFe0.25Al1.75O4 outperforms the activity of the benchmark IrO2 catalyst. Long-term stability 101 

tests (Supplementary Fig. 7) of CoFexAl2-xO4 (x=0, 0.25 and 2) oxides were carried out at constant current 102 

density of 10 μA cmox
-2

 in 1 M KOH for 10 h. All measured samples exhibit negligible potential loss, which 103 

indicates a good stability for these spinel catalysts under OER conditions. The best-performing catalyst, 104 

CoFe0.25Al1.75O4, was further carried Chronopotentiometry test for 48 hours under 20 μA cmox
-2

(~3.5 mA 105 

cmdisk
-2

). As shown in the Supplementary Fig. 8 a, b, the CoFe0.25Al1.75O4 still shows negligible activity change 106 

after 48-hour test, which demonstrates a superior stability of CoFe0.25Al1.75O4 in alkaline for OER.  107 
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 108 

Composition effect on OER 109 

We then investigate the OER promotion at low substitution level and the detrimental effect at higher 110 

substitution level. Firstly, the CoFe0.25Al1.75O4 component may primarily contribute to the OER activity 111 

according to the observed composition dependence. We then carried out LCF for the Co K-edge XANES using 112 

CoFe0.25Al1.75O4 as standard in order to study the composition throughout the substituted oxides 113 

(Supplementary Fig. 3 and Supplementary Table 5). As found by the LCF (Fig. 1f, green line), the composition 114 

ratio of the CoFe0.25Al1.75O4 component is abundant at low substitution level such as x=0.1 and 0.25 but 115 

become negligible as x ≥1. This trend correlates well with the OER activities of CoFexAl2-xO4 oxides (Fig. 1f, 116 

purple line). Thus, it suggests that the CoFe0.25Al1.75O4 component is primarily responsible for the significant 117 

OER enhancement. Besides, the consistent trend is also observed for the pseudocapacitive charge in CV before 118 

OER region (Supplementary Fig. 9) which is quantified from CVs (Fig. 1g) by previously reported 119 

approaches.
30-31

 The pseudocapacitive charge is particularly large at low substitution level but significantly 120 

decrease at high Fe substitution (x ≥ 1). The pseudocapacitive charge indicates the redox of surface active 121 

sites,
31

 and its consistent trend with OER activities throughout the oxides suggests that the amount of active 122 

sites is a dominating factor for OER activity in our case. Thus, the strong correlation between OER activity 123 

and the composition ratio should be ascribed to the CoFe0.25Al1.75O4 component, which may govern the 124 

formation of active sites.  125 

 126 

Active site identification 127 

Attention was then paid on the dynamic changes at metal sites during the electrochemical process. Note that 128 

there is nearly no change in the valency of Co and Fe in CoFexAl2-xO4 (Fig.1d, Supplementary Fig. 10, and 129 

Supplementary Table 2) and the local atomic structure of Fe site in CoFe0.25Al1.75O4 remains unchanged under 130 
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OER ( Supplementary Fig. 11). The pre-oxidation of Co (II) in CoFe0.25Al1.75O4 during the potential sweeps is 131 

proposed to play a critical role in evolving active species (the preclusion of the pre-oxidation of Fe (III) to 132 

evolve active species is shown in SI). Earlier studies have revealed the importance of pre-oxidation of Co (II) 133 

in oxides for OER, where Co (II) is inclined to be oxidized to Co (III) or higher oxidation state, which is 134 

believed to be a critical step to generate active oxyhydroxide sites for OER.
32-33

 To study the pre-oxidation of 135 

Co (II) in CoAl2O4 and CoFe0.25Al1.75O4, their cyclic voltammetries (1
st
 and 2

nd
 cycles) are investigated (Fig. 136 

2a). For both CoAl2O4 and CoFe0.25Al1.75O4, the 1
st
 cycle display a larger pseudocapacitive charge than 2

nd
 137 

cycle and the CV profiles exhibit negligible changes during subsequent cycles (Supplementary Fig. 12). Such 138 

electrochemical behaviors suggest that the surface of catalysts might undergo an irreversible surface 139 

reconstruction into, as reported, the oxyhydroxide
10

, evolving a stable catalytic surface for OER. In addition, 140 

we found that the oxyhydroxide formation here displays different pseudocapacitive behaviors depending on 141 

the presence or not of Fe. To be specific, the anodic peak in 1
st
 cycle appears at ~1.32 V for CoFe0.25Al1.75O4, 142 

while a much more anodic one is observed for CoAl2O4 (~1.41 V), suggesting a promoting effect of Fe on the 143 

pre-oxidation of Co (II) and facilitating the subsequent formation of Co oxyhydroxide. For CoFe0.25Al1.75O4, 144 

significant differences are observed between the 1
st
 cycle and 2

nd
 cycle in oxidation peak as well as the 145 

pseudocapacitive charge, indicating a change in surface chemistry, while no such marked contrast was 146 

observed for CoAl2O4. Thus, a more thorough reconstruction may happen on the surface of CoFe0.25Al1.75O4. 147 

According to the aforementioned pseudocapacitive behaviors, such reconstruction should be ascribed to the 148 

presence of CoFe0.25Al1.75O4 component. Then, as observed in the OER region, the overpotential for triggering 149 

the OER by CoFe0.25Al1.75O4 is greatly reduced at 2
nd

 cycle while almost no such difference is detected 150 

between 1
st
 and 2

nd
 cycle for CoAl2O4, indicating that the reconstruction process in the presence of Fe is a 151 

critical step for OER. In the 2
nd

 and subsequent cycles, reversible redox peaks are observed for CoAl2O4 and 152 
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CoFe0.25Al1.75O4 in pseudocapacitive range, suggesting reversible redox reactions on the reconstructed 153 

surfaces. For CoAl2O4, the major anodic peak appears at ~1.38 V, which could be assigned to Co (III) / Co (IV) 154 

transition as suggested in previous literature
34

. However, the Co (III) / Co (IV) transition cannot be 155 

rationalized without an earlier notable Co (II) / Co (III) anodic features (should appear at ~1.2 V vs RHE). 156 

Besides, its high intensity also contradicts the fact that only a small portion of Co cation in Co-based oxides 157 

could be reached and oxidized into Co (IV)
33, 35

. Considering that the surface has reconstructed during the 1
st
 158 

cycle, we believe that this anodic peak at ~1.38 V should be primarily attributed to the delayed Co (II) / Co 159 

(III) transition. Since the anodic process on oxyhydroxide surface can be viewed as deprotonation process 160 

with oxidation of metal cation,
36

 the delayed Co (II) oxidation for CoAl2O4 suggests a difficult deprotonation 161 

process. For CoFe0.25Al1.75O4, an obvious anodic wave is observed at ~ 1.2V which is assigned to Co (II) / Co 162 

(III) transition.
9, 34

 This observation suggests an easier deprotonation process and activated Co (II) oxidation 163 

due to the Fe substitution. Such Co (II) / Co (III) redox is followed by a double layer charging response, 164 

which may result from the large surface area of the reconstructed surface and suggests a diffusion of a 165 

distribution of protons on the surface
37

. After such anodic redox of Co species, CoFe0.25Al1.75O4 exhibit a much 166 

lower overpotential required for triggering OER than that for CoAl2O4 (~70 mV lower as indicated in Fig. 1e). 167 

Thus, it is clear that in the presence of Fe, highly active oxyhydroxides would be induced along with the 168 

reconstruction of oxide surface. Therefore, the Fe substitution is inferred to activate the Co pre-oxidation at 169 

low potential, facilitating both the surface reconstruction and the subsequent evolution of surface active sites. 170 

Such inference is further substantiated by in-situ XANES and the active species as identified by in-situ 171 

EXAFs.   172 

 173 
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 174 

Fig. 2 | in-situ investigation on pre-OER behaviors of catalysts and schematic illustration of surface 175 

reconstruction and deprotonation process. a, The pseudocapacitive behavior in the 1
st
 and 2

nd
 cycles of 176 

CoFe0.25Al1.75O4 and CoAl2O4 during the cyclic voltammetry cycling. b,c, The normalized in-situ Co K-edge 177 

XANES (left) under the different potentials of 1.05, 1.20, 1.42, and 1.52 V (vs. RHE) with Co3O4 (Sigma 178 

Aldrich) as the references, as well as the in-situ Fourier transform (FT) k3χ(R) Co K-edge EXAFs (right) 179 

under open circuit (OC) and 1.5 V (vs. RHE): (b) CoAl2O4 and (c) CoFe0.25Al1.75O4. The peak I, II, and III in 180 

FT-EXAFS are assigned to M-O, MOh-MOh, and MOh-MTd radial distance, respectively. d, The Co L-edge 181 

EELS spectra along with the line pathway as shown in e, scanning transmission electron microscopy (STEM) 182 

of CoFe0.25Al1.75O4 after 100 cycles. The mark points denote the scanning distance along with the path way 183 

(nm): 0, 10.2, 20.3, 26.4, 30.1, 36.6, 42.7 and 48.3. f, The elemental ratio of O, Co, Fe (left axis) and the 184 

white-line ratio of Co L-edge (right axis) along with the line pathway. The white-line ratio is determined by 185 

the intensity of L3 and L2 peaks in EELS spectra.
38

 g,h, The HRTEM images to show the surface regions for 186 

(g) as-prepared CoFe0.25Al1.75O4; (h) CoFe0.25Al1.75O4 after 2 cycles i, The reconstruction process from spinel 187 

CoFe0.25Al1.75O4 into oxyhydroxide with activated negatively charged oxygen ligand. j, The in-situ Co 188 

oxidation state of CoFe0.25Al1.75O4 and CoAl2O4 (i.e. x=0) under the different potentials of 1.05, 1.20, 1.42, and 189 

1.52 V (vs. RHE). k,l, The proposed deprotonation mechanism before OER are shown for (k) CoFe0.25Al1.75O4 190 

and (l) CoAl2O4.  191 

 192 

 193 

In Fig. 2b and 2c (right diagram), the in-situ Co K-edge Fourier transform (FT) EXAFS spectra without and 194 
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with an applied potential of 1.5 V (vs RHE) are shown for CoFe0.25Al1.75O4 and CoAl2O4 (x=0). At open circuit, 195 

the FT-EXAFS profiles for CoFe0.25Al1.75O4 and CoAl2O4 (x=0) are quite similar. The Peak I at ~1.5 Å is 196 

referred to an average metal-oxygen bond length. Two separated peaks, i.e. Peak II and Peak III at 2.4 Å and 197 

3.1 Å, respectively, are assigned to the radial distance of CoOh (Co in octahedral site) and CoTd (Co in 198 

tetrahedral site) to their neighboring metal atoms. Because the Co fraction does not change in CoFexAl2-xO4 199 

with the Fe substitution, the ratio of Peak II to Peak III represents the composition ratio of CoOh and CoTd in 200 

these oxides. Compared with the profiles collected at open circuit, the Peak II of Co K-edge in both 201 

CoFe0.25Al1.75O4 and CoAl2O4 increase with the applied potential of 1.5 V. Such increase of the Peak II 202 

indicates an accumulation of Co atoms in edge-sharing octahedral coordination
8
, which is attributed to the 203 

formation of Co oxyhydroxide which is in edge-sharing CoO6 octahedral structure.
33

 Notably, a much higher 204 

ratio of Peak II / Peak III is observed for CoFe0.25Al1.75O4 as compared to that for CoAl2O4, suggesting a 205 

consistent conclusion as our observation in 1
st
 cycle of CV that the reconstruction into oxyhydroxide is more 206 

thorough for CoFe0.25Al1.75O4. Such reconstruction of Co on the surface for CoFe0.25Al1.75O4 is also evidenced 207 

by STEM-EELS (Fig. 2d and 2e) and HRTEM (Fig. 2g and 2h) at the reconstructed surface. Under 208 

STEM-EELS, a notable increase of elemental ratio of Co (Co%) at the near surface of CoFe0.25Al1.75O4 209 

particles is detected (Supplementary Fig. 13 and Fig. 2f), which would be a result of Co oxyhydroxide 210 

formation on surface. The white-line ratio for Co L edge (Fig. 2f) decreases and indicates increased oxidation 211 

state
39

, which could be an effect of irreversible of electrochemical oxidation of Co (II) to form Co (III) 212 

oxyhydroxide during the 1
st
 cycle. Under HRTEM, the generated oxyhydroxide can be observed on the 213 

reconstructed surface of oxide. Thus, the surface chemistry of CoFe0.25Al1.75O4 is changed by reconstruction 214 

from oxide into oxyhydroxide (Fig. 2i). As reported that Co oxyhydroxides evolved as the active species for 215 

many Co-based oxide catalysts,
7, 9-10, 32

 we thus believe that the reconstruction facilitated by Fe substitution is 216 
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the most critical step for evolving active surface oxyhydroxide.  217 

 218 

Fig. 219 

In the cases of active oxyhydroxides, some studies proposed a so-called active oxygen species,
21-22, 40

 which is 220 

created during the deprotonation (anodic sweep) step, as the ultimate active site. Thus, considering the 221 

observed alternation of anodic peak by Fe substitution in 2
nd

 CV cycle, the dynamic valence state of Co during 222 

the anodic sweep was then examined by in-situ XANES. Fig. 2b and 2c (left diagram) display the Co K-edge 223 

XANES of CoFe0.25Al1.75O4 and CoAl2O4 (x=0) oxides recorded at 1.05, 1.20, 1.42, and 1.52 V (vs. RHE), 224 

respectively. The K-edges in XANES of both oxides shift to higher energy, indicating the oxidation of Co. The 225 

corresponding nominal valence states of Co in CoFe0.25Al1.75O4 and CoAl2O4 under each applied potential are 226 

plotted in Fig. 2j. The valency increment in the pseudocapacitive region could be primarily observed in region 227 

I (1.05 – 1.20 V) and region II (1.20 – 1.42 V), and the Co behavior in pre-OER stage can be found in region 228 

III (1.42 – 1.52 V). The increase of Co valency could be viewed as deprotonation process on the reconstructed 229 

surface of catalysts. As observed, in pseudocapacitive range (region I and region II), the CoFe0.25Al1.75O4 230 

exhibits an increase of valency in both region I and region II. Whereas, the valency for CoAl2O4 increases only 231 

in region I, suggesting a limited deprotonation process. Its next deprotonation process is only observed at 232 

higher potential in the region III. Thus, the Fe substitution is likely to facilitate the deprotonation process at 233 

low potential to form active oxygen species on the surface, which accounts for the OER activity enhancement. 234 

Here, to illustrate the role of Fe in deprotonation process, we propose two proton/electron transfer processes 235 

for evolving active oxygen sites on CoFe0.25Al1.75O4 surface. As shown in the Fig. 2k, the first deprotonation 236 

process on CoFe0.25Al1.75O4 should start at the bridged OH linked to both Co and Fe center, which is 237 

responsible for the valency increment of Co (II) cation, and such process on bridged OH could be facilitated 238 
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by its neighboring Fe
3+

 center. The first deprotonation process is followed by another deprotonation process at 239 

terminal OH linked to Co or Fe center. Similar deprotonation process was also reported for NiFexOOH
22

. 240 

Unlike NiFexOOH where the Fe substitution anodically shifts the Ni oxidation peak
22, 36

, an opposite behavior 241 

was observed here for Fe substituted CoAl2O4. The suppressing effect of Fe on Ni oxidation was explained by 242 

the kinetics barrier for the deprotonation of terminal OH linked to Fe center.
36

 Thus, on the basis of the 243 

activated Co oxidation in our study, we believe that the second deprotonation process should be at the terminal 244 

OH linked to Co center, and the activated Co oxidation is ascribed to the reduced kinetic barrier for the proton 245 

abstraction at Co site. The second process with one proton abstraction is not compensated by the metal 246 

oxidation but rather by negatively charged oxygen ligand (O*) that serves as active site. However, for 247 

CoAl2O4, during the corresponding pseudocapacitive range, it merely undergoes deprotonation process on 248 

bridged OH (Fig. 2l). The following deprotonation for CoAl2O4 on the terminal OH is greatly delayed and 249 

OER does not occur till the second deprotonation happens, suggesting this process as a prerequisite for OER. 250 

Thus, the critical role of Fe is to facilitates the deprotonation process to generate active oxygen site at lower 251 

potential on CoFe0.25Al1.75O4, thereby leading to a lower overpotential for OER. It should be noted that the 252 

redox reaction on the reconstructed oxyhydroxide surface would be greatly affected by the reconstruction 253 

process in the 1
st
 cycle. As also observed in our pH dependence measurement (Fig. 3a), the redox peak is 254 

greatly altered, not simply shifted, by changing the pH of electrolyte. Especially, the redox peak is even muted 255 

at pH ≤13. Clearly, such alternation is led by a pH-sensitive surface reconstruction, which results in forming 256 

surface oxyhydroxide in different state with varied pH. Such pH-sensitive surface reconstruction suggests that 257 

it may include certain decoupled proton/electron transfer process such as lattice oxygen oxidation
41

 which is 258 

further demonstrated in the following section.  259 
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  260 

Fig. 3 | Electronic interpretation of the effect of Fe substitution on surface reconstruction. a, Cyclic 261 

Voltammetry (CV) of CoFexAl2-xO4 (x=0.0, 0.25 and 2.0) scanned in O2-saturated KOH (pH= 12.5~14) at a 262 

scan rate of 10 mV s
-1

. b, The computational models of CoFexAl2-xO4: (top) x=0, (middle) x=0.25, (Bottom) 263 

x=2. c, The computed Co 3d, O 2p density of state (PDOS) of CoFexAl2-xO4 (x=0, 0.25 and 2.0). d, The OER 264 

overpotential at 10 μA cm
-2

oxide and the O 2p band center relative to Fermi level (-O 2p) for CoFexAl2-xO4 265 

(x=0.0, 0.25 and 2.0) e, The schematic band diagrams of CoFexAl2-xO4 (x=0, 0.25 and 2.0). The Co 3d-band in 266 

the diagram represents the highest occupied state and the lowest unoccupied state. f, The schematic diagram of 267 

a surface reconstruction mechanism for CoFe0.25Al1.75O4.  268 

 269 

 270 

Interpretation of O 2p  271 

As aforementioned, the active oxygen site is generated by the deprotonation on the oxyhydroxide surface and 272 

the reconstruction for forming surface oxyhydroxide serves as the prerequisite for efficient OER catalysis. We 273 
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have also mentioned that the Fe-facilitating reconstruction is dominated by the CoFe0.25Al1.75O4 component 274 

and may involve certain decoupled proton/electron transfer process. The inner driving force for the 275 

reconstruction is further studied by density functional theory (DFT) calculation. The electronic density of state 276 

(DOS) calculation is adopted to examine the alternation in electronic structure of oxides by Fe substitution. 277 

The computational models for CoFexAl2-xO4 (x=0, 0.25, and 2) are shown in Fig. 3b (see modelling and 278 

calculation details in SI). The projected density of state (pDOS) of CoFexAl2-xO4 (x=0, 0.25, and 2) oxides and 279 

their band center energies are given in Fig. 3c (see more details in Supplementary Table 6). As found for band 280 

center energies, the Fe substitution in CoAl2O4 uplifts the O 2p-band center in energy closer to the Fermi level. 281 

However, as Al
3+ 

is fully replaced by Fe
3+ 

to form CoFe2O4, it becomes an inverse spinel structure and the O 282 

2p-band center greatly moves down in energy. The PDOS results reveal that Fe substitution could either uplift 283 

or downshift the O 2p level depending on the substitution level. Moreover, the position of O 2p-band center 284 

relative to Fermi level shows consistent trend with the OER activity of CoFexAl2-xO4 oxides (x=0, 0.25 and 2) 285 

(Fig. 3d). It is also noteworthy that the OER activity of CoFexAl2-xO4 oxides is greatly affected by their 286 

reconstruction process under OER conditions. Thus, the O 2p level is likely an influential factor to the surface 287 

reconstruction. Earlier studies have revealed that the O 2p-band level relative to the Fermi level was always 288 

associated with some activity-related structural parameters for perovskite oxides.
14, 42-44

 For example, a linear 289 

relationship was established between the O 2p-band level and the oxygen vacancy (VO
••
) formation energy in 290 

some perovskite oxides, in which the low VO
••

 formation energy could be predicted by high O 2p level close to 291 

Fermi level.
14, 42

 Given that spinel structure contains octahedral MO6 unit as well as that of perovskite oxides,
5, 292 

45
 the uplifted O-2p band center by Fe substitution should also facilitate the VO

••
 formation in spinel oxides. 293 

Consistent results have been revealed above in the structural analysis of substituted oxides where Fe 294 

substitution lowers the metal-oxygen coordination number and decrease the Co valence state, suggesting an 295 
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increased oxygen vacancy concentration. In addition to the influential role of O 2p level on bulk VO
••
 296 

formation, it is also governing the lattice oxygen oxidation mechanism for oxides.
41, 46-47

 With the uplifted O 297 

2p center closer to Fermi level, the oxygen character in the antibonding state below Fermi level becomes more 298 

dominant (Fig. 3e). As an anodic potential is applied, the Fermi level shifts deeper into O 2p state and the 299 

holes in oxygen state are created as the O2/H2O redox potential is aligned with the O 2p state energy in the 300 

oxide, which leads to the oxidation of lattice oxygen.
41, 48

 Thus, credited to the uplifted O 2p level, the 301 

oxidation of lattice oxygen in CoFe0.25Al1.75O4 should be more favorable than that in CoAl2O4 and CoFe2O4. 302 

Note that the lattice oxygen mediated OER mechanism should not dominate the OER here. This is also 303 

confirmed by a cycling test of CoFe0.25Al1.75O4 oxides over 100 cycles (shown in Supplementary Fig. 12). The 304 

lattice oxygen-mediated OER is always featured with unstable oxide due to cation leaching on catalysts and 305 

thus leading to activity increase with cycling.
47

 For example, Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) as well-identified 306 

oxygen active-perovskite catalysts exhibit ~4-fold current increase over 50 cycles.
12

 In contrast, the 307 

CoFe0.25Al1.75O4 did not exhibit marked OER current variation during CV cycling, suggesting that the 308 

reconstructed surface is stable and the involvement of lattice oxygen is not notable during the OER catalysis. 309 

This is further evidenced by the electrochemical study on active surface area and HRTEM (Fig. 2g, 2h and 310 

Supplementary Fig. 14) of CoFe0.25Al1.75O4 after reconstruction and 100 cycles. The reconstruction in 1
st
 cycle 311 

is found merely at limited depth (~5 nm) on the surface of CoFe0.25Al1.75O4 and the reconstructed surface 312 

keeps quite stable during subsequent cycling. Please also see detailed discussion in Supplementary Note 2. 313 

Thus, the stable surface chemistry after reconstruction excludes the involvement of lattice oxygen in OER 314 

catalysis on the reconstructed surface, and also keeps the accuracy of the estimation of the specific activity 315 

normalized to BET surface area. However, we believe that the surface reconstruction should start with the 316 

lattice oxygen oxidation, which results in the aforementioned pH-sensitive reconstruction (Fig. 3a). According 317 
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to early report, high VO
••
 (oxygen vacancies) concentration (especially VO

••
 on the surface) would grant 318 

structural flexibility for surface reconstruction on oxides.
6
 As a further step, even though the induced VO

••
 319 

grants certain structural flexibility in oxides, these VO
••
 are actually stabilized in the bulk crystal. In another 320 

word, such flexibility has to be triggered by additional perturbation such as the lattice oxygen oxidation. This 321 

is also evidenced by our theoretical study and XANES result of CoFe2O4, where CoFe2O4 exhibits the lowest 322 

enthalpy for oxygen vacancy formation (Supplementary Table 3) and experimentally possessing the highest 323 

oxygen vacancy concentration (Supplementary Table 2) compared to CoAl2O4 and CoFe0.25Al1.75O4. However, 324 

neither an obvious reconstruction-related current response in the first cycle nor a redox peak subjected to 325 

oxyhydroxide during the second cycle can be observed for CoFe2O4 in CV (Supplementary Fig. 15). Besides, 326 

compared to CoAl2O4 and CoFe0.25Al1.75O4, CoFe2O4 shows the weakest pH-dependent OER performance (Fig. 327 

3a) and the lowest O 2p band center. Thus, we believe that the lattice oxygen oxidation at the pristine surface 328 

to creating more surface VO
••

 should be a critical trigger for the surface reconstruction. This is further 329 

evidenced by the elemental ratio on the surface of CoFe0.25Al1.75O4 after 100 cycles obtained by STEM-EELS 330 

(Fig. 2f). The O% greatly decreases along with notable Co enrichment on the reconstructed surface, which 331 

implies the critical role of creating surface oxygen vacancy on triggering Co reconstruction. Thus, it is 332 

believed that, along with the lattice oxygen oxidation,
41

 a great structural instability emerges as the oxygen 333 

vacancies further accumulate on the oxide surface and induce the surface reconstruction (Fig. 3f) into 334 

oxyhydroxides that is more stable in alkaline.
19-20

 As a result, such dynamic instability in electrochemical 335 

process can be electronically indicated by the O 2p level.  336 

 337 

 338 
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 339 

Fig. 4 | Reconstruction terminating mechanism with Al
3+

 leaching. a, ICP-MS test of the electrolyte for 340 

CoFe0.25Al1.75O4 cycling under operation time of 0~1000s (in 1 M KOH under 20 μA cmox
-2

). The dissolubility 341 

of Al in terms of         
  is far beyond the concentration of Al

3+
 in our tested electrolytes. b, The 342 

schematic of Al
3+

 leaching along with surface reconstruction of spinel oxide. c, The computational model for 343 

CoFe0.25Al1.75O4 after Al
3+

 leaching. The spinel structure beneath reconstructed surface was confirmed under 344 

HRTEM (Supplementary Fig. 14b). d, The schematic band diagrams of CoFe0.25Al1.75O4 with and without Al
3+

 345 

vacancy. e, The schematic of CoFe0.25Al1.75O4 that terminates its surface reconstruction due to the termination 346 

of lattice oxygen oxidation. 347 

 348 

 349 

Also importantly, while many reconstructable catalysts like Ba0.5Sr0.5Co0.8Fe0.2O3-δ exhibit unstable surface 350 

chemistry and become notably amorphous after cycling
12

, CoFe0.25Al1.75O4 is distinguished for its stable 351 

surface chemistry after reconstruction as discussed above. The reconstruction triggered by lattice oxygen 352 

oxidation was terminated after 1
st
 cycle and the reconstructed surface is highly active and stable in the 353 

subsequent cycles. To investigate the mechanism of such reconstruction termination, we carried ICP test on 354 

the electrolyte used for CoFe0.25Al1.75O4 cycling. It was found that the leaching of Al cations was notable while 355 

Co and Fe cations both exhibited negligible leaching (Supplementary Table 7). Besides, observed under 356 

operando timeline, the Al leaching was found quickly finished as the OER happened, and no notable Al 357 
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leaching is found thereafter (Fig. 4a), which is consistent with the reconstruction process observed in CV. 358 

Hence, we believe that the leaching of Al is closely associated with the reconstruction process. As Al leached 359 

with the reconstruction at the very beginning, such leaching would alter the local electronic structures of oxide 360 

to prevent further reconstruction (Fig. 4b). We further employed DFT to study the local electronic structure for 361 

the lattice with Al vacancy (Fig. 4c). As illustrated in Fig. 4d and Supplementary Fig. 16, the O 2p level 362 

decreases in energy as Al vacancy is introduced in the lattice. As a result, the lattice oxygen oxidation would 363 

be terminated as O 2p level is low in energy, and the reconstruction thus stops accordingly as no more oxygen 364 

vacancies created (Fig. 4e). Such termination mechanism makes CoFe0.25Al1.75O4 a discernable catalyst which 365 

shows a stable surface chemistry after reconstruction and is capable to carry efficient and stable OER catalysis 366 

on reconstructed surface. 367 

 368 

Fig. 5| Competitive potential in electrolyzers application. a, Mass activity of CoFe0.25Al1.75O4, 369 

Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF)
1
, Pr0.5Ba0.5CoO3-δ (PBCO)

44
 and IrO2 nanoparticles (NPs)

4
. b, The material mass 370 

and cost for delivering a current of 10 A at overpotential of 0.3 V by CoFe0.25Al1.75O4, Ba0.5Sr0.5Co0.8Fe0.2O3 371 

(BSCF)
1
, (Pr0.5Ba0.5)CoO3-δ (PBCO)

44
, (Sm0.5Ba0.5) CoO3-δ (SBCO)

44
, (Gd0.5Ba0.5) CoO3-δ (GBCO)

44
, 372 

(Ho0.5Ba0.5)CoO3-δ (HBCO)
44

, IrO2 nanoparticles (NPs)
4
, IrO2 (bulk, Premetek Co.)

49
 and RuO2

50
. The cost is 373 

evaluated by the cost of metal elements in oxides. c, The polarization curves of the electrolyzer with 374 

CoFe0.25Al1.75O4 (1 mg cm
-2

) and IrO2 (Premetek Co., 1 mg cm
-2

) as anode catalyst and Pt/C (TKK 47.1 wt% Pt, 1 375 

mg cm
-2

) as cathode catalyst. Inset is the polarization curves of CoFe0.25Al1.75O4 and IrO2 in mass current density. 376 

Cell temperature was maintained at 60 
o
C. The experimental details are shown in Methods.  377 

  378 

With all advantages discussed above, CoFe0.25Al1.75O4 exhibits competitive potential in alkaline electrolyzer 379 

applications.  Its mass activity (Fig. 5a) outperforms IrO2 and the benchmarked transitional metal oxides (e.g. 380 

Ba0.5Sr0.5Co0.8Fe0.2O3-δ 
1
 and Pr0.5Ba0.5CoO3-δ

44
).  Its cost for given performance is lower than that of noble 381 
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metal oxides and other reported transition metal perovskites by orders of magnitude (Fig 5b). CoFe0.25Al1.75O4 382 

was further examined in a homemade membrane electrode assembly (MEA) electrolysis cell with an anion 383 

exchange membrane as the solid electrolyte (Supplementary Fig. 17). The CoFe0.25Al1.75O4 exhibited a notable 384 

higher mass efficiency as well as higher areal activity than IrO2 (Fig. 5c). Its performance in MEA is also 385 

better than that reported for Ba0.5Sr0.5Co0.8Fe0.2O3-δ under similar condition (Supplementary Fig. 18).
6
  386 

 387 

Conclusion 388 

In summary, we show a promoted surface reconstruction on CoAl2O4 by Fe substitution. CoFe0.25Al1.75O4 is 389 

proven to be a critical component in the CoFexAl2-xO4 (x=0.0~2.0) series as it undergoes surface 390 

reconstruction. The surface reconstruction has been investigated by HRTEM, EELS, and XAFS. Evidenced by 391 

operando XAFS, Fe activates two deprotonation processes in reconstructed oxyhydroxides, leading to the 392 

formation of active oxygen species at a low overpotential. We interpret that the uplift of O 2p level by Fe 393 

substitution facilitates the creation of surface oxygen vacancies (VO
••
) along with the lattice oxygen oxidation 394 

under OER condition and grants a greater structural flexibility for reconstruction. The O 2p moves down as 395 

Al
3+

 leaches at the beginning of reconstruction and further terminates the surface reconstruction for a stable 396 

surface chemistry. Under this strategy, CoFe0.25Al1.75O4 exhibits outstanding intrinsic activity, mass efficiency, 397 

and stability toward OER. Its high performance has been also demonstrated in MEA configuration. On the 398 

basis of this work, more alternative strategies would be explored to tune the active sites formation by 399 

adjusting its dynamic reconstruction to develop robust and low-cost OER catalysts. 400 

 401 

Methods 402 

Materials synthesis and characterization. CoFexAl2-xO4 (x=0, 0.1, 0.25, 0.5, 1, 1.5, 2) powders were prepared by the sol-gel method 403 

using citric acid as a chelating agent and urea as combustion agent. Firstly, cobalt acetate (Co(OAc)2·4H2O), Iron(III) nitrate 404 

nonahydrate (Fe(NO3)3 · 9H2O), aluminum nitrate (Al(NO3)3·9H2O) in specific molar ratio were dissolved in diluted nitric acid, 405 

followed by the addition of citric acid and urea. The mixture was stirred and heated up at 80-100 ºС to generate highly viscous gel. 406 

Then, the gel was then transferred to an oven to decompose and dry in the air at 170 ºС for 12 hours. Finally, followed by the 407 

calcination at 400 °C for 6 hours, the spinel CoFexAl2-xO4 (x=0, 0.1, 0.25, 0.5, 1, 1.5, 2) oxides were obtained. The High resolution 408 

TEM (HRTEM) and STEM-EELS were taken on a JEOL JEM- 2100F microscope at 200KV. The X-ray diffraction (XRD) patterns of 409 
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bulk CoFexAl2-xO4 were recorded on Bruker D8 diffractometer at a scanning rate of 2° min−1, using Cu-Kα radiation (λ = 1.5418 Å). 410 

The BET (Brunauer-Emitter-Teller) surface area was analyzed on ASAP Tristar II 3020 from single-point BET analysis performed 411 

after 12 h outgassing at 170 °C (Supplementary Table 4).  412 

 413 

Electrochemical characterization under three-electrode system. The working electrode was fabricated by drop casting method. The 414 

as-prepared catalysts which first mixed with acetylene black (AB) at a mass ration of 5:1, then were dispersed in isopropanol/water 415 

(v/v=1:4) solvent followed by the addition of Na+-exchanged Nafion as the binder and ultrasonicated for 20min to form homogeneous 416 

ink. The glassy carbon electrode was polished to a mirror finish with 50 nm α-Al2O3 and ultrasonicated in IPA and water to completely 417 

clean up. At last, 10 μl of the as-prepared ink was dropped onto a glassy carbon (GC) electrode (0.196 cm2) and dried overnight at 418 

room temperature to yield a final loading mass of 255 μgox cm-2
.  419 

The electrochemical tests were carried out by three-electrode method using CoFexAl2-xO4 as working electrode, platinum plate (1×2 420 

cm2) as the counter electrode, Hg/HgO (1M KOH, aqueous, MMO) as the reference in O2-saturated 1.0 M KOH by using Bio-logic SP 421 

150 potentiostat. All potentials are converted to RHE scale and iR corrected by the resistance of electrolyte. The conversion between 422 

the potentials vs. RHE and vs. MMO was performed by the following equation: E (vs. RHE) = E (vs. MMO) + EMMO (vs. SHE) + 423 

0.059 × pH. EMMO (vs. SHE) = 0.098 vs. SHE at 25°C. The Cyclic Voltammetry(CV) was obtained under potentials from 0.875V to 424 

1.575V (vs. RHE) at a scan rate of 10mV s-1. Besides, the CV was also conducted for all samples under potentials from 0.695V to 425 

1.495V (vs. RHE) to investigate the pseudocapacitive charge preceding the OER region. The chronopotentiometry measurement was 426 

performed by holding the specific current density of 10 μA cm-2
oxide for 10 hours. Electrochemical impedance spectra(EIS) was 427 

recorded at 1.525V (vs. RHE) under 10 mV of amplitude from 100 KHz to 0.01Hz.  428 

 429 

X-ray absorption spectroscopy. X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure 430 

(EXAFs) were performed under transmission mode at Singapore Synchrotron Light Source, XAFCA beamline. The Co and Fe K-edge 431 

position obtained by an integrate method 29 is shown in Supplementary Table 2. The Co nominal valence state is obtained by using 432 

as-prepared CoAl2O4 (+2.0, 7717.41 eV) and standard Co3O4 (+2.67, 7719.96 eV) as benchmark. The Fe nominal valence is obtained 433 

by using standard Fe3O4 (+2.67, 7121.71 eV) and standard Fe2O3 (+3, 7122.82 eV) as benchmark. Noted that the as-prepared CoAl2O4 434 

well match with the standard CoAl2O4, and Co valence state in standard CoAl2O4 is +2. The nominal oxygen vacancy concentration is 435 

calculated on the basis of the nominal valence state of Co, Al (III) and Fe. The in-situ XAS measurements were performed in 436 

fluorescence-transmission geometry, where the spectra of samples and references were measured in fluorescence mode. The catalysts 437 

were sprayed on carbon paper at a loading of 2mg cm-2 as working electrode. The measurement was carried out under the same 438 

condition as OER measurement in a homemade cell. The in-situ XANES measurement was applied after one cycle. The in-situ XAFS 439 

measurement was taken on the as-prepared catalysts without any additional electrochemical treatment. Acquired XAFS data were 440 

processed in ATHENA program and analysed in ARTEMIS program integrated with IFEFFIT software package51.  441 

 442 

Density functional theory calculations. The calculation was carried out by Vienna ab initio Simulation package (VASP) using 443 

spin-polarized density functional with the Hubbard model (DFT+U).52-53 The projector augmented wave (PAW) model with 444 

Perdew-Burke-Ernzerhof (PBE) function was used to describe the interactions between core and electrons, and the value of the 445 

correlation energy (U) was fixed at 3.3, 4.3 eV for the 3d orbits of Co and Fe, respectively.54-55 An energy cutoff of 500 eV was used 446 

for the plane-wave expansion of the electronic wave function. The Brillouin zones of all systems were sampled with Gamma-point 447 

centered Monkhorst-Pack grids. A 7×7×7 Monkhorst Pack k-point setup were used for bulk geometry optimization, while 9×9×9 for 448 

electronic structures calculation. The force and energy convergence criterion were set to 0.02 eV Å-1 and 10-5 eV, respectively. All 449 

models are created by comparing the stability of spinel with normal or inversed structure in a unit cell, and the structures at lower 450 

energy are selected for study. The CoAl2O4 (Supplementary Table 7) prefer the normal spinel structure with Co2+ located on tetrahedral 451 

sites and the Al3+ located on octahedral sites ([Co]Td[Al]Oh[Al]OhO4). The CoFe0.25Fe1.75O4 model was established by replacing two 452 

Al3+ atom in CoAl2O4 unit cell with two Fe atoms. The CoFe2O4 (Supplementary Table 8) prefers inverse spinel with Co2+ at 453 
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octahedral sites and Fe3+ both at tetrahedral sites and octahedral sites ([Fe]Td[CoFe]OhO4). 454 

 455 

Membrane electrode assembly (MEA) electrolyzer. A homemade MEA electrolysis cell with an anion exchange membrane was 456 

employed to evaluate the performance of the as-prepared CoFe0.25Al1.75O4 catalyst. The  cell includes two titanium end plates, on 457 

which a single serpentine flow field (area: 6.25 cm2, 1.0 mm in width, 0.5 mm in depth, and 1.0 mm in rib) was machined. The 458 

titanium end plates were coated with a gold layer (thickness: 200 nm) to reduce the contact resistance. The CoFe0.25Al1.75O4 was first 459 

mixed with high surface area carbon (HSAC, Ketjen black EC-600J, carbonization treatment) with a weight ratio of 1:1. The 460 

composite powder was then mixed with PTFE suspension (60 wt% PTFE dispersion in water from Chemours), isopropyl alcohol and 461 

water to prepare the anode catalyst ink. The PTFE content in the catalyst layer was controlled with 10 wt%. The catalyst ink was 462 

ultrasonicated for 30 minutes at room temperature and manually spread onto a corrosion-resistant stainless-steel mesh (SSL mesh, 463 

#500). The catalyst loading on the as-prepared electrode was 1 mg cm-2. The cathode Pt electrode was fabricated with the same 464 

procedure without the addition of HSAC. A catalyst ink, consisting of commercial Pt/C catalyst (TKK, TEC10EA50E 47.1 wt% Pt, 465 

3.22 nm in mean particle size), PTFE suspension, isopropyl alcohol and water, was manually spread onto a carbon paper (Toray 060). 466 

The catalyst loading on the electrode was 1 mg cm-2. The PTFE content in the catalyst layer was 10 wt%. The IrO2 anode was 467 

fabricated with commercial IrO2 powder (Premetek Co) by the same procedure as for preparing the CoFe0.25Al1.75O4 electrode. An 468 

anion exchange membrane (A901, 11 μm, Tokuyama) was employed as the membrane. To reduce the contact resistance, the membrane 469 

sandwiched by the anode electrode and cathode electrode was pressed at a pressure of 1 MPa for 5 minutes at room temperature. 0.1 M 470 

KOH was pumped into the electrode channels by a peristaltic pump at a constant flow rate of 2 ml min-1. The cell temperature (60 oC) 471 

was maintained by an electric heating plate and measured by a thermocouple placed near the anode and cathode current collectors. The 472 

polarization curves were measured with an electrochemical workstation (Solartron 1470E). The water electrolysis was performed 473 

under constant current mode, in which the current was increased by 0.125 A (20 mA cm-2) and retained for 5 minutes for each step 474 

until the cell voltage was reached 2.0 V. Before the water electrolysis, the as-fabricated MEA was activated by a potentiostatic mode 475 

with a scan rate of 0.5 mV s-1 and a terminal voltage of 2.0 V. 476 

 477 

 478 

Data availability 479 

The data related to this study is available from the authors upon reasonable request. 480 
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