
HAL Id: hal-02388326
https://hal.science/hal-02388326v1

Submitted on 1 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Bernays-Schönfinkel-Ramsey Class of Separation
Logic with Uninterpreted Predicates

Mnacho Echenim, Radu Iosif, Nicolas Peltier

To cite this version:
Mnacho Echenim, Radu Iosif, Nicolas Peltier. The Bernays-Schönfinkel-Ramsey Class of Separation
Logic with Uninterpreted Predicates. ACM Transactions on Computational Logic, 2020, 21. �hal-
02388326�

https://hal.science/hal-02388326v1
https://hal.archives-ouvertes.fr

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

The Bernays-Schönfinkel-Ramsey Class of Separation Logic with
Uninterpreted Predicates

MNACHO ECHENIM, Univ. Grenoble Alpes, CNRS, LIG
RADU IOSIF, Univ. Grenoble Alpes, CNRS, Verimag

NICOLAS PELTIER, Univ. Grenoble Alpes, CNRS, LIG

This paper investigates the satisfiability problem for Separation Logic with k record fields, with unrestricted nesting of

separating conjunctions and implications. It focuses on prenex formulæ with a quantifier prefix in the language ∃∗∀∗, that

contain uninterpreted (heap-independent) predicate symbols. In analogy with first-order logic, we call this fragment Bernays-
Schönfinkel-Ramsey Separation Logic [BSR(SLk)]. In contrast with existing work on Separation Logic, in which the universe of

possible locations is assumed to be infinite, we consider both finite and infinite universes in the present paper. We show that,

unlike in first-order logic, the (in)finite satisfiability problem is undecidable for BSR(SLk). Then we define two non-trivial

subsets thereof, for which the finite and infinite satisfiability problems are PSPACE-complete, respectively, assuming that

the maximum arity of the uninterpreted predicate symbols does not depend on the input. These fragments are defined by

controlling the polarity of the occurrences of separating implications, as well as the occurrences of universally quantified

variables within their scope. These decidability results have natural applications in program verification, as they allow to

automatically prove lemmas that occur in e.g. entailment checking between inductively defined predicates and validity

checking of Hoare triples expressing partial correctness conditions.

Additional Key Words and Phrases: Separation logic, Bernays-Schönfinkel-Ramsey class, decision procedures, complexity,

PSPACE-completeness

ACM Reference Format:
Mnacho Echenim, Radu Iosif, and Nicolas Peltier. 2019. The Bernays-Schönfinkel-Ramsey Class of Separation Logic with

Uninterpreted Predicates. ACM Trans. Comput. Logic 1, 1 (December 2019), 46 pages.

1 INTRODUCTION
Separation Logic [14, 20] (SL) is a logical framework used in program verification to describe properties of

the dynamically allocated memory, such as topologies of data structures (lists, trees), (un)reachability between

pointers, etc. In a nutshell (formal definitions are given below), given an integer k ≥ 1, the logic SLk is obtained

from the first-order theory of a finite partial function h : U ⇀ Uk
called a heap, by adding two non-classical

connectives:

1. the separating conjunction ϕ1 ∗ ϕ2, that asserts the existence of a split of the heap into disjoint heaps satisfying

ϕ1 and ϕ2 respectively, and
2. the separating implication, or magic wand ϕ1 −−∗ ϕ2, stating that each extension of the heap by a disjoint heap

satisfying ϕ1 must satisfy ϕ2.

Authors’ addresses: Mnacho Echenim, Mnacho.Echenim@univ-grenoble-alpes.fr, Univ. Grenoble Alpes, CNRS, LIG, , Grenoble, France,

38000; Radu Iosif, Radu.Iosif@univ-grenoble-alpes.fr, Univ. Grenoble Alpes, CNRS, Verimag, Grenoble, France, 38000; Nicolas Peltier,

Nicolas.Peltier@univ-grenoble-alpes.fr, Univ. Grenoble Alpes, CNRS, LIG, , Grenoble, France, 38000.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first

page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from

permissions@acm.org.

© 2019 Association for Computing Machinery.

1529-3785/2019/12-ART $15.00

https://doi.org/

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

https://doi.org/

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

2 • Mnacho Echenim, Radu Iosif, and Nicolas Peltier

Intuitively, the set U denotes the universe of possible of memory locations (cells) and k is the number of record

fields in each memory cell. The separating connectives ∗ and −−∗ may be used to express dynamic transformations

of the heap. As such, they allow for concise definitions of program semantics, via weakest precondition calculi

[14] and easy-to-write specifications of recursive linked data structures (e.g. singly- and doubly-linked lists, trees

with linked leaves and parent pointers, etc.), when inductive definitions are added [20].

Investigating the decidability and complexity of the satisfiability problem for fragments of SL is thus of

great theoretical and practical interest. In contrast to first-order logic for which the decision problem has been

thoroughly investigated (see, e.g., [3]), only a few results are known for SL. The earliest such results show

undecidability of SLk and the PSPACE-completeness of its quantifier-free fragment, for any k ≥ 2 [7]. These

results have been subsequently refined, by showing undecidability of SL1, even if only two quantified variables are

allowed [8]. Decidability of SL1 is shown for the fragment without the magic wand connective, but the complexity

lower bound is not elementary recursive. This lower bound drops if at most one quantified variable is allowed, in

which case SL1 is PSPACE-complete. Extending SL1 with higher-order inductive predicates, such as reachability,

leads to undecidability in the presence of the magic wand and becomes PSPACE-complete if the magic wand is

not allowed [9].

A salient feature of SL is the ability of describing recursive data structures by means of inductive definitions. The

axioms defining such interpreted predicates use a very restricted fragment of SL, consisting of atoms (equalities,

disequalities and single cell descriptions) joined with separating conjunctions, called the symbolic heap fragment.

Since negation does not occur within symbolic heaps, one must consider the satisfiability and entailment problems

separately. For instance, satisfiability of a symbolic heap is EXPTIME-complete, in general, and NP-complete

if the maximum arity of the predicates is a constant, not part of the input [5]. On the other hand, entailment

between symbolic heaps is undecidable in general, and becomes elementary recursive under certain conditions

guaranteing that the treewidth of each model is bounded by the size of the inductive definition [13]. In particular,

the problem is EXPTIME-hard [1] and the more restricted problem of the validity of entailments of the form

P (x1, . . . ,xn) |= Q (x1, . . . ,xn) has been recently shown to belong to 2EXPTIME [15].

In this paper, we consider prenex SL formulæ with a quantifier prefix in the language ∃∗∀∗, possibly containing

heap-independent uninterpreted
1
predicate symbols. In analogy with the Bernays-Schönfinkel-Ramsey fragment

of first-order logic with ∃∗∀∗ quantifier prefix, equality and uninterpreted predicates and without function

symbols of arity greater than 0 [BSR(FO)] [18], we call this fragment Bernays-Schönfinkel-Ramsey SL [BSR(SLk)].
As far as we are aware, all existing work on SL assumes that the universe U is countably infinite. This

assumption is not necessarily realistic in practice since the available memory is usually finite, although the

bound depends on the hardware and is not known in advance. However, reasoning about pointer-manipulating

programs under the finite memory assumption proves to be harder than under the assumption that memory

is infinite, when the bound on the memory size is not known à priori. In particular, the frame rule of classical

Separation Logic [?], which is a crucial enabler of local reasoning, breaks, in general, for programs that allocate

memory, because, intuitively, adding frames is not possible unless enough free memory is available. Nevertheless,

restricted versions of the frame rule still hold, with additional side conditions on the structure of the programs

and/or the context to which it is applied. A thorough investigation of the soundness of the frame rule for bounded

memory domains is, however, out of the scope of this paper and considered as future work.

In this paper we consider the satisfiability problem for BSR(SLk), with k ≥ 2, in both cases of finite and infinite

universe, referred to as finite and infinite satisfiability, respectively. We show that both problems are undecidable

(unlike in the BSR fragment of first-order logic) and that they become PSPACE-complete under some additional

restrictions, related to the occurrences of the magic wand and universal variables, namely:

1
By “uninterpreted” we mean that the interpretation of such predicate symbols is not fixed by a theory or by inductive definitions.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

The Bernays-Schönfinkel-Ramsey Class of Separation Logic with Uninterpreted Predicates • 3

I. The infinite satisfiability problem is PSPACE-complete if the positive occurrences of −−∗ (i.e., the occurrences

of −−∗ that are in the scope of an even number of negations) contain no universal variables.

II. The finite satisfiability problem is PSPACE-complete if there is no positive occurrence of −−∗ (i.e., −−∗ only

occurs in the scope of an odd number of negations). This additional restriction stems from the fact that,

actually, the finite satisfiability problem becomes undecidable even for only one positive occurrence of a −−∗

with no variable within its scope.

These results establish sharp decidability frontiers within BSR(SLk). In both cases, we assume that the arity of

the uninterpreted predicate symbols is bounded by a constant (the satisfiability problem is already NEXPTIME-
complete for BSR first-order formulæ with unbounded predicate arity [17]). In contrast, the number k of record

fields is not bounded and may be part of the input. Reasoning on finite domains is more difficult than on infinite

ones, due to the possibility of asserting cardinality constraints on unallocated cells, which explains that the latter

condition is more restrictive than the former one. However, the finite universe hypothesis is especially useful

when dealing with bounded memory issues, for instance checking that the execution of a program satisfies its

postcondition, provided that there are sufficiently many available memory cells.

Theory-parameterized versions of BSR(SLk) have been shown to be undecidable in [19], e.g. when integer

linear arithmetic is used to reason about locations, and claimed to be PSPACE-complete for countably infinite

and finite unbounded location sorts, with no relation other than equality. In the present paper, we show that this

claim is wrong, and draw a precise chart of decidability for both infinite and finite satisfiability of BSR(SLk), for
k ≥ 2. To complete the picture, the entire prenex fragment of SL1 has been recently shown decidable but not

elementary recursive, whereas the fragment BSR(SL1) is PSPACE-complete [10].

Undecidability is shown by reduction from BSR first-order formulæ with two monadic function symbols,

for which satisfiability is known to be undecidable [3]. To establish the decidability results, we first show that

every quantifier-free SL formula can be transformed into an equivalent boolean combination of formulæ of some

specific patterns, called test formulæ. This result is interesting in itself, since it provides a precise and intuitive

characterization of the expressive power of SL: it shows that separating connectives can be confined to a small

set of test formulæ. Such expressive completeness results were already known for infinite universes (see, e.g.,

[16]), but our transformation algorithm also provides insights on the form of the obtained formulæ, especially on

the polarity of occurrences of some test formulæ, which turns out to be useful latter on in the remainder of the

paper. Further, we extend the expressive completeness result to finite universes, with additional test formulæ

asserting cardinality constraints on unallocated cells.

One advantage of the translation to test formulæ is that the latter can be straightforwardly translated into first-

order formulæ, by encoding the heap as a (k+1)-ary predicate. Note that another translation of quantifier-free SLk

into first-order logic with equality has been described in [6]. There, the small model property of quantifier-free

SLk [7] is used to bound the number of first-order variables to be considered and the separating connectives are

interpreted as first-order quantifiers. The result is an equisatisfiable first-order formula. This translation scheme

cannot be, however, directly applied to BSR(SLk), which does not have a small model property, being moreover

undecidable.

We focus first on the infinite satisfiability problem and show that, if the above condition (I) is satisfied, then

the obtained first-order formulæ are in the BSR(FO) class. The infinite satisfiability problem for BSR(SL) is thus
reduced to the satisfiability problem for BSR(FO), with some additional constraints on the cardinality of the

interpretation: the universe must be infinite, and the heap must be finite. We show that these constraints may be

handled by relying on an existing characterization of the models of BSR(FO) formulæ with infinitely countable

universe [12].

For the finite satisfiability class, the decidability proof is more involved, as the obtained first-order formulæ are

not in BSR(FO), even if the above condition (II) is satisfied. However, this problem can be overcome by focusing

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

4 • Mnacho Echenim, Radu Iosif, and Nicolas Peltier

on some class of structures satisfying additional properties ensuring that a reduction to BSR(FO) is feasible.
Note that in this case, the cardinality constraints on the universe and heap are straightforward to handle, as the

BSR(FO) class is finitely controllable (i.e., every satisfiable BSR(FO) formula has a finite model).

The above transformation algorithm does not by itself provide an efficient decision procedure, as the size of

the obtained boolean combination of test formulæ is exponential w.r.t. that of the initial (BSR) formula. The

PSPACE upper bound thus relies on a careful analysis of the maximal size of the test formulæ. The analysis

reveals that, although the boolean combination of test formulæ is of exponential size, its so-called minterms (i.e.,
the conjunctions in its disjunctive normal form) are of polynomial size and can be enumerated in polynomial

space. The above algorithms can thus be refined to run in polynomial space.

This paper is an extended and thoroughly revised version of the conference paper [11]. The latter paper only

handles SL formulæ with no uninterpreted predicate symbols. The addition of uninterpreted predicate symbols

has a limited impact on the transformation of SL formulæ into boolean combinations of test formulæ. Indeed,

since these predicates do not depend on the heap the corresponding atoms can be easily shifted outside of the

separated connectives. However, non trivial adaptations are required in the satisfiability tests, since the presence

of uninterpreted predicates makes it much more difficult to ensure that the considered formula has a model of

the expected cardinality (finite or infinite).

Applications
Let us sketch two applications of our results to program verification. The first application is building proofs of

validity for the entailments between inductively defined predicates in SL. The second application is proving the

validity of Hoare triples with SL as base logic.

Checking Entailment between Inductively Defined Predicates. In contrast to other approaches [5?], our
logic does not allow for inductively defined predicates (the predicates we consider are independent of the heap).

Still, our results, embedded in inductive proof procedures, could prove useful to check entailment between

formulæ containing such predicates. Consider for instance the following inductive definitions, describing a list

segment with strictly increasing data fields and a possibly cyclic list segment, with no restrictions on the data,

respectively:

l̂s(x ,y,d) ← emp ∧ x ≈ y ∨ ∃z∃e . d ≺ e ∧ (x 7→ (d, z) ∗ l̂s(z,y, e)) sorted list segment from x to y
ls(x ,y) ← emp ∧ x ≈ y ∨ ∃u∃f . x 7→ (f ,u) ∗ ls(u,y) unrestricted list segment from x to y

Intuitively, a list segment is either empty, in which case the head and the tail coincide [emp∧x ≈ y], or it contains
at least one element. We denote by x 7→ (d, z) the fact that x is the only allocated memory location, which

moreover points to a pair (d, z), where d is a data field and z is a pointer field. When writing x 7→ (d, z) ∗ ls(z,y, e)
we mean that x 7→ (d, z) and l̂s(z,y, e) must hold over disjoint parts of the heap. The constraint d ≺ e , in the

inductive definition of l̂s, captures the fact that the list is strictly increasing, ≺ being an uninterpreted predicate

symbol that satisfies the transitivity and anti-symmetry axioms below:

∀a∀b∀c . a ≺ b ∧ b ≺ c → a ≺ c ∀a∀b . a ≺ b ∧ b ≺ a → a ≈ b

Now consider a fragment of the inductive proof showing that any sorted list segment is also a list segment:

l̂s(z,y, e) ⊢ ls(z,y)

d ≺ e ∧ x 7→ (d, z) ∗ l̂s(z,y, e) ⊢ ∃u∃f . x 7→ (f ,u) ∗ ls(u,y) ∨ emp ∧ x ≈ y

d ≺ e ∧ x 7→ (d, z) |= ∃u∃f . x 7→ (f ,u)
by instantiation u ← z, f ← d

l̂s(x ,y,d) ⊢ ls(x ,y)

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

The Bernays-Schönfinkel-Ramsey Class of Separation Logic with Uninterpreted Predicates • 5

The bottom inference rule introduces one of the two cases produced by unfolding the inductive definitions on

both sides of the sequent
2
. Note that the quantifications ∃z, e on the left-hand side have been omitted because

they can be eliminated by using the standard ∃-left rule of the sequent calculus (if z and e are fresh variables).

The second inference rule is a reduction of the sequent obtained by unfolding, to a sequent matching the initial

one (by renaming z to x and e to d), and allows to close this branch of the proof by an inductive argument, based

on the principle of infinite descent [4]. The simplification applied by the second inference above relies on the

validity of the entailment d ≺ e ∧ x 7→ (d, z) |= ∃u∃f . x 7→ (f ,u), which reduces to the (un)satisfiability of the

formula d ≺ e ∧ x 7→ (d, z) ∧ ∀u∀f . ¬x 7→ (f ,u). The latter falls into the BSR(SL2) fragment. A consequence of

the results in this paper is that, if the inductive rules contain no occurrence of−−∗ and ∀, then there exist algorithms

for solving the above entailment problem in both finite and infinite universes, in the presence of uninterpreted

predicates. The only requirement is that the axiomatization of these predicates can be done using BSR(FO), i.e.,
that the interpretation of these predicates does not depend on the heap.

Checking Inductive Invariants with Universal Quantifiers. Purely universal SL formulæ are also useful to

express pre- or post-conditions asserting “local” constraints on the shape of the data structures manipulated by

a program. For instance, the atomic proposition x 7→ (p,n,d) states that the value of the heap at x is the triple

(p,n,d), where n (resp. p) is the location of the next (resp. previous) cell in the list and d is a data value. Moreover,

x 7→ (p,n,d) holds if and only if there is no location, other than x , in the domain of the heap. With this in mind,

the following formula describes a well-formed doubly-linked sorted list:

∀x1,x2,x3,x4,x5,y1,y2 . x1 7→ (x2,x3,y1) ∗ x2 7→ (x4,x5,y2) ∗ ⊤ → x5 ≈ x1 ∧ y1 ≺ y2 (1)

Such constraints cannot be expressed by using inductively defined predicates for which the entailment problem

is known to be decidable
3
, which shows the practical relevance of the considered fragment. The separating

implication (magic wand) seldom occurs in such shape constraints. However, it is useful to describe the dynamic

transformations of the data structures, as in the following Hoare-style axiom, giving the weakest precondition of

a universal formula ∀u . ψ with respect to redirecting the i-th record field of x to z [14]:

{x 7→ (y1, . . . ,yk) ∗ [x 7→ (y1, . . . ,yi−1, z, . . . ,yk) −−∗ ∀u . ψ]} x.i := z {∀u . ψ }

For example, the Hoare-style axiom for the weakest precondition of the universal formula ∀u .ψ when redirecting

the ‘next’ field in a doubly-linked list is

{x 7→ (p,n,d) ∗ [x 7→ (p, z,d) −−∗ ∀u . ψ]} x.next := z {∀u . ψ }.

Intuitively, the formula x 7→ (p,n,d) ∗ [x 7→ (p, z,d) −−∗ ∀u .ψ] holds when the heap can be separated into disjoint

parts, one in which cell x is allocated, and one that, when extended with a heap in which the ‘next’ field of x
is mapped to z, satisfies ∀u . ψ . The universal formula ∀u . ψ could be the doubly-linked list invariant (1) for

instance.

In the general case, the precondition for the redirection of the i-th record field of x to z is equivalent to
∀u . x 7→ (y1, . . . ,yk) ∗ [x 7→ (y1, . . . ,yi−1, z, . . . ,yk) −−∗ ψ] because, although hoisting universal quantifiers

outside of the separating conjunction is unsound in general, this is possible here due to the special form of the

left-hand side x 7→ (y1, . . . ,yi−1, z, . . . ,yk) which unambiguously defines a single heap cell.

Checking entailment between two universal formulæ boils down to checking the satisfiability of a BSR(SLk)
formula, which can be done thanks to the decidability results in our paper. In particular, checking that ∀u . ψ
is an invariant of the program statement x.i := z amounts to checking that the formula ∀u . ψ ∧ ∃u . ¬[x 7→

2
The second case emp ∧ x ≈ y ⊢ ∃u∃f . x 7→ (f , u) ∗ ls(u, y) ∨ emp ∧ x ≈ y is trivial and omitted for clarity.

3
This is due to the fact that some of the edges, for instance those pointing to list values, may be “dangling”. In other words, this structure

does not fulfill the so called establishment condition of [13].

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

6 • Mnacho Echenim, Radu Iosif, and Nicolas Peltier

(y1, . . . ,yk) ∗ (x 7→ (y1, . . . ,yi−1, z, . . . ,yk) −−∗ ψ)] is unsatisfiable. Because the magic wand occurs negated, this

formula falls into a decidable class defined in the present paper, for both finite and infinite satisfiability.

Roadmap
The remainder of the paper is structured as follows. In Section 2, usual notions and results are briefly reviewed

and the definition of the logic SLk is provided. In Section 4 a set of formula patterns, called test formulæ, is
introduced, and it is shown that these patterns can be expressed in first-order logic. In Section 5, an algorithm is

described to transform every SLk formula into an equivalent boolean combination of test formulæ. The output

formula is of exponential size, however, we show that the conjunctions of literals occurring in its disjunctive

normal form are of polynomial size and may be enumerated in polynomial space. In Section 6, the BSR(SLk) class
is investigated and (un)decidability and complexity results are established based on the previous transformation

algorithms. Section 7 briefly concludes the paper.

2 PRELIMINARIES

2.1 First Order Logic
Syntax. We denote by Z and N the sets of integer and natural numbers, respectively. Let Z∞ = Z ∪ {∞} and
N∞ = N ∪ {∞}, where for each n ∈ Z we have n +∞ = ∞ and n < ∞. For any countable set S , we denote by
| |S | | ∈ N∞ the cardinality of S .
Let U be a sort symbol denoting a universe sort and let B be the usual boolean sort. We consider a countably

infinite set Var of variables of sort U, ranged over by x ,y, z, and a countably infinite set F of function symbols.

Each function symbol f ∈ F has a sort σ (f) ∈ {U,B}. A function symbol f takes #(f) ≥ 0 arguments of sort

U. If #(f) = 0 we call f a constant and if #(f) = 1 we say that f is monadic. If σ (f) = B, f is called a predicate.
First-order (FO) terms t and formulæ φ are defined by the following grammar:

t := x | f (t1, . . . , t#(f)) φ := ⊥ | ⊤ | t1 ≈ t2 | q(t1, . . . , t#(q)) | φ ∧ φ | ¬φ | ∃x . φ

where x ∈ Var, f ,q ∈ F , σ (f) = U and σ (q) = B. The logical symbols ⊥ and ⊤ denote the boolean constants

false and true, respectively. As usual, f (t1, . . . , tn) is simply written f if n = 0. We write φ1 ∨φ2 for ¬(¬φ1 ∧¬φ2),
φ1 → φ2 for ¬φ1 ∨ φ2, φ1 ↔ φ2 for φ1 → φ2 ∧ φ2 → φ1 and ∀x . φ for ¬∃x . ¬φ. The size of a formula φ, denoted
as size(φ), is the number of occurrences of symbols in it.

We denote by Var(φ) the set of variables that occur free in φ, i.e. not in the scope of a quantifier, by F (ϕ) the
set of function symbols occurring in ϕ, by P (ϕ) the set of predicate symbols in F (ϕ) and by Const(ϕ) the set of
constants of sort U in ϕ.

A vector of variables will often be denoted by x, y . . . , and xi will denote the i-th component of x. An equation

x ≈ y with x = (x1, . . . ,xn) and y = (y1, . . . ,yn) denotes the formula

∧n
i=1 xi ≈ yi .

Semantics. First-order formulæ are interpreted over FO-structures4 S = (U, s,I), where U is a nonempty

countable set, called a universe, the elements of which are called locations; s : Var⇀ U is a partial mapping of

variables to elements of U, called a store and I interprets each function symbol f by a function f I : U#(f) → U

if σ (f) = U or by a relation f I ⊆ U#(f) if σ (f) = B. A structure (U, s,I) is finite when | |U | | ∈ N and infinite
otherwise.

By writing S |= φ, for a structure S = (U, s,I), we mean that Var(φ) ⊆ dom(s) and φ is true when interpreted

in S. This relation is defined recursively on the structure of φ, as usual. When S |= φ, we say that S is amodel of φ.
A formula is [finitely] satisfiable when it has a [finite] model. Given two formulæ φ1 and φ2, we say that φ1 entails
φ2 (written φ1 |= φ2) when every model of φ1 is a model of φ2, and that φ1 and φ2 are equivalent (written φ1 ≡ φ2)
when (U, s,I) |= φ1 ⇔ (U, s,I) |= φ2, for every structure (U, s,I). For any store s on U, variables x1, . . . ,xn and

4
These will simply be called structures, when no confusion arises.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

The Bernays-Schönfinkel-Ramsey Class of Separation Logic with Uninterpreted Predicates • 7

elements ℓ1, . . . , ℓn ∈ U, we denote by s[x1 ← ℓ1, . . . ,xn ← ℓn] the store that coincides with s on every variable

not in {x1, . . . ,xn } and maps xi to ℓi , for all i = 1, . . . ,n. We also call s[x1 ← ℓ1, . . . ,xn ← ℓn] an extension of s.

If y = (y1, . . . ,yn) is a vector of variables, and s is a store, then s(y) denotes the vector (s(y1), . . . , s(yn)).
BSR(FO) Formulæ. The Bernays-Schönfinkel-Ramsey fragment of FO [BSR(FO)] is the set of formulæ of the

form ∃x1 . . . ∃xn∀y1 . . .∀ym . φ, where φ is a quantifier-free formula and all function symbols f ∈ F (φ) of arity
#(f) > 0 have sort σ (f) = B. For simplicity we often restrict ourselves to BSR(FO) formulæ containing no

existential quantification. This is without any loss of generality, since ∃x1 . . . ∃xn∀y1 . . .∀ym . φ is satisfiable if

and only if ∀y1 . . .∀ym . φ is satisfiable.

Definition 2.1. Consider the structuresS def
= (U, s,I) andS′

def
= (U′, s′,I ′). The structureS′ is called a restriction

of S to U′ if U′ ⊆ U, s′(x) = s(x) for every x ∈ dom(s), qI
′

= qI ∩ U′#(q) for every predicate symbol q and

f I
′

= f I for every function symbol f .

The following proposition states a well-known property of BSR(FO):

Proposition 2.2. Let φ be a formula in BSR(FO) with no existential quantifier and let S = (U, s,I) be a model
of φ. If U′ is a nonempty subset of U such that {s(x) | x ∈ Var(φ)} ∪ {cI | c ∈ Const(φ)} ⊆ U′ and S′ def

= (U′, s′,I ′)
is a restriction of S to U′, then S′ is a model of φ. As a consequence, if φ is satisfiable, then it admits a model (U, s,I)
such that | |U | | ≤ max(1, | |Var(φ) | | + | |Const(φ) | |).

Proof. See for instance [12, Theorem 3]. □

The decidability of BSR(FO) is a consequence of the above small model property. It is known that the satisfia-

bility problem for this class is NEXPTIME-complete [?]. The condition requiring the absence of function symbols

of sort U in BSR(FO) is justified by the fact that undecidability occurs as soon as two monadic function symbols

are allowed. Let BSR2 (FO) be the extension of BSR(FO) consisting of the formulæ ∃x1 . . . ∃xn∀y1 . . .∀ym . φ,
where φ is a quantifier-free formula in which at most two monadic function symbols occur.

Proposition 2.3. The satisfiability problem is undecidable for BSR2 (FO), even if only one universal quantifier
and no predicates are allowed.

Proof. See [3, Theorem 4.1.8]. □

2.2 Separation Logic
Syntax Let k be a strictly positive integer. The logic SLk is the set of formulæ generated by the grammar:

φ := ⊥ | ⊤ | emp | x ≈ y | x 7→ (y1, . . . ,yk) | q(x1, . . . ,x#(q)) | φ ∧ φ | ¬φ | φ ∗ φ | φ −−∗ φ | ∃x . φ

where x ,y,y1, . . . ,yk ,x1, . . . ,x#(q) ∈ Var, q ∈ F and σ (q) = B. The connectives ∗ and −−∗ are respectively called

the separating conjunction and separating implication (or magic wand). The size size(φ) and set of free variables
Var(φ) of an SLk formula φ are defined as for first-order formulæ, as well as the formulæ φ1 ∨ φ2, φ1 → φ2,
φ1 ↔ φ2 and ∀x . φ. Moreover, we write φ1 ⊸ φ2 for ¬(φ1 −−∗ ¬φ2) and call the symbol ⊸ septraction in the

following. Throughout the paper, we assume that the arity of the predicate symbols occurring in the SLk formulæ

is bounded by a constant, whereas k is not necessarily bounded.

Definition 2.4. Given a SLk formula ϕ and a subformulaψ of ϕ, we say thatψ occurs at polarity p ∈ {−1, 0, 1} iff
one of the following holds:

(1) ϕ = ψ and p = 1,

(2) ϕ = ¬ϕ1 andψ occurs at polarity −p in ϕ1,
(3) ϕ = ϕ1 ∧ ϕ2 or ϕ = ϕ1 ∗ ϕ2, andψ occurs at polarity p in ϕi , for some i = 1, 2,
(4) ϕ = ϕ1 −−∗ ϕ2 and eitherψ is a subformula of ϕ1 and p = 0, orψ occurs at polarity p in ϕ2, or

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

8 • Mnacho Echenim, Radu Iosif, and Nicolas Peltier

(5) ϕ = ∃x . ϕ1 andψ occurs at polarity p in ϕ1.
A polarity of 1, 0 or −1 is also referred to as positive, neutral or negative, respectively.

Note that our notion of polarity is slightly different than the usual one, because the antecedent of a separating

implication is of neutral polarity while the antecedent of an implication is usually of negative polarity. This is

meant to strengthen upcoming decidability results (see Remark 3.4).

Semantics SLk formulæ are interpreted over SL-structures S = (U, s,I, h), where U, s and I are defined as for

FO and h : U ⇀fin U
k
is a finite partial mapping of U to k-tuples of elements of U, called a heap. As for FO, a

structure (U, s,I, h) is finite when | |U | | ∈ N and infinite otherwise. We denote by dom(h) the domain of the heap

h and by | |h| | ∈ N the cardinality of dom(h). A location ℓ ∈ U (resp. a variable x) is allocated in S if ℓ ∈ dom(h)
(resp. if s(x) ∈ dom(h)). Two heaps h1 and h2 are disjoint iff dom(h1) ∩ dom(h2) = ∅, in which case h1 ⊎ h2 denotes

their union. h′ is an extension of h iff h′ = h ⊎ h′′, for some heap h′′. The relation (U, s,I, h) |= φ is defined

recursively on the structure of φ, as follows:

(U, s,I, h) |= ⊤ ⇔ always

(U, s,I, h) |= ⊥ ⇔ never

(U, s,I, h) |= x ≈ y ⇔ s(x) = s(y)
(U, s,I, h) |= q(x1, . . . ,x#(q)) ⇔ (s(x1), . . . , s(x#(q))) ∈ q

I

(U, s,I, h) |= emp ⇔ h = ∅

(U, s,I, h) |= x 7→ (y1, . . . ,yk) ⇔ h =
{〈
s(x), (s(y1), . . . , s(yk))

〉}
(U, s,I, h) |= φ1 ∧ φ2 ⇔ (U, s,I, h) |= φi , for all i = 1, 2
(U, s,I, h) |= ¬φ ⇔ (U, s,I, h) ̸ |= φ
(U, s,I, h) |= ∃x . φ1 ⇔ there exists u ∈ U such that(U, s[x ← u],I, h) |= φ1
(U, s,I, h) |= φ1 ∗ φ2 ⇔ there exist disjoint heaps h1,h2 such that h = h1 ⊎ h2

and (U, s,I, hi) |= φi , for i = 1, 2
(U, s,I, h) |= φ1 −−∗ φ2 ⇔ for all heaps h′ disjoint from h such that (U, s,I, h′) |= φ1,

we have (U, s,I, h ⊎ h′) |= φ2

Satisfiability, entailment and equivalence are defined for SLk as for FO formulæ. We write ϕ ≡fin ψ (resp. ϕ ≡inf ψ)
if ϕ has the same truth value asψ in all finite (resp. infinite) structures.

Remark 2.5. The cardinality of the universe has a deep impact on the semantics of SL formulæ. For instance, the
formula ϕ = ¬emp −−∗ ⊥ states that no nonempty heap disjoint from the current heap exists, which is always false in
an infinite universe (since every heap is finite) but is true in a finite universe where all elements are allocated. ■

3 THE BSR(SLk) CLASS
In this section, we give the definition of the Bernays-Schönfinkel-Ramsey fragment of SLk and provide a brief

summary of the results proved in this paper.

Definition 3.1. The Bernays-Schönfinkel-Ramsey fragment of SLk , denoted by BSR(SLk), is the set of formulæ

of the form ∃x1 . . . ∃xn∀y1 . . .∀ym . ϕ, where ϕ is a quantifier-free SLk formula.

Note that, since there is no function symbol of sort U in SLk , there is no restriction, other than the form of the

quantifier prefix, defining BSR(SLk). As for FO, we will often restrict ourselves to BSR(SLk) formulæ containing

no existential quantifier. As satisfiability is not decidable for BSR(SLk) (see Theorem 3.3 below), we define two

fragments of BSR(SLk) for which finite and infinite satisfiability are respectively decidable. The definition is based

on the polarity (see Definition 2.4) of the occurrences of the symbol −−∗ and on the universal variables occurring

within their scope.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

The Bernays-Schönfinkel-Ramsey Class of Separation Logic with Uninterpreted Predicates • 9

Definition 3.2. Given an integer k ≥ 1, we define:

(1) BSRinf (SLk) as the set of formulæ ∀y1 . . .∀ym . ϕ such that for all i ∈ [1,m] and all formulæ ψ1 −−∗ ψ2

occurring at polarity 1 in ϕ, we have yi < Var(ψ1) ∪ Var(ψ2),
(2) BSRfin (SLk) as the set of formulæ ∀y1 . . .∀ym . ϕ such that no formulaψ1 −−∗ ψ2 occurs at polarity 1 in ϕ.

Note that BSRfin (SLk) ⊊ BSRinf (SLk) ⊊ BSR(SLk), for any k ≥ 1. We know state the main results of the paper.

Theorem 3.3. The satisfiability problem is undecidable for BSR(SLk). The infinite satisfiability problem for
BSRinf (SLk) and the finite satisfiability problem for BSRfin (SLk) are both PSPACE-complete.

The remainder of the paper is devoted the proof of Theorem 3.3 (see Theorems 6.1, 6.11 and 6.20).

Remark 3.4. Because the polarity of the antecedent of a separating implication is neutral, Definition 3.2 imposes
no constraint on the occurrences of separating implications at the left of an occurrence of −−∗. ■

4 TEST FORMULÆ FOR SLk

4.1 Definition and Basic Properties
We define a small set of SLk patterns of formulæ, possibly parameterized by a positive integer, called test formulæ.
These patterns capture properties related to allocation, points-to relations in the heap and cardinality constraints.

Definition 4.1. The following patterns are called test formulæ:

x ↪→ y def
= x 7→ (y1, . . . ,yk) ∗ ⊤ |U | ≥ n

def
= ⊤⊸ |h | ≥ n

alloc(x)
def
= x 7→ (x , . . . ,x)︸ ︷︷ ︸

k times

−−∗ ⊥ |h | ≥ |U | − n
def
= |h | ≥ n + 1 −−∗ ⊥

x ≈ y q(x1, . . . ,x#(q)) |h | ≥ m
def
=

|h | ≥ m − 1 ∗ ¬emp, if 0 < m < ∞
⊤, ifm = 0

⊥, ifm = ∞

where x ,y ∈ Var, q ∈ F , σ (q) = B, x1, . . . ,x#(q),y1, . . . ,yk ∈ Var, n ∈ N andm ∈ N∞.

If ϕ is a test formula of the form t ≥ s then the formula ¬ϕ will often be denoted by t < s . For a set of variables

X ⊆ Var, let alloc(X)
def
=

∧
x ∈X alloc(x) and nalloc(X)

def
=

∧
x ∈X ¬alloc(x). The trivial test formulæ |h | ≥ 0 and

|h | ≥ ∞ are introduced for reasons that will become clear in Section 5. The semantics of test formulæ is very

natural: x ↪→ y means that x points to vector y, alloc(x) means that x is allocated, and the arithmetic expressions

are interpreted as usual, where |h | and |U | respectively denote the number of allocated cells and the number of

locations (possibly∞). Formally:

Proposition 4.2. Given an SL-structure (U, s,I, h), the following equivalences hold, for all variablesx ,y1, . . . ,yk ∈
Var and integers n ∈ N:

(U, s,I, h) |= x ↪→ y ⇔ h(s(x)) = s(y) (U, s,I, h) |= |h | ≥ |U | − n ⇔ ||h| | ≥ | |U | | − n
(U, s,I, h) |= |U | ≥ n ⇔ ||U | | ≥ n (U, s,I, h) |= |h | ≥ n ⇔ ||h| | ≥ n
(U, s,I, h) |= alloc(x) ⇔ s(x) ∈ dom(h)

Proof. Let S = (U, s,I, h) be an SL-structure. We establish each statement separately.

• S |= x ,→ y ⇔ h(s(x)) = (s(y1), . . . , s(yk)). Assume that S |= x ↪→ y. Then by definition, there exist

disjoint heaps h1, h2 such that (U, s,I, h1) |= x 7→ y, (U, s,I, h2) |= ⊤ and h = h1⊎h2. Thus s(x) ∈ dom(h1) ⊆
dom(h) and h(s(x)) = h1 (s(x)) = (s(y1), . . . , s(yk)). Conversely, assume h(s(x)) = (s(y1), . . . , s(yk)). Then
h is of the form h1 ⊎ h2, where h1 is the restriction of h to {s(x)} and h2 is the restriction of h to U \ {s(x)}.
By definition, h1 =

〈
s(x), (s(y1), . . . , s(yk))

〉
, hence h1 |= x 7→ y. Furthermore, h2 |= ⊤. Thus S |= x ↪→ y.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

10 • Mnacho Echenim, Radu Iosif, and Nicolas Peltier

• S |= alloc(x) ⇔ s(x) ∈ dom(h). Assume that S |= alloc(x). This means that there is no heap h′ disjoint

from h such that (U, s,I, h′) |= x 7→ (x , . . . ,x). If s(x) < dom(h), then the heap h′ defined as h′ =

⟨s(x), (s(x), . . . , s(x))⟩ is disjoint from h and we have (U, s,I, h′) |= x 7→ (x , . . . ,x). Thus s(x) ∈ dom(h).
Conversely, assume s(x) ∈ dom(h). By definition, for any heap h′ such that (U, s,I, h′) |= x 7→ (x , . . . ,x)
we have s(x) ∈ dom(h′), hence h′ ∩ h , ∅. Thus S |= alloc(x).
• S |= |h | ≥ n ⇔ ||h| | ≥ n. Assume that S |= |h | ≥ n. Then since h has a finite domain, it is clear that

| |h| | ≥ n if n = 0 and that no such structure exists if n = ∞. When n ≥ 1, we prove the result by

induction on n. By definition, S |= |h | ≥ n − 1 ∗ ¬emp, hence there exist disjoint heaps h1, h2 such that

(U, s,I, h1) |= |h | ≥ n − 1, (U, s,I, h2) |= ¬emp and h = h1 ⊎ h2. By the induction hypothesis | |h1 | | ≥ n − 1

and by definition, | |h2 | | ≥ 1, so that | |h1 ⊎ h2 | | ≥ n. Conversely, assume that | |h| | ≥ n. Since h is finite, this
entails that n , ∞. If n = 0 then S |= |h | ≥ n always holds. Otherwise, we prove the result by induction

on n. Consider ℓ ∈ dom(h) and let h1 and h2 respectively denote the restrictions of h to U \ {ℓ} and to {ℓ},
so that h = h1 ⊎ h2. Since | |h1 | | ≥ n − 1, by the induction hypothesis (U, s,I, h1) |= |h | ≥ n − 1, and since

dom(h2) , ∅, (U, s,I, h2) |= ¬emp. Thus S |= |h | ≥ n.
• S |= |U | ≥ n ⇔ ||U | | ≥ n. Assume that S |= |U | ≥ n. Then there exists a heap h1 disjoint from h such

that (U, s,I, h ⊎ h1) |= |h | ≥ n. This entails that | |h ⊎ h1 | | ≥ n and since dom(h ⊎ h1) ⊆ U, necessarily,
| |U | | ≥ n. Conversely, if | |U | | ≥ n, then there exists a set L ⊆ U such that dom(h)∩L = ∅ and | |L| | = n− ||h| |.
Let h′ be any heap of domain L. Then h and h′ are disjoint and (U, s,I, h ⊎ h′) |= |h | ≥ n, which proves

that S |= |U | ≥ n.
• S |= |h | ≥ |U | − n ⇔ ||h| | ≥ ||U | | − n.. Assume that S |= |h | ≥ |U | − n. By definition, this entails that

there is no heap disjoint from h with a domain of cardinality at least n + 1. In particular, if L = U \ dom(h),
and h′ is any heap of domain L, then dom(h) ∩ dom(h′) = ∅, hence | |h′ | | ≤ n. Since | |U | | = | |h| | + | |h′ | |, we
deduce that | |h| | ≥ | |U | | − n. Conversely, if | |h| | ≥ | |U | | − n then | |U \ dom(h) | | ≤ n, hence there is no heap

disjoint from h with a domain of cardinality at least n + 1, so that S |= |h | ≥ |U | − n.

□

Not all atoms of SLk are test formulæ, for instance x 7→ y and emp are not test formulæ. However, by Proposition

4.2, we have the equivalences x 7→ y ≡ x ↪→ y ∧ ¬|h | ≥ 2 and emp ≡ ¬|h | ≥ 1. Note that, for any n ∈ N, the test
formulæ |U | ≥ n and |h | ≥ |U | − n are trivially true and false respectively, if the universe is infinite.

4.2 A Generalization of Test Formulæ
For technical convenience, we extend the previous patterns to express more general cardinality constraints. For

every n ∈ N, we denote by |U | ≃ n (resp., |h | ≃ n) the formula |U | ≥ n ∧ |U | < n + 1 (resp., |h | ≥ n ∧ |h | < n + 1).
Similarly, |h | ≃ |U | − n denotes either |h | ≥ |U | − n ∧ |h | < |U | − (n − 1) (if n > 0) or |h | ≥ |U | − 0 (if n = 0). We

then extend the notation |h | ≥ t to the case where t is a linear function of |U |, with coefficients in Z.

Definition 4.3. Given integers α , β ∈ Z, where α < {0, 1}, let

|h | ≥ α · |U | + β
def
=

⊥ if α > 1, β > 0

⊤ if α , β < 0

|U | <
⌈
1−β
α−1

⌉
∧

∧
1≤n≤

⌊
−β
α−1

⌋ (|U | ≃ n → |h | ≥ α · n + β) if α > 1, β ≤ 0∧
1≤n<

⌊
−β
α

⌋ (|U | ≃ n → |h | ≥ α · n + β) if α < 0, β ≥ 0

If α = 0 and β < 0 then |h | ≥ α .|U | + β
def
= ⊤. If α = 1 and β > 0 then |h | ≥ α .|U | + β

def
= ⊥.

Note that the cases α = 0, β ≥ 0 and α = 1, β ≤ 0 are already covered by Definition 4.1. The following

proposition states that the semantics of these formulæ is as expected.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

The Bernays-Schönfinkel-Ramsey Class of Separation Logic with Uninterpreted Predicates • 11

Proposition 4.4. Given an SL-structure (U, s,I, h), we have (U, s,I, h) |= |h | ≥ α · |U |+β iff | |h| | ≥ α · | |U | |+β ,
for all α , β ∈ Z, α < {0, 1}.

Proof. We distinguish the four cases below:

• If α > 1 and β > 0 then | |U | | ≥ | |h| | ≥ α · | |U | | + β never holds.

• If α < 0 and β < 0 then | |h| | ≥ 0 ≥ α · | |U | | + β , always holds.

• If α > 1 and β ≤ 0, assume first that (U, s,I, h) |= |h | ≥ α · |U | + β . Then (U, s,I, h) |= |U | <
⌈
1−β
α−1

⌉
, thus

1 ≤ ||U | | <
⌈
1−β
α−1

⌉
by Proposition 4.2. If | |U | | >

⌊
−β
α−1

⌋
then | |U | | ≥

⌊
−β
α−1

⌋
+ 1 =

⌈
1−β
α−1

⌉
, which contradicts

(U, s,I, h) |= |U | <
⌈
1−β
α−1

⌉
, by Proposition 4.2. Otherwise, we have | |U | | = n, with 1 ≤ n ≤

⌊
−β
α−1

⌋
. In

this case (U, s,I, h) |= |h | ≥ α · n + β , which implies | |h| | ≥ α · | |U | | + β , by Proposition 4.2. Conversely,

assume that | |h| | ≥ α · | |U | | + β . Since necessarily | |U | | ≥ | |h| |, we obtain | |U | | ≥ α · | |U | | + β , i.e.,

| |U | | > α · | |U | | + β − 1 and thus | |U | | <
⌈
1−β
α−1

⌉
, so that (U, s,I, h) |= |U | <

⌈
1−β
α−1

⌉
. Moreover, if n = | |U | |

then (U, s,I, h) |= |h | ≥ α · n + β by Proposition 4.2.

• If α < 0 and β ≥ 0, assume first that (U, s,I, h) |= |h | ≥ α · |U | + β . If, moreover, | |U | | ≥
−β
α , then

α · | |U | |+β ≤ 0, thus | |h| | ≥ 0 ≥ α · | |U | |+β holds. Otherwise, 1 ≤ ||U | | <
⌊
−β
α

⌋
and if (U, s,I, h) |= |U | ≃ n,

for some 1 ≤ n <
⌊
−β
α

⌋
, then we have (U, s,I, h) |= |h | ≥ α · n + β , thus | |h| | ≥ α · | |U | | + β , by Proposition

4.2. Conversely, assume that | |h| | ≥ α · | |U | | + β and (U, s,I, h) |= |U | ≃ n, for some integer 1 ≤ n <
⌊
−β
α

⌋
.

By Proposition 4.2, we have | |U | | = n and | |h| | ≥ α · n + β , thus (U, s,I, h) |= |h | ≥ α · |U | + β .
□

4.3 From Test formulæ to FO
The introduction of test formulæ (Definition 4.1) is motivated by the reduction of the (in)finite satisfiability

problem for quantified boolean combinations thereof to the same problem for FO. The reduction is based on a

straightforward encoding of the heap as a (k + 1)-ary predicate symbol, however it is devised below in such a way

that the obtained formula is in the BSR class, if possible. To this purpose, we also use a monadic predicate symbol

encoding the domain of the heap and boolean constants encoding cardinality constraints. We thus introduce

several special (pairwise distinct) function symbols: a (k + 1)-ary predicate p, a monadic predicate d, boolean

constants an , bn and cn , and the following constants of sort U: un , u
i
n , vn ,wn and ξ ix , for n ≥ 0, i ∈ [1,k] and

x ∈ Var. The symbol p will encode the heap, d will encode the domain of the heap, the constants an , bn and cn
encode the constraints over the number of (allocated or unallocated) locations, and un , u

i
n , vn ,wn and ξ ix are

interpreted as pairwise distinct elements of the universe, used to express such constraints in FO.
Given a quantified boolean combination of test formulæ ϕ not containing the above symbols, the FO formula

τ (ϕ) is defined by induction on the structure of ϕ:

τ (|h | ≥ n)
def
= an τ (|U | ≥ n)

def
= bn

τ (|h | ≥ |U | − n)
def
= ¬cn+1 τ (¬ϕ1)

def
= ¬τ (ϕ1)

τ (x ↪→ y) def
= p(x ,y1, . . . ,yk) τ (alloc(x))

def
= d(x)

τ (ϕ1 ∧ ϕ2)
def
= τ (ϕ1) ∧ τ (ϕ2) τ (∃x . ϕ1)

def
= ∃x . τ (ϕ1)

τ (q(x1, . . . ,x#(q)))
def
= q(x1, . . . ,x#(q)) τ (x ≈ y)

def
= x ≈ y

The special symbols are related by the following axioms:

(Heap) ∀x∀y∀y′ . p(x , y) ∧ p(x , y′) → y ≈ y′

(Domx) d(x) → p(x , ξ
1

x , . . . , ξ
k
x) for each x ∈ Var(ϕ)

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

12 • Mnacho Echenim, Radu Iosif, and Nicolas Peltier

(A0) a0 (An)

{
an → (an−1 ∧ p(un , u

1

n , . . . , u
k
n) ∧

∧n−1
i=1 ¬ui ≈ un)

∧ ∀x∀y . ¬an ∧ p(x , y) →
∨n−1

i=1 x ≈ ui

}

(B0) b0 (Bn)

{
bn → (bn−1 ∧

∧n−1
i=1 ¬vi ≈ vn)

∧ ∀x . ¬bn →
∨n−1

i=1 x ≈ vi

}
(C0) c0 (Cn) ∀y . cn → (cn−1 ∧ ¬p(wn , y) ∧

∧n−1
i=1 ¬wn ≈ wi)

Intuitively, p encodes the heap in the following sense. If (U, s,I) |= Heap then there exists a heap h on U such

that y = h(x) ⇔ (x , y) ∈ pI . The constant an (resp. bn) is true if there are at least n cells in the domain of the

heap (resp. in the universe), namely u1, . . . , un (resp. v1, . . . , vn). If cn is true, then there are at least n locations

w1, . . . ,wn outside of the domain of the heap (i.e., n unallocated locations), but the converse does not hold. Indeed,

the axioms Cn do not state the equivalence of cn with the existence of at least n free locations, because such an

equivalence cannot be expressed in BSR(FO)5. Similarly, the axiom Dom states that if x is allocated then d(x)
holds, but the converse is true only for x ∈ Var(ϕ) (as stated by the axiom Domx). Again, adding the implication

∀x . d(x) → ∃y1, . . . ,yk . p(x ,y1, . . . ,yk) would result in a formula that is not in BSR(FO). Instead, we only
assert finitely many (skolemized) instances of the latter formula, for every free variable x , which is sufficient for

our purpose. As a consequence, the transformation preserves sat-equivalence only if the formulæ |h | ≥ |U | −n or

alloc(x) with x < Var(ϕ) occur only at negative polarity (see Lemma 4.9, Point 2).

Definition 4.5. Given a structure (U, s,I) such that (U, s,I) |= Heap and a heap h on U, if x = h(y) ⇔ (x , y) ∈
pI , then we say that h is associated with (U, s,I). An element x ∈ U is allocated in (U, s,I) (resp. points to y in
(U, s,I)) if there exists y ∈ Uk such that (x , y) ∈ pI (resp. if (x , y) ∈ pI).

Definition 4.6. For a quantified boolean combination of test formulæ ϕ, we let N (ϕ) be the maximum integer

n occurring in a test formula θ of the form |h | ≥ n, |U | ≥ n, or |h | ≥ |U | − n from ϕ and define A (ϕ)
def
=

Heap ∧
∧N (ϕ)

i=0 Ai ∧
∧N (ϕ)

i=0 Bi ∧
∧N (ϕ)+1

i=0 Ci ∧ Dom ∧
∧

x ∈Var(ϕ) Domx as the conjunction of axioms related to ϕ.

Example 4.7. Let ϕ be the SL1 formula: x ↪→ y ∧ |h | ≥ 2 ∧ |h | < |U |. Then τ (ϕ) = p(x ,y) ∧ a2 ∧ c1, and A (ϕ)
contains, among others, the following formulæ

6
:

∀x ,y, z . p(x ,y) ∧ p(x , z) → y ≈ z
a0 ∧ (a1 → a0 ∧ p(u1, u

1

1
)) ∧ (a2 → a1 ∧ p(u2, u

1

2
) ∧ ¬u1 ≈ u2)

c0 ∧ (∀y . c1 → c0 ∧ ¬p(w1,y))

The formula τ (ϕ) ∧ A (ϕ) states that p(x ,y) holds, that p is a partial function and that there exist at least two

distinct allocated elements (namely u1 and u2) and one unallocated element (w1).

Let ϕ ′ be the SL2 formula alloc(u) ∧ ∀y . ¬u ≈ y → ¬alloc(y). Then τ (ϕ ′) = d(u) ∧ (∀y . ¬u ≈ y → ¬d(y)),
where the relevant axioms in A (ϕ ′) are:

∀x ,y1,y2, z1, z2 . p(x ,y1,y2) ∧ p(x , z1, z2) → y1 ≈ z1 ∧ y2 ≈ z2
∀x ,y1,y2 . p(x ,y1,y2) → d(x)

d(u) → p(u, ξ 1u , ξ
2

u)

■

The relationship between ϕ and τ (ϕ) is stated below.

5
The converse of Cn : ∀x . (¬cn ∧ ∀y . ¬p(x, y)) →

∨n−1
i=1 x ≈ wi is not in BSR(FO).

6
For simplicity, only the relevant axioms are given.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

The Bernays-Schönfinkel-Ramsey Class of Separation Logic with Uninterpreted Predicates • 13

Definition 4.8. A formula ϕ is BSR-compatible if: (i) each test formula |h | ≥ |U | − n in ϕ occurs at a negative

polarity (ii) if a formula alloc(x) occurs at positive polarity in ϕ, then x ∈ Var(ϕ).

Lemma 4.9. Let ϕ be a quantified boolean combination of test formulæ. The following hold, for any universe U
and any store s:
(1) if (U, s,I, h) |= ϕ, for a heap h, then (U, s,J) |= τ (ϕ) ∧ A (ϕ) for an interpretation J coinciding with I on

every symbol not occurring in A (ϕ) and such that h is associated with (U, s,J);
(2) if ϕ is BSR-compatible and (U, s,I) |= τ (ϕ) ∧ A (ϕ) for an interpretation I such that | |pI | | ∈ N, then

(U, s,I, h) |= ϕ, where h denotes the heap associated with (U, s,I).

Proof. (1) Let (U, s,I, h) be a model of ϕ. Let J be an interpretation coinciding with I on every symbol

occurring in ϕ, and extended to the symbols p, ai , bi , cj , ui , vi ,wi , for i ∈ [0,N (ϕ)] and j ∈ [0,N (ϕ)+1], as follows:

for all ℓ0, . . . , ℓk ∈ U we set (ℓ0, . . . , ℓk) ∈ p
J
iff h(ℓ0) = (ℓ1, . . . , ℓk) and d

I = dom(h). The interpretation of the

boolean constants is defined below:

a
J

i
def
=

{
⊤ if 0 ≤ i ≤ min(| |h| |,N (ϕ))
⊥ if i > min(| |h| |,N (ϕ))

b
J

i
def
=

{
⊤ if 0 ≤ i ≤ min(| |U | |,N (ϕ))
⊥ if i > min(| |U | |,N (ϕ))

c
J

i
def
=

{
⊤ if 0 ≤ i ≤ min(| |U | | − | |h| |,N (ϕ) + 1)
⊥ if i > min(| |U | | − | |h| |,N (ϕ) + 1)

The constants of sortU are interpreted as locations, as follows:

• u
J

1
, . . . , uJ

min(| |h | |,N (ϕ)) are pairwise distinct locations in dom(h) and uin is the i-th component of the vector

referred to by un .

• v
J

1
, . . . , vJ

min(| |U | |,N (ϕ)) are pairwise distinct locations in U.

• w
J

1
, . . . ,wJ

min(| |U | |− | |h | |,N (ϕ)+1) are pairwise distinct locations in U \ dom(h).

The other symbols are interpreted arbitrarily. It is straightforward to check that (U, s,J) |= A (ϕ). We prove

that (U, s,I, h) |= ψ iff (U, s,J) |= τ (ψ) for every subformulaψ of ϕ by induction on the structure of ϕ:
• ψ = x ≈ y: We have τ (ψ) = ψ . Further, (U, s,I, h) |= ψ ⇔ s(x) = s(y) ⇔ (U, s,J) |= ψ .
• ψ = q(x1, . . . ,x#(q)): We have τ (ψ) = ψ . Moreover, (U, s,I, h) |= ψ ⇔ (s(x1), . . . , s(x#(q))) ∈ qI and

(U, s,J) |= ψ ⇔ (s(x1), . . . , s(x#(q))) ∈ q
J
. Because I and J coincide on every symbol occurring in ψ ,

qI = qJ . Thus (U, s,I, h) |= ψ ⇔ (U, s,J) |= ψ .
• ψ = |h | ≥ n: (U, s,I, h) |= ψ iff | |h| | ≥ n by Proposition 4.2. Since n ≤ N (ψ), we have | |h| | ≥ n ⇔ n ≤

min(| |h| |,N (ψ)) ⇔ aJn = ⊤ ⇔ (U, s,J) |= τ (ψ).
• ψ = |U | ≥ n: (U, s,I, h) |= ψ iff | |U | | ≥ n, by Proposition 4.2. Since n ≤ N (ψ), we have | |U | | ≥ n ⇔ n ≤
min(| |U | |,N (ψ)) ⇔ bIn = ⊤ ⇔ (U, s,J) |= τ (ψ).
• ψ = |h | ≥ |U | − n: (U, s,I, h) |= ψ iff | |h| | ≥ | |U | | − n, by Proposition 4.2, i.e., iff n + 1 > | |U | | − | |h| |. Since
n ≤ N (ψ), we have (U, s,I, h) |= ψ ⇔ n + 1 > min(| |U | | − | |h| |,N (ψ) + 1) ⇔ cIn+1 = ⊥ ⇔ (U, s,J) |=
¬cn+1 ⇔ (U, s,J) |= τ (ψ).
• ψ = x ↪→ (y1, . . . ,yk): (U, s,I, h) |= ψ iff h(s(x)) = (s(y1), . . . , s(yk)) iff (s(x), s(y1), . . . , s(yk)) ∈ p

J
iff

(U, s,J) |= p(x ,y1, . . . ,yk).
• ψ = alloc(x): (U, s,I, h) |= ψ iff s(x) ∈ dom(h) iff s(x) ∈ dI iff (U, s,J) |= d(x).
• The casesψ = ψ1 ∧ψ2,ψ = ¬ψ1 andψ = ∃x . ψ1 are by the inductive hypothesis, since (U, s,I, h) |= ψi ⇔
(U, s,J) |= τ (ψi), for all i = 1, 2.

(2) Let (U, s,I) be a model of τ (ϕ) ∧ A (ϕ), such that | |pI | | ∈ N. We define a heap h as follows: for each (k + 1)-

tuple of locations ℓ0, . . . , ℓk ∈ U such that (ℓ0, . . . , ℓk) ∈ p
I
, we set h(ℓ0)

def
= (ℓ1, . . . , ℓk). Since (U, s,I) |= Heap

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

14 • Mnacho Echenim, Radu Iosif, and Nicolas Peltier

and | |pI | | ∈ N, h is a finite partial function. Let ϕnnf be the negation normal form of ϕ. It is easy to check that

τ (ϕnnf) ≡ τ (ϕ). We prove that (U, s,I) |= τ (ψ) ⇒ (U, s,I, h) |= ψ for every subformulaψ in ϕnnf :

• ψ = |h | ≥ n: τ (ψ) = an and (U, s,I) |= an ⇒ a
I
n = ⊤. Since n ≤ N (ψ) and (U, s,I) |=

∧N (ψ)
i=0 Aj , we have

aIj = ⊤ and uIj ∈ dom(h), for all j ∈ [1,n]. Because uIj are pairwise distinct, for j ∈ [1,n], we obtain that

| |h| | ≥ n, and (U, s,I, h) |= ψ follows, by Proposition 4.2.

• ψ = |h | < n: τ (ψ) = ¬an and (U, s,I) |= ¬an ⇒ a
I
n = ⊥. Since n ≤ N (ψ) and (U, s,I) |=

∧N (ψ)
i=0 Aj , each

location ℓ ∈ dom(h) must be one of uI
1
, . . . , uIn−1, thus | |dom(h) | | ≤ n − 1 and (U, s,I, h) |= |h | < n follows,

by Proposition 4.2.

• ψ = |U | ≥ n: τ (ψ) = bn and (U, s,I) |= bn ⇒ b
I
n = ⊤. Since n ≤ N (ψ) and (U, s,I) |=

∧N (ψ)
i=0 Bj , we have

bIj = ⊤, for all j ∈ [1,n]. Because v
I
j are pairwise distinct, for all j ∈ [1,n], we obtain that | |U | | ≥ n, and

(U, s,I, h) |= ψ follows, by Proposition 4.2.

• ψ = |U | < n: τ (ψ) = ¬bn and (U, s,I) |= ¬bn ⇒ b
I
n = ⊥. Since n ≤ N (ψ) and (U, s,I) |=

∧N (ψ)
i=0 Bj , we

have that each location ℓ ∈ U must be one of vI
1
, . . . , vIn−1, thus | |U | | ≤ n − 1 and (U, s,I, h) |= ψ follows,

by Proposition 4.2.

• ψ = |h | ≥ |U | − n: this case is impossible because |h | ≥ |U | − n must occur at a negative polarity inψ .
• ψ = |h | < |U | − n: τ (ψ) = cn+1 and (U, s,I) |= cn+1 ⇒ cn+1 = ⊤. Since n ≤ N (ψ) and (U, s,I) |=∧N (ψ)+1

i=0 Cj , we obtain thatwIj ∈ U \ dom(h), for all j ∈ [1,n + 1]. SincewIj are pairwise disjoint, we obtain

| |U | | − | |h| | ≥ n + 1 thus (U, s, h) |= ψ follows, by Proposition 4.2.

• ψ = alloc(x). Since ψ occurs at positive polarity and ϕ is BSR-compatible, necessarily x ∈ Var(ϕ). Since
(U, s,I) |= d(x) and (U, s,I) |= Domx , we must have (U, s,I) |= p(x , ξ 1x , . . . , ξ

k
x), and therefore s(x) ∈

dom(h). Thus (U, s,I, h) |= ψ .
• ψ = ¬alloc(x). Since (U, s,I) |= d(x) and (U, s,I) |= Dom, we have (U, s,I) |= ∀y1, . . . ,yk .¬p(x ,y1, . . . ,yk),
thus s(x) < dom(h). Hence (U, s,I, h) |= ψ .
• ψ ∈

{
x ≈ y,¬x ≈ y,q(x),¬q(x),x ↪→ y,¬x ↪→ y

}
: The equivalence statement (U, s,I, h) |= ψ ⇔ (U, s,J) |=

ψ is proven in the same way as for point (1).

• The casesψ = ψ1 ∧ψ2,ψ = ψ1 ∨ψ2,∃x . ψ1 are by inductive hypothesis.

□

The following proposition states essential syntactic properties of τ (φ) ∧ A (φ).

Proposition 4.10. Let φ = ∀y . ϕ, where ϕ is a boolean combination of test formulæ, with Var(φ) = {x1, . . . ,xn }.
The formula τ (φ) ∧ A (φ) is a BSR(FO) formula with no existential quantifier such that | |Const(τ (φ) ∧ A (φ)) | | =
k · n + (k + 6) · N (φ) + 5 (where k denotes the number of record fields) and Var(τ (φ) ∧ A (φ)) = Var(φ).

Proof. The proof is by a straightforward inspection of τ (φ) and of the axioms inA (φ). There are k ·n constants

ξ jxi ,N (φ) + 1 constants ai , bi andwi ,N (φ) constants ui , vi ,N (φ) + 2 constants ci , and k · N (φ) constants uji . □

5 FROM QUANTIFIER-FREE SLk TO TEST FORMULÆ
This section establishes the expressive completeness result of the paper, namely that any quantifier-free SLk

formula is equivalent, on both finite and infinite models, to a boolean combination of test formulæ. Starting from

a quantifier-free SLk formula φ, we define a set µ (φ) of conjunctions of test formulæ and their negations, called

minterms, such that φ ≡
∨

M ∈µ (φ) M . The definition of µ (φ) depends on the cardinality of the universe (finite or

infinite). The number of minterms in µ (φ) is exponential in the size of φ, however, the size of everyM ∈ µ (φ) is
bounded by a polynomial in the size of φ and, as we show, checking the membership of a given mintermM in

µ (φ) can be done in PSPACE.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

The Bernays-Schönfinkel-Ramsey Class of Separation Logic with Uninterpreted Predicates • 15

5.1 Minterms
We introduce some definitions and notations, and establish basic properties.

Definition 5.1. A literal is a test formula or its negation. A minterm M is a set of literals, interpreted as the

conjunction of its elements, that contains:

• at most one literal of the form |U | ≥ n;
• at most one literal of the form |U | < n;
• exactly one literal |h | ≥ minM , where minM ∈ N ∪ {|U | − n | n ∈ N};
• exactly one literal |h | < maxM , where maxM ∈ N∞ ∪ {|U | − n | n ∈ N}.

Definition 5.2. Given a mintermM , we define the sets:

Me def
= M ∩

{
x ≈ y,¬x ≈ y | x ,y ∈ Var

}
Ma def

= M ∩ {alloc(x),¬alloc(x) | x ∈ Var}
Mu def

= M ∩ {|U | ≥ n, |U | < n | n ∈ N} Mp def
= M ∩ {x ↪→ y,¬x ↪→ y | x , y ∈ Vark+1}

M f def
= M ∩ {q(x),¬q(x) | q ∈ F ,σ (q) = B, x ∈ Var#(q) }

Thus,M = Me ∪Mu ∪Ma ∪Mp ∪M f ∪ {|h | ≥ minM , |h | < maxM }, for each mintermM .

Proposition 5.3. Given a minterm M , for all structures S = (U, s,I, h) and S′ = (U, s,I, h′) we have S |=
Me ∧Mu ∧M f ⇔ S′ |= Me ∧Mu ∧M f .

Proof. This is immediate, since the semantics of the test formulæ inMe ∪Mu ∪M f
does not depend on the

heap. □

Definition 5.4. Given a set of variables X ⊆ Var, a mintermM is (1) E-complete for X iff for all x ,y ∈ X , exactly

one of x ≈ y ∈ M , ¬x ≈ y ∈ M holds, and (2) A-complete for X iff for each x ∈ X exactly one of alloc(x) ∈ M ,

¬alloc(x) ∈ M holds.

For a literal ℓ, we denote by ℓ its complement, i.e., θ
def
= ¬θ and ¬θ

def
= θ , where θ is a test formula. If T is a set

of literals, then we denote by atoms(T) the set of all test formulæ ϕ such that either ϕ or ¬ϕ occurs in T . The
equivalence relation x ≈T y is defined as T |= x ≈ y and we write x ̸≈T y for T |= ¬x ≈ y. Observe that x ̸≈T y is

not the complement of x ≈T y. For a set X of variables, |X |T is the number of equivalence classes of ≈T in X .
Two tuples y, y′ ∈ Vark are T -distinct if yi ̸≈T y ′i , for some i ∈ [1,k].

Proposition 5.5. IfM is E-complete for Var(M), (U, s,I, h) |= M and X ⊆ Var(M), then |X |M = | |s(X) | |.

Proof. This is an immediate consequence of the fact that if x ,x ′ ∈ X , then s(x) = s(x ′) if and only if

M |= x ≈ x ′. □

Definition 5.6. For a set T of literals, let:

av(T)
def
=

{
x ∈ Var | ∃x ′ ∈ Var . x ≈T x ′, T ∩ {alloc(x ′),x ′ ↪→ y | y ∈ Vark } , ∅

}

nv(T)
def
= {x ∈ Var | ∃x ′ ∈ Var . x ≈T x ′, ¬alloc(x ′) ∈ T }

fpX (T)
def
= T ∩ {alloc(x),¬alloc(x),x ↪→ y,¬x ↪→ y | x ∈ X , y ∈ Vark }

#a (T)
def
= |av(T) |T

#n (X ,T)
def
= |X ∩ nv(T) |T

For notational convenience, we also let fpa (T)
def
= fpav(T) (T).

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

16 • Mnacho Echenim, Radu Iosif, and Nicolas Peltier

Intuitively, av(T) (resp. nv(T)) is the set of variables that must be (resp. are never) allocated in every (resp.

any) model of T . The symbol #a (T) represents the number of equivalence classes of ≈T containing variables

allocated in every model of T ; #n (X ,T) represents the number of equivalence classes of ≈T containing variables

from X that are not allocated in any model of T and fpX (T) is the footprint of T relative to the set X ⊆ Var,
i.e. the set of formulæ describing allocation and points-to relations over variables from X . For example, if

T = {x ≈ z, alloc(x),¬alloc(y),¬z ↪→ y}, then av(T) = {x , z}; nv(T) =
{
y
}
; #a (T) = 1; #n (

{
y
}
,T) = 1; fpa (T) ={

alloc(x),¬z ↪→ y
}
and fpnv(T) (T) =

{
¬alloc(y)

}
.

Proposition 5.7. Given a set T of test formulæ and a structure (U, s,I, h), if (U, s,I, h) |= fpa (T), then
(U, s,I, h′) |= fpa (T) for every extension h′ of h.

Proof. Assume that (U, s,I, h) |= fpa (T) and let ϕ ∈ fpa (T). If ϕ is of the form ¬alloc(x), then since x ∈ av(T),
necessarily, T contains an atom of the form alloc(x ′) or x ′ ↪→ y, where x ′ is a variable such that x ′ ≈T x . In
both cases, fpa (T) must be unsatisfiable, contradicting the assumption that (U, s,I, h) |= fpa (T). If ϕ is of the

form x ↪→ y, then, since (U, s,I, h) |= ϕ, we have h(s(x)) = s(y), thus h′(s(x)) = s(y) (since h′ is an extension

of h) so that (U, s,I, h′) |= ϕ. The proof is similar if ϕ = alloc(x). If ϕ = ¬x ↪→ y and T contains an atom of the

form alloc(x ′) for some variable x ′ such that x ≈T x ′, then s(x) ∈ dom(h) and h(s(x)) , s(y). This entails that
h′(s(x)) , s(y) (since h′ is an extension of h) and (U, s,I, h′) |= ϕ. Otherwise, because x ∈ av(T),T must contain

an atom of the form x ′ ↪→ y′ for some variable x ′ such that x ≈T x ′. Thus, h(s(x)) = s(y′) , s(y), and we deduce
that h′(s(x)) , s(y). □

Definition 5.8. Given the mintermsM1,M2, let npto(M1,M2)
def
= (M1 ∩M2) ∩ {¬x ↪→ y | x < av(M1 ∪M2), y ∈

Vark } be the set of negative points-to literals common to M1 and M2, involving left-hand side variables not

allocated in eitherM1 orM2.

For example, if M1 = {x ↪→ y,¬y ↪→ z,¬y ↪→ u,¬z ↪→ u, |h | ≥ 1, |h | < ∞} and M2 = {x ↪→ y,¬y ↪→
z,¬z ↪→ u, alloc(z), |h | ≥ 1, |h | < ∞}. Then npto(M1,M2) = {¬y ↪→ z}. Observe thatM1 ∗M2 necessarily entails

npto(M1,M2), since the assertion y ↪→ z cannot hold in any part of the heap.

We now introduce some conditions that are necessary for a minterm to be satisfiable. The first condition is

that the same element cannot point to distinct vectors.

Definition 5.9. Given a mintermM , its points-to closure is pc(M)
def
= ⊥ if there exist literals x ↪→ y,x ′ ↪→ y′ ∈ M

such that x ≈M x ′ and y, y′ areM-distinct; and pc(M)
def
= M , otherwise.

Intuitively, pc(M) is ⊥ iff M contradicts the fact that the heap is a partial function. For instance, let M =
{x ↪→ (y1,y2),x

′ ↪→ (y ′
1
,y ′

2
),x ≈ x ′,¬y1 ≈ y

′
1
, |h | ≥ 1, |h | < ∞}. We have pc(M) = ⊥, and it is clear that M

is unsatisfiable as the same location cannot point to both (y1,y2) and (y ′
1
,y ′

2
). Note that we do not assert the

equality y ≈ y′, instead we only check that it is not falsified. This is sufficient for our purpose because in the

following we always assume that the considered minterms are E-complete.

The second condition is that the alloc and point-to literals should be consistent:

Definition 5.10. A mintermM is footprint-consistent if for all x ,x ′ ∈ Var and y, y′ ∈ Vark , such that x ≈M x ′

and yi ≈M y ′i for all i ∈ [1,k], we have (1) if alloc(x) ∈ M then ¬alloc(x ′) < M , and (2) if x ↪→ y ∈ M then{
¬alloc(x ′),¬x ′ ↪→ y′

}
∩M = ∅.

Proposition 5.11. IfM is a footprint-consistent minterm, then nv(M) ∩ av(M) = ∅. If, moreover,M is E-complete
for Var(M), then s(X) ∩ s(av(M)) = ∅ for each set X disjoint from av(M) and each model (U, s,I, h) ofM .

Proof. Suppose first that x ∈ nv(M) ∩ av(M). Then there exist literals ¬alloc(x ′) and alloc(x ′′) in M such

that x ≈M x ′ and x ≈M x ′′, which contradicts the footprint consistency of M . For the second point, suppose

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

The Bernays-Schönfinkel-Ramsey Class of Separation Logic with Uninterpreted Predicates • 17

that ℓ ∈ s(X) ∩ s(av(M)). Then there exist variables x ∈ X and x ′ ∈ av(M) such that s(x) = s(x ′) = ℓ. If M
is E-complete, either x ≈ x ′ ∈ M or ¬x ≈ x ′ ∈ M . The first case contradicts x < av(M) and the second case

contradicts (U, s,I, h) |= M . □

Footprint-consistency is not sufficient for satisfiability. For example,

{
x ↪→ y,x ′ ↪→ y ′,¬y ≈ y ′, |h | < 2

}
is at

the same time footprint-consistent and unsatisfiable, because x and x ′ point to distinct elements but there is

at most one allocated location. We thus introduce additional conditions related to the cardinality of the heap

or of the universe. Intuitively, for any mintermM , we define a formula dc(M) that asserts that minM < maxM
and that the domain contains enough elements to allocate all cells. Essentially, given a structure (U, s,I, h), if
h(x) is known to be defined and distinct from n pairwise distinct vectors of locations v1, . . . , vn , then necessarily

at least n + 1 vectors must exist. Since there are | |U | |k vectors of length k , we must have | |U | |k ≥ n + 1, hence

| |U | | ≥
k
√
n + 1. For instance, if

M = {¬x ↪→ yi | i ∈ [1,n]} ∪ {alloc(x)} ∪ {yi ̸≈ yj | i, j ∈ [1,n], i , j}

then it is clear thatM is unsatisfiable if there are less than n locations, since x cannot be allocated in this case.

Definition 5.12. Given a mintermM , the domain closure ofM is dc(M)
def
= ⊥ if either minM = n1 and maxM = n2

for some n1,n2 ∈ Z such that n1 ≥ n2, or minM = |U | − n1 and maxM = |U | − n2, where n2 ≥ n1; and otherwise:

dc(M)
def
= M ∪

{
|U | ≥

⌈
k
√
maxx ∈av(M) (δx (M) + 1)

⌉}

∪ {|U | ≥ n1 + n2 + 1 | minM = n1,maxM = |U | − n2,n1,n2 ∈ N}
∪ {|U | < n1 + n2 | minM = |U | − n1,maxM = n2,n1,n2 ∈ N} ,

where δx (M) is the number of pairwise M-distinct tuples y for which there exists ¬x ′ ↪→ y ∈ M such that

x ≈M x ′. For any SL-structure S = (U, s,I, h), we denote by min
S
M ,max

S
M ∈ N∞ the values obtained by replacing

|U | with | |U | | in minM and maxM , respectively.

Example 5.13. Let M = {|h | ≥ 0, |h | < ∞, alloc(y0)} ∪ {¬yi ≈ yj | i, j ∈ [0,n], i , j} ∪ {y0 ↪→ yi | i ∈ [1,n]}.
Then y0 ∈ av(M), δx (M) = n and dc(M) = M ∪ {|U | ≥ n + 1}. This states that all models of M contain at least

n + 1 locations: y1, . . . ,yn and the image of y0 by the heap.

LetM ′ = {|h | ≥ 1, |h | < |U | − 1}. Then dc(M ′) = M ′ ∪ {|U | ≥ 3}. All models ofM ′ contain at least 3 locations

(one allocated and two non allocated). ■

Proposition 5.14. Given a mintermM , min
S
M < max

S
M for every model S of dc(M)u .

Proof. Let S = (U, s,I, h) and n1,n2 ∈ N∞. We distinguish the following cases:

• If minM = n1 and maxM = n2 then n1 < n2 must be the case, or else dc(M) ≡ ⊥, in contradiction with

S |= dc(M)u .
• If minM = n1 and maxM = |U | − n2 then |U | ≥ n1 + n2 + 1 ∈ dc(M) and since S |= dc(M)u , we obtain
n1 < | |U | | − n2.
• If minM = |U | − n1 and maxM = n2 then |U | < n1 + n2 ∈ dc(M) and since S |= dc(Mu), we obtain

| |U | | − n1 < n2.
• If minM = |U | −n1 and maxM = |U | −n2 then n2 < n1 must be the case, or else dc(M) ≡ ⊥, in contradiction

with S |= dc(M)u .
□

Proposition 5.15. For any mintermM , we haveM ≡ pc(M) ≡ dc(M).

Proof. It is clear that pc(M) |= M and dc(M) |= M . Let S = (U, s,I, h) be a model of M . If S ̸|= pc(M) then
necessarily pc(M) = ⊥ and there exist variables x ,x ′ ∈ Var(M) such that x ↪→ (y1, . . . ,yk),x

′ ↪→ (z1, . . . , zk) ∈

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

18 • Mnacho Echenim, Radu Iosif, and Nicolas Peltier

M , x ≈M x ′ and (y1, . . . ,yk) and (z1, . . . , zk) are M-distinct, i.e., there exists i ∈ [1,k] such that M |= ¬yi ≈ zi .
We have h(s(x)) = (s(y1), . . . , s(yk)), h(s(x

′)) = (s(y1), . . . , s(yk)) and h(s(x)) = h(s(x
′)), thus s(yi) = s(zi), for

all i ∈ [1,k], a contradiction. Thus S |= pc(M). For a variable x ∈ av(M), let ¬x1 ↪→ y1, . . . ,¬xn ↪→ yn ∈ M be all

literals such that x1 ≈M . . . ≈M xn ≈M x and yi ̸≈M yj for all i , j. Then h(s(x)) ∈ Uk \
{
s(y1), . . . , s(yn)

}
, thus

| |U | |k ≥ n + 1 = δx (M) + 1. Since this holds for each x ∈ av(M), we have S |= |U | ≥
⌈
k
√
maxx ∈av(M) (δx (M) + 1)

⌉
.

Furthermore, if |h | ≥ n1, |h | < |U | − n2 ∈ M then, since S |= M , | |U | | − n2 > | |h| | ≥ n1, thus | |U | | ≥ n1 + n2 + 1
and S |= |U | ≥ n1+n2+ 1. Analogously, we obtain S |= |U | < n1+n2 in the case |h | < n1, |h | ≥ |U | −n2 ∈ M . □

5.2 Eliminating Spatial Connectives
We now show how to eliminate the connectives ∗ and −−∗, i.e., to transform a formula of the form ϕ1 ∗ϕ2 or ϕ1 −−∗ ϕ2
into an equivalent boolean combination of test formulæ, assuming ϕ1 and ϕ2 have already been transformed. We

solve this problem by restricting ourselves to the case where ϕ1 and ϕ2 are minterms satisfying some additional

properties. We first consider the separating conjunction.

Lemma 5.16. LetM1,M2 be two minterms that are footprint-consistent and E-complete for Var(M1 ∪M2), with
atoms(Mp

1
) = atoms(Mp

2
). ThenM1 ∗M2 ≡ elim∗ (M1,M2), where

elim∗ (M1,M2)
def
= Me

1
∧Me

2
∧M

f
1
∧M

f
2
∧ dc(M1)

u ∧ dc(M2)
u ∧ (2)∧

x ∈av(M1), y∈av(M2)

¬x ≈ y ∧ fpa (M1) ∧ fpa (M2) ∧ (3)

nalloc(nv(M1) ∩ nv(M2)) ∧ npto(M1,M2) ∧ (4)

|h | ≥ minM1
+minM2

∧ |h | < maxM1
+maxM2

− 1 (5)

∧ η12 ∧ η21 (6)

and ηi j
def
=

∧
Y ⊆nv(Mj)\av(Mi)

(
alloc(Y) → (|h | ≥ #a (Mi) + |Y |Mi +minMj ∧ #a (Mi) + |Y |Mi < maxMi)

)
.

Intuitively, ifM1 andM2 hold separately, then all heap-independent literals fromM1 ∪M2 must be satisfied

(2), the variables allocated inM1 andM2 must be pairwise distinct and their footprints, relative to the allocated

variables, jointly asserted (3). Moreover, unallocated variables on both sides must not be allocated and common

negative points-to literals must be asserted (4). Since the heap satisfying elim∗ (M1,M2) is the disjoint union of

the heaps forM1 andM2, its bounds are the sum of the bounds on both sides (5) and the variables thatM2 never

allocates (the set nv(M2)) may occur allocated in the heap ofM1 and vice versa, thus the constraints η12 and η21,
respectively (6).

The proof of Lemma 5.16 requires the following result:

Proposition 5.17. LetM1,M2 be two minterms that are footprint-consistent and E-complete for Var(M1 ∪M2)
and let S = (U, s,I, h) be a model of elim∗ (M1,M2). Let Li ,Yi ,Ai be the following sets, for i = 1, 2:

Li = {s(x) ∈ dom(h) | x ∈ nv(M3−i) \ av(Mi)}
Yi = {x ∈ Var | s(x) ∈ Li }
Ai = {s(x) | x ∈ av(Mi)}

Then L1 ∩ L2 = ∅, Li ∩ (A1 ∪A2) = ∅ (for i = 1, 2) and S |= alloc(Y1) ∧ alloc(Y2).

Proof. We have the following results:

• L1 ∩ L2 = ∅. By contradiction, suppose that there exists ℓ ∈ L1 ∩ L2. Then ℓ = s(y1) = s(y2) for some

y1 ∈ nv(M1) and y2 ∈ nv(M2). Because M1 is E-complete for Var(M1 ∪M2), exactly one of y1 ≈ y2,
¬y1 ≈ y2 belongs to M1. But ¬y1 ≈ y2 ∈ M1 contradicts s(y1) = s(y2) and y1 ≈ y2 ∈ M1 leads to

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

The Bernays-Schönfinkel-Ramsey Class of Separation Logic with Uninterpreted Predicates • 19

y2 ∈ nv(M1). Symmetrically, y1 ∈ nv(M2), thus y1,y2 ∈ nalloc(nv(M1) ∩ nv(M2)). Since (U, s,I, h) |=
nalloc(nv(M1)∩nv(M2)) by (4), we have ℓ < dom(h), which contradicts with the fact that L1∪L2 ⊆ dom(h),
according to the definition of L1 and L2.
• Li ∩ (A1 ∪ A2) = ∅. First, Li ∩ Ai = ∅ because Mi is E-complete for Var(M1 ∪M2), and by Proposition

5.11. Second, Li ∩A3−i = ∅ becauseMi is E-complete for Var(M1 ∪M2) and nv(M3−i) ∩ av(M3−i) = ∅, by
Proposition 5.11.

• S |= alloc(Y1) ∧ alloc(Y2). this follows immediately from the fact that L1 ∪ L2 ⊆ dom(h) by definition of

L1,L2.

□

We are now in the position to prove Lemma 5.16:

Proof. Suppose first that Me
1
, Me

2
. Since M1 and M2 are E-complete for Var(M1 ∪M2), there must exist a

literal x ≈ y ∈ Me
1
such that ¬x ≈ y ∈ Me

2
, or vice versa. In both cases however M1 ∗M2 ≡ elim∗ (M1,M2) ≡ ⊥.

Thus we consider from now on thatMe
1
= Me

2
.

• M1 ∗M2 |= elim∗ (M1,M2). Let S = (U, s,I, h) be a model ofM1 ∗M2. Then there exist disjoint heaps h1

and h2 such that h = h1 ⊎ h2 and (U, s,I, hi) |= Mi , for all i = 1, 2. Below we show that S is a model of the

formulæ (2), (3), (4), (5) and (6).

(2) Since (U, s,I, hi) |= Me
i ∧Mu

i ∧M
f
i , by Proposition 5.3, we also have (U, s,I, h) |= Me

i ∧Mu
i ∧M

f
i , for

i = 1, 2. By Proposition 5.15, we obtain further that (U, s,I, h) |= dc(Mi)
u
, for i = 1, 2.

(3) Since dom(h1) ∩ dom(h2) = ∅, for every x ∈ av(M1) and y ∈ av(M2), we must have s(x) , s(y), hence
S |= ¬x ≈ y. Further, we have (U, s,I, hi) |= Mi , thus (U, s,I, hi) |= fpa (Mi) and, by Proposition 5.7,

(U, s,I, h) |= fpa (Mi), for i = 1, 2.
(4) Consider a variable x ∈ nv(M1)∩nv(M2). Then there exist variables x1 and x2 such that ¬alloc(x1) ∈ M1,

x ≈M1
x1, ¬alloc(x2) ∈ M2 and x ≈M2

x2. Hence s(x) = s(x1) < dom(h1) and s(x) = s(x2) < dom(h2),
thus s(x) < dom(h) and (U, s,I, h) |= ¬alloc(x). Since x was chosen arbitrarily, we have (U, s,I, h) |=
nalloc(nv(M1) ∩ nv(M2)). Secondly, let ¬x ↪→ y ∈ M1 ∩M2, for some x < av(M1 ∪M2). Since dom(h1) ∩
dom(h2) = ∅, only the following are possible:

i. s(x) ∈ dom(h1). Since (U, s,I, h1) |= M1, we must have h1 (s(x)) , s(y). Then h(s(x)) , s(y) thus
(U, s,I, h) |= ¬x ↪→ y.

ii. s(x) ∈ dom(h2) and h2 (x) , s(y) is symmetrical.

iii. s(x) < dom(h1) ∪ dom(h2), then s(x) < dom(h) and (U, s,I, h) |= ¬x ↪→ y.
Since ¬x ↪→ y ∈ npto(M1,M2) was chosen arbitrarily, (U, s,I, h) |= npto(M1,M2).
(5) Since h = h1 ⊎ h2, we have | |h| | = | |h1 | | + | |h2 | |, thus the first two constraints are obtained by summing

up the constraints min
S
Mi
≤ ||hi | | < max

S
Mi
, for i = 1, 2.

(6) We prove S |= η12, the proof for S |= η21 being symmetrical. Consider a set Y ⊆ nv(M2) \ av(M1) and
suppose that (U, s,I, h) |= alloc(Y). For each y ∈ Y we must have s(y) ∈ dom(h1), because s(y) < dom(h2)
and s(y) ∈ dom(h). Moreover, s(Y) ∩ s(av(M1)) = ∅ because Y ∩ av(M1) = ∅ and M1 is E-complete for

Var(M1 ∪M2), by Proposition 5.11. Thus #a (M1) + |Y |M1
≤ ||h1 | | < max

S
M1

and | |h| | = | |h1 | | + | |h2 | | ≥

#a (M1) + |Y |M1
+min

S
M2

, as required.

• elim∗ (M1,M2) |= M1 ∗M2. Let S = (U, s,I, h) be a model of elim∗ (M1,M2). We will find h1 and h2 such

that h = h1⊎h2 and (U, s,I, hi) |= Mi , for i = 1, 2. SinceS |= minM1
+minM2

≤ |h |∧|h | < maxM1
+maxM2

−1

by (5), we have, by Proposition 4.2:

min
S
M1

+min
S
M2

≤ ||h| | < max
S
M1

+max
S
M2

− 1 (7)

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

20 • Mnacho Echenim, Radu Iosif, and Nicolas Peltier

Let us now define the following sets, for i = 1, 2:

Li = {s(x) ∈ dom(h) | x ∈ nv(M3−i) \ av(Mi)}
Yi = {x ∈ Var | s(x) ∈ Li }
Ai = {s(x) | x ∈ av(Mi)}

By Proposition 5.17, we have L1 ∩ L2 = ∅, Li ∩ (A1 ∪ A2) = ∅, for i = 1, 2 and S |= alloc(Y1) ∧ alloc(Y2).
Moreover, because (U, s,I, h) |= η12 ∧ η21, the following hold, for i = 1, 2:

| |h| | ≥ | |Ai | | + | |Li | | +min
S
M3−i

(8) | |Ai | | + | |Li | | < max
I
i (9)

We prove the following relation by distinguishing the cases below:

max(min
S
M1

, | |A1 | | + | |L1 | |) +max(min
S
M2

, | |A2 | | + | |L2 | |) ≤ ||h| | (10)

(1) if min
S
M1

≥ ||A1 | | + | |L1 | | then we have min
S
M1

+max(min
S
M2

, | |A2 | | + | |L2 | |) ≤ ||h| | by (5) and (8). The

case min
S
M2

≥ ||A2 | | + | |L2 | | is symmetric, and

(2) otherwise, if min
S
M1

< | |A1 | |+ | |L1 | | and min
S
M2

< | |A2 | |+ | |L2 | |, becauseS |=
∧

x ∈av(M1), y∈av(M2) ¬x ≈ y,

the sets of locations L1, L2, A1 and A2 are pairwise disjoint and, since L1 ∪ L2 ∪ A1 ∪ A2 ⊆ dom(h), it
must be the case that | |h| | ≥ | |A1 | | + | |L1 | | + | |A2 | | + | |L2 | |.

|h |

max(| |A
1
| | + | |L

1
| |, min

I
M
1

) max(| |A
2
| | + | |L

2
| |, min

I
M
2

)

max
I
M
1

max
I
M
2

| |A1 | | + | |L1 | | | |A2 | | + | |L2 | |

(b)

max(| |A
1
| | + | |L

1
| |, min

I
M
1

) max(| |A
2
| | + | |L

2
| |, min

I
M
2

)

max
I
M
1

max
I
M
2

| |A1 | | + | |L1 | | | |A2 | | + | |L2 | |n1 n2

(a)

n1 n2

|h |

Fig. 1

Furthermore, we have | |h| | < max
S
M1

+max
S
M2

− 1 by (7) and one of the following cases holds (see Fig. 1):

(1) If max
S
M1

− 1 ≤ ||h| | − max(| |A2 | | + | |L2 | |,min
S
M2

) then let n1
def
= max

S
M1

− ||A1 | | − | |L1 | | − 1 and n2
def
=

| |h| | −max
S
M1

− ||A2 | | − | |L2 | | + 1 (Fig. 1 (a)). We have that n1 ≥ 0 by (9) and n2 ≥ 0 by the hypothesis

max
S
M1

− 1 ≤ ||h| | −max(| |A2 | | + | |L2 | |,min
S
M2

).

(2) Otherwise, let n1
def
= | |h| | − | |A1 | | − | |L1 | | − max

S (| |A2 | | + | |L2 | |,min
S
M2

) and n2
def
= max

S (| |A2 | | +

| |L2 | |,min
S
M2

) − ||A2 | | − | |L2 | | (Fig. 1 (b)). We have n1 ≥ 0 by (10) and n2 ≥ 0 is immediate.

In both cases, the following holds, for i = 1, 2:

min
S
Mi
≤ ||Ai | | + | |Li | | + ni < max

S
Mi

(11)

We have used the fact that min
S
Mi
< max

S
Mi

, for i = 1, 2, which is a consequence of the fact thatS |= dc(Mi)
u
,

by (2) and Proposition 5.14.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

The Bernays-Schönfinkel-Ramsey Class of Separation Logic with Uninterpreted Predicates • 21

Further, we have that | |h| | =
∑

i=1,2 | |Ai | | + | |Li | | + ni . Moreover, there are exactly n1 + n2 locations in
dom(h) \ (A1 ∪ L1 ∪A2 ∪ L2), thus we can partition this set into N1 and N2 such that | |Ni | | = ni and define

hi to be the restriction of h to Ai ∪ Li ∪ Ni , for i = 1, 2. It remains to be shown that (U, s,I, hi) |= Mi , for

i = 1, 2. Below we do the proof for i = 1, the case i = 2 being similar.

Clearly, (U, s,I, h1) |= Me
1
∧ M

f
1
∧ Mu

1
, because (U, s,I, h) |= Me

1
∧ M

f
1
∧ dc(M1)

u
, by Proposition 5.3.

Further, by (11) and Proposition 4.2, we have (U, s,I, h1) |= |h | ≥ minM1
∧ |h | < maxM1

. There remains to

show that (U, s,I, h1) |= Ma
1
∧M

p
1
.

(Ma
1
) Let alloc(x) ∈ Ma

1
be a literal. Then x ∈ av(M1), thus s(x) ∈ A1 and (U, s,I, h1) |= alloc(x) follows,

by the definition of h1. Dually, let ¬alloc(x) ∈ Ma
1
be a literal. Then, we have x ∈ nv(M1). We distinguish

the following cases:

– If x ∈ av(M2) then s(x) ∈ A2 and since dom(h1) ∩A2 = ∅, we have s(x) < dom(h1), thus (U, s,I, h1) |=
¬alloc(x).

– Otherwise, x ∈ nv(M1) \ av(M2). Again, we distinguish the cases:

∗ if x ∈ Y2 then s(x) ∈ L2 and because dom(h1) ∩ L2 = ∅, we obtain s(x) < dom(h1), thus (U, s,I, h1) |=
¬alloc(x).
∗ otherwise, x < Y2, thus s(x) < L2. But since x ∈ nv(M1) \ av(M2), by the definition of L2, it must be the

case that s(x) < dom(h), thus (U, s,I, h) |= ¬alloc(x) and (U, s,I, h1) |= ¬alloc(x) follows.
(M

p
1
) Let x ↪→ y ∈ Mp

1
be a literal. Then x ∈ av(M1) and s(x) ∈ A1. Moreover, we have x ↪→ y ∈ fpa (M1),

thus (U, s,I, h) |= x ↪→ y, by (3). Since h and h1 agree on A1, we also have (U, s,I, h1) |= x ↪→ y. Dually,
let ¬x ↪→ y ∈ M

p
1
. If x ∈ av(M1) then ¬x ↪→ y ∈ fpa (M1), thus (U, s,I, h1) |= ¬x ↪→ y, since h and h1

agree on A1. Otherwise, if x < av(M1), we distinguish the cases:

– if x ∈ av(M2) then s(x) ∈ A2, and since dom(h1) ∩A2 = ∅, we have s(x) < dom(h1), thus (U, s,I, h1) |=
¬x ↪→ y.

– otherwise, x < av(M2), and since atoms(Mp
1
) = atoms(Mp

2
), we have

{
x ↪→ y,¬x ↪→ y

}
∩M2 , ∅. Since

x < av(M2), the only possibility is ¬x ↪→ y ∈ M2, thus ¬x ↪→ y ∈ npto(M1,M2) and (U, s,I, h) |= ¬x ↪→
y, by (4). Since h is an extension of h1, we obtain that (U, s,I, h1) |= ¬x ↪→ y as well.

□

We provide simple examples of application.

Example 5.18. Consider the following minterms:

M1 = E ∪ {|h | ≥ 2, |h | < 4,x ↪→ y, alloc(y),¬y ↪→ x ,¬z ↪→ z}

M2 = E ∪ {|h | ≥ 1, |h | < 2}

with E = {¬x ≈ y,¬y ≈ z,¬x ≈ z}. ThenM1 ∗M2 ≡ E ∪ {|h | ≥ 3, |h | < 5,x ↪→ y, alloc(y),¬y ↪→ x }.
Let M ′

1
= {|h | ≥ 0, |h | < 1,¬x ≈ y} and M ′

2
= {|h | ≥ 0, |h | < ∞,¬x ≈ y,¬alloc(x)}. Then M ′

1
∗M ′

2
≡ {|h | ≥

0, |h | < ∞, alloc(x) → 1 < 1} ≡ {|h | ≥ 0, |h | < ∞,¬alloc(x)}. Indeed, no model ofM ′
1
∗M ′

2
may allocate x since

the part of the heap that corresponds toM ′
1
is empty andM ′

2
|= ¬alloc(x). ■

Remark 5.19. Note that elim∗ (M1,M2) contains negative occurrences of test formulæ alloc(x) that do not occur in
M1 ∪M2. Such occurrences are introduced at Lines 4 and 6, due to the fact that we consider the closure of ¬alloc(x)
formulæ w.r.t. all the equalities in M1,M2. For example, if M1 =

{
¬alloc(x),x ≈ y, |h | ≥ 0, |h | < ∞

}
and M2 =

{|h | ≥ 0, |h | < ∞}, then y ∈ nv(M1) and alloc(y) occurs at negative polarity in elim∗ (M1,M2). This is problematic
because upcoming results depend on the fact that the polarity of alloc(x) formulæ is preserved (Lemma 5.29). However,
if alloc(x) occurs at a negative polarity in elim∗ (M1,M2), then there exists a literal ¬alloc(x ′) ∈ M1 ∪M2, such that
elim∗ (M1,M2) |= x ≈ x ′, making the negative occurrence of alloc(x) actually redundant. Consequently, equivalence
is preserved when only the test formulæ alloc(x) such that ¬alloc(x) ∈ M1 ∪ M2 occur at negative polarity in

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

22 • Mnacho Echenim, Radu Iosif, and Nicolas Peltier

elim∗ (M1,M2). This refined version of elim∗ (M1,M2) is used in the proof of Lemma 5.29. However, taking this
observation into account at this point would clutter the definition of elim∗ (M1,M2). ■

Next, we show a similar result for the separating implication. For technical convenience, we translate the

septractionM1 ⊸ M2, instead ofM1 −−∗ M2, as an equivalent boolean combination of test formulæ. This is without

loss of generality, becauseM1 −−∗ M2 ≡ ¬(M1 ⊸ ¬M2). Unlike with the case of the separating conjuction (Lemma

5.16), here the definition of the boolean combination of test formulæ depends on whether the universe is finite or

infinite.

If the complement of some literal ℓ ∈ fpa (M1) belongs to M2 then no extension by a heap that satisfies ℓ

may satisfy ℓ. Therefore, as an additional simplifying assumption, we suppose that fpa (M1) ∩M2 = ∅, so that

M1 ⊸ M2 is not trivially unsatisfiable.

Lemma 5.20. LetM1 andM2 be footprint-consistent minterms that are E-complete for Var(M1 ∪M2), such that:
(a)M1 is A-complete for Var(M1 ∪M2), (b) atoms(Ma

2
∪M

p
2
) ⊆ atoms(Ma

1
∪M

p
1
), and (c) fpa (M1) ∩M2 = ∅. Then,

M1 ⊸ M2 ≡
fin elimfin

⊸ (M1,M2) andM1 ⊸ M2 ≡
inf eliminf

⊸ (M1,M2), where:

elim†⊸ (M1,M2)
def
= pc(M1)

e
∧Me

2
∧M

f
1
∧M

f
2
∧ dc(M1)

u
∧ dc(M2)

u
∧ (12)

nalloc(av(M1)) ∧ fpnv(M1)
(M2) ∧ (13)

|h | ≥ minM2
−maxM1

+ 1 ∧ |h | < maxM2
−minM1

(14)

∧ λ† (15)

with λfin def
=

∧
Y ⊆Var(M1∪M2) nalloc(Y) →

(
|h | < |U | −minM1

− #n (Y ,M1) + 1
∧ |U | ≥ minM2

+ #n (Y ,M1)

)
, and λinf

def
= ⊤.

Intuitively, a heap satisfies M1 ⊸ M2 iff it has an extension, by a disjoint heap satisfying M1, that satisfies

M2. Thus, elim
†
⊸ (M1,M2) must entail the heap-independent literals of bothM1 andM2 (12). Next, no variable

allocated byM1 must be allocated by elim†⊸ (M1,M2), otherwise no extension by a heap satisfyingM1 is possible

and, moreover, the footprint ofM2 relative to the unallocated variables ofM1 must be asserted (13). The heap’s

cardinality constraints depend on the bounds ofM1 andM2 (14) and, if Y is a set of variables not allocated in the

heap, these variables can be allocated in the extension (15). Actually, this is where the finite universe assumption

first comes into play. If the universe is infinite, then there are enough locations outside the heap to be assigned to

Y . However, if the universe is finite, then it is necessary to ensure that there are at least #n (Y ,M1) free locations
to be assigned to Y (15). We now give the proof of Lemma 5.20.

Proof. If pc(M1) = ⊥ then M1 ⊸ M2 ≡ elim⊸ (M1,M2) ≡ ⊥. Also, since M1 and M2 are E-complete for

Var(M1 ∪M2), if we suppose thatM
e
1
, Me

2
thenM1 ⊸ M2 ≡ elim⊸ (M1,M2) ≡ ⊥. From now on, we will assume

that pc(M1) = M1 andM
e
1
= Me

2
.

• M1 ⊸ M2 |= elim⊸ (M1,M2). Let S = (U, s,I, h) be a structure such that S |= M1 ⊸ M2. Then there

exists a heap h′ disjoint from h such that (U, s,I, h′) |= M1 and (U, s,I, h ⊎ h′) |= M2. Below we prove that

S is also a model of the formulæ (12), (13), (14) and (15), respectively.

(12) We have (U, s,I, h′) |= Me
1
∧ Mu

1
∧ M

f
1
, thus (U, s,I, h) |= Me

1
∧ Mu

1
∧ M

f
1
by Proposition 5.3, and

by Proposition 5.15, we deduce that (U, s,I, h) |= pc(M1)
e ∧ dc(M1)

u ∧M
f
1
. Analogously, (U, s,I, h) |=

Me
2
∧ dc(M2)

u ∧M
f
2
x follows from (U, s,I, h ⊎ h′) |= M2 by Propositions 5.3 and 5.15.

(13) Since (U, s,I, h′) |= M1, also (U, s,I, h′) |= alloc(av(M1)) and since dom(h′) ∩ dom(h) = ∅, we have
(U, s,I, h) |= nalloc(av(M1)). To prove that (U, s,I, h) |= fpnv(M1)

(M2), we consider four cases, depending
on the form of the literal:

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

The Bernays-Schönfinkel-Ramsey Class of Separation Logic with Uninterpreted Predicates • 23

– If alloc(x) ∈ M2 and x ∈ nv(M1), then s(x) ∈ dom(h) ∪ dom(h′) and s(x) < dom(h′), thus s(x) ∈ dom(h)
and (U, s,I, h) |= alloc(x), by Proposition 4.2.

– The cases x ↪→ y ∈ M2 and x ∈ nv(M1) use a similar argument.

– If ¬alloc(x) ∈ M2 and x ∈ nv(M1), then s(x) < dom(h ∪ h′), hence s(x) < dom(h) and (U, s,I, h) |=
¬alloc(x), by Proposition 4.2.

– If ¬x ↪→ y ∈ M2 and x ∈ nv(M1) then s(x) < dom(h′) and either:

∗ s(x) < dom(h) and (U, s,I, h) |= ¬x ↪→ y, by Proposition 4.2, or

∗ s(x) ∈ dom(h) in which case h′ ⊎ h and h agree on s(x) and (U, s,I, h) |= ¬x ↪→ y.
(14)We have | |h ⊎ h′ | | = | |h| |+| |h′ | | and since (U, s,I, h⊎h′) |= M2, we obtainmin

S
M2

≤ ||h| |+| |h′ | | < max
S
M2

.

Since (U, s,I, h′) |= M1 we also have min
S
M1

≤ ||h′ | | < max
S
M1

, thus min
S
M1

≤ ||h′ | | ≤ max
S
M1

− 1, i.e.,

−max
S
M1

+ 1 ≤ −||h′ | | ≤ −min
S
M1

so that min
S
M2

−max
S
M1

+ 1 ≤ ||h| | < max
S
M2

−min
S
M1

.

(15) Assume that (U, s,I, h) |= nalloc(Y) for a set Y ⊆ Var(M1 ∪M2), which implies that dom(h) ∩
s(Y) = ∅. Since (U, s,I, h′) |= M1, we also have dom(h′) ∩ s(nv(M1)) = ∅. Thus | |U | | ≥ | |h| | + | |h

′ | | +

| |s(Y ∩ nv(M1)) | | ≥ | |h| |+min
S
M1

+#n (Y ,M1), because | |h
′ | | ≥ min

S
M1

and | |s(Y ∩ nv(M1)) | | = |Y ∩ nv(M1) |M1

=

#n (Y ,M1), by Proposition 5.5, sinceM1 is E-complete. Therefore, | |h| | ≤ | |U | | −min
S
M1

−#n (Y ,M1). Moreover,

since (U, s,I, h ⊎ h′) |= M2, we obtain |U | ≥ | |h ⊎ h
′ | | + #n (Y ,M1) ≥ min

S
M2

+ #n (Y ,M1).

• elim⊸ (M1,M2) |= M1 ⊸ M2. Let S = (U, s,I, h) be a structure such that S |= elim⊸ (M1,M2). We

build a heap h′ such that dom(h) ∩ dom(h′) = ∅, (U, s,I, h′) |= M1 and (U, s,I, h ⊎ h′) |= M2. First, for

each variable x ∈ av(M1) such that x ′ ↪→ y ∈ M
p
1
for some variable x ′ with x ≈M1

x ′, we add the tuple

(s(x), s(y)) to h′. Since (U, s,I, h) |= pc(M1)
e
, for any pair of variables x ≈M1

x ′ if x ↪→ y,x ′ ↪→ y′ ∈ M1

then yi ≈M1
y ′i , and the result is a functional relation. We define:

A = {x ∈ av(M1) | ∀x
′∀y . x ≈M1

x ′ → x ′ ↪→ y < Mp
1
}

Vx = {(s(y1), . . . , s(yk)) ∈ U
k | x ≈M1

x ′, ¬x ′ ↪→ y ∈ Mp
1
}, for x ∈ av(M1)

N = {x ∈ Var(M1 ∪M2) | s(x) < dom(h)}

Intuitively, A denotes the set of variables that must be allocated but with no constraint on their image;

this set is independent of the interpretation under consideration. The set Vx denotes the set of images the

allocated variable x cannot point to, and N denotes the set of variables that are not allocated in h.

For each x ∈ A we choose a tuple (ℓ1, . . . , ℓk) ∈ U
k \ Vx and let h′(s(x)) = (ℓ1, . . . , ℓk). Since M1 is

E-complete, we have | |Vx | | ≤ δx (M1) for each x ∈ A, and such a choice is possible because (U, s,I, h) |=
dc(M1)

u
, thus | |Uk | | ≥ δx (M1) + 1.

Since (U, s,I, h) |= nalloc(N), if U is finite, by (14) it must be the case that:

| |h| | < | |U | | −min
S
M1

− #n (N ,M1) + 1 (16)

| |U | | ≥ min
S
M2

+ #n (N ,M1) (17)

Finally, let L ⊆ U \ (dom(h) ∪ s(av(M1)) ∪ s(nv(M1))) be a finite set of locations of cardinality | |L| | =
max(min

S
M1

,min
S
M2

− ||h| |) − #a (M1). Choosing such a set L is possible, because either U is infinite, or U is

finite, in which case:

| |U | | ≥ max(min
S
M1

+ | |h| |,min
S
M2

) + #n (N ,M1), by (16) and (17)

≥ max(min
S
M1

,min
S
M2

− ||h| |) − #a (M1) + | |h| | + #a (M1) + #n (N ,M1)

= | |L| | + | |h| | + #a (M1) + #n (N ,M1)
≥ ||L| | + | |dom(h) ∪ s(av(M1)) ∪ s(nv(M1)) | |

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

24 • Mnacho Echenim, Radu Iosif, and Nicolas Peltier

where the last inequality is a consequence of Proposition 5.5. We choose an arbitrary tuple (ℓ1, . . . , ℓk) ∈ U
k

and let h′(ℓ) = (ℓ1, . . . , ℓk) for all ℓ ∈ L. Because U is non-empty, such a tuple exists. Consequently, we

have dom(h′) = s(av(M1)) ∪ L and dom(h′) ∩ dom(h) = ∅ because s(av(M1)) ∩ dom(h) = ∅ by (13) and

L ∩ dom(h) = ∅ by construction. We now prove:

– (U, s, I , h′) |= M1.Clearly (U, s,I, h) |= Me
1
∧Mu

1
∧M

f
1
by (12) and Proposition 5.15. To show (U, s,I, h′) |=

Ma
1
, observe that s(x) ∈ dom(h′) for each x ∈ av(M1), hence for each literal alloc(x) ∈ M1 we have

(U, s,I, h′) |= alloc(x). Moreover, we have dom(h′) ∩ s(nv(M1)) = (s(av(M1)) ∪ L) ∩ s(nv(M1)) =
∅, because M1 is footprint consistent and E-complete for Var(M1 ∪M2), by Proposition 5.11. Thus

(U, s,I, h′) |= ¬alloc(x) for each literal ¬alloc(x) ∈ Ma
1
. For each literal x ↪→ y ∈ M

p
1
we have

h′(s(x)) = (s(y1), . . . , s(yk)) by construction, thus (U, s,I, h′) |= x ↪→ y. For each literal ¬x ↪→ y ∈ Mp
1
,

we distinguish two cases.

∗ If x ∈ av(M1), then (s(y1), . . . , s(yk)) ∈ Vx hence h(s(x)) , (s(y1), . . . , s(yk)) by construction.

∗ If x < av(M1), then since M1 is A-complete for Var(M1 ∪M2), we have x ∈ nv(M1), thus s(x) <
dom(h′) = s(av(M1)) ∪ L.

We finally prove that (U, s,I, h′) |= |h | ≥ minM1
∧ |h | < maxM1

. Since dom(h′) = s(av(M1)) ∪ L and

s(av(M1))∩L = ∅, we have | |h
′ | | = | |s(av(M1)) | |+ | |L| | = max(min

S
M1

,min
S
M2

−||h| |). If | |h′ | | = min
I
M1

then

| |h′ | | < max
I
M1

becauseS |= dc(M1)
u
, which implies that min

S
M1

< max
S
M1

, by Proposition 5.14. Otherwise

| |h′ | | = min
S
M2

− ||h| | ≥ min
I
M1

and we have by (14) | |h| | ≥ min
I
M2

−max
I
M1

+1, thus | |h| | > min
I
M2

−max
I
M1

,

and therefore | |h′ | | < max
I
M1

.

– (U, s, I , h′ ⊎ h) |= M2.Wehave (U, s,I, h′⊎h) |= Me
2
∧M

f
2
∧Mu

2
because (U, s,I, h) |= Me

2
∧M

f
2
∧Mu

2
and

these formulæ do not depend on the heap. Next, for a given variable x , let αx ∈ {alloc(x),¬alloc(x),x ↪→
y,¬x ↪→ y | y ∈ Vark } ∩ M2 be a literal and let αx denote its complement. If x ∈ nv(M1) then
αx ∈ fpnv(M1)

(M2) and (U, s,I, h) |= αx by (13). Moreover, because h and h ⊎ h′ agree on s(nv(M1)),
we obtain (U, s,I, h ⊎ h′) |= αx . Otherwise x < nv(M1) hence x ∈ av(M1) because M1 is A-complete

for Var(M1 ∪M2), and since αx ∈ Ma
2
∪M

p
2
and atoms(Ma

2
∪Ma

2
) ⊆ atoms(Ma

1
∪M

p
1
), we have αx ∈

fpa (M1), because the case αx ∈ fpa (M1) is in contradiction with fpa (M1) ∩M2 = ∅ (condition (c) of the

Lemma). But then (U, s,I, h′) |= αx and (U, s,I, h ⊎ h′) |= αx follows, by Proposition 5.7. We have thus

proved that (U, s,I, h⊎h′) |= Ma
2
∪M

p
2
. We are left with proving that min

S
M2

≤ ||h| |+ | |h′ | | = max(min
I
M1

+

| |h| |,min
S
M2

) < max
S
M2

. If min
S
M1

+ | |h| | ≤ min
S
M2

the result follows from the fact that S |= dc(M2)
u
, which

implies min
S
M2

< max
S
M2

, by Proposition 5.14. Otherwise, | |h| | + | |h′ | | = min
S
M1

+ | |h| | > min
S
M2

and

| |h| | + | |h′ | | < max
S
M2

follows from (14).

□

Example 5.21. Let M1 = {alloc(x),¬alloc(y),¬x ≈ y, |h | ≥ 1, |h | < 2}, M2 = {¬x ≈ y, |h | ≥ 3, |h | < ∞,¬x ↪→
x ,¬y ↪→ y}. ThenM1 ⊸ M2 ≡

inf {|h | ≥ 2, |h | < ∞,¬alloc(x),¬y ↪→ y}. ■

5.3 TranslatingQuantifier-free SLk into Minterms
We prove next that each quantifier-free SLk formula is equivalent to a finite disjunction of minterms. Intuitively,

these disjunctions are defined by induction on the structure of the formula. The base cases and classical connectives

are easy to handle. For formulæ ψ1 ∗ψ2 or ψ1 ⊸ ψ2, the transformation is first applied on ψ1 and ψ2, then the

following equivalences are used to shift ∗ and⊸ innermost in the formula:

(ϕ1 ∨ ϕ2) ∗ ϕ ≡ (ϕ1 ∗ ϕ) ∨ (ϕ2 ∗ ϕ) (ϕ1 ∨ ϕ2) ⊸ ϕ ≡ (ϕ1 ⊸ ϕ) ∨ (ϕ2 ⊸ ϕ)
ϕ ∗ (ϕ1 ∨ ϕ2) ≡ (ϕ ∗ ϕ1) ∨ (ϕ ∗ ϕ2) ϕ ⊸ (ϕ1 ∨ ϕ2) ≡ (ϕ ⊸ ϕ1) ∨ (ϕ ⊸ ϕ2)

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

The Bernays-Schönfinkel-Ramsey Class of Separation Logic with Uninterpreted Predicates • 25

Afterwards, the operands of ∗ and ⊸ are minterms, and the result is obtained using the equivalences from

Lemmas 5.16 and 5.20, respectively (up to a transformation into disjunctive normal form). The only difficulty is

that these lemmas impose some additional conditions on the minterms (e.g., being E-complete, or A-complete).

However, the conditions are easy to enforce by case splitting, as illustrated by Example 5.22.

Example 5.22. Consider the formula x 7→ x ⊸ y 7→ y. It is easy to check that x 7→ x ≡ M1, where

M1 = x ↪→ x ∧ |h | ≥ 1 ∧ |h | < 2 and y 7→ y ≡ M2, whereM2 = y ↪→ y ∧ |h | ≥ 1 ∧ |h | < 2. To apply Lemma 5.20,

we need to ensure thatM1 andM2 are E-complete, which may be done by adding either x ≈ y or x ̸≈ y to each

minterm. We also have to ensure thatM1 is A-complete, thus for z ∈
{
x ,y

}
, we add either alloc(z) or ¬alloc(z) to

M1. Finally, we must have atoms(Ma
2
∪M

p
2
) ⊆ atoms(Ma

1
∪M

p
1
), thus we add either y ↪→ y or ¬y ↪→ y to M1.

After removing redundancies, we get (among others) the minterms:M ′
1
= x ↪→ x ∧ |h | ≥ 1 ∧ |h | < 2 ∧ x ≈ y and

M ′
2
= y ↪→ y ∧ |h | ≥ 1 ∧ |h | < 2 ∧ x ≈ y. Afterwards we compute elimfin

⊸ (M ′
1
,M ′

2
) = x ≈ y ∧ ¬alloc(x) ∧ |h | ≥

0 ∧ |h | < 1. ■

To describe the transformation in a more formal way, we first need to show that the conjunction of two

minterms can be written as a disjunction of minterms. To this aim, given mintermsM1 andM2, we define the sets

of constraints minh(M1,M2) and maxh(M1,M2) by taking the conjunction of the lower and upper bounds on the

cardinality of the heap and keeping the most restrictive bounds.

Definition 5.23.

minh(M1,M2)
def
=

{
|h | ≥ max(minM1

,minM2
)
}

if minM1
,minM2

∈ N{
|h | ≥ minMi ∧ |U | < minMi +m + 1,
|h | ≥ minM3−i ∧ |U | ≥ minMi +m + 1

}
if minMi ∈ N, minM3−i = |U | −m, i = 1, 2

{|h | ≥ |U | −min(m1,m2)}
if minMi = |U | −mi , i = 1, 2

maxh(M1,M2)
def
=

{
|h | < min(maxM1

,maxM2
)
}

if maxM1
,maxM2

∈ N∞{
|h | < maxMi

}
if maxM3−i = ∞,maxMi = |U | −m, i = 1, 2{
|h | < maxMi ∧ |U | ≥ maxMi +m,
|h | < |U | −m ∧ |U | < maxMi +m

}
if maxMi ∈ N, maxM3−i = |U | −m, i = 1, 2

{|h | < |U | −max(m1,m2)}
if maxMi = |U | −mi , i = 1, 2

For instance, ifM1 = {|h | ≥ 2, |h | < |U | − 1} andM2 = {|h | ≥ 3, |h | < |U | − 2}, then minh(M1,M2) = {|h | ≥ 3}

and maxh(M1,M2) = {|h | < |U | − 2}. Heterogeneous constraints are merged by performing a case split on the

value of |U |. For example, ifM1 = {|h | ≥ |U | − 4} andM2 = {|h | ≥ 1}, then the first condition prevails if |U | ≥ 5

yielding: minh(M1,M2) = {|h | ≥ 1 ∧ |U | < 5, |h | ≥ |U | − 4 ∧ |U | ≥ 5}. The disjunction of minterms equivalent to

a conjunction of two minterms is then defined as follows:

Definition 5.24. For any minterms M1,M2, let [M1,M2]

def
=

{ ∧
i=1,2M

e
i ∧M

f
i ∧Ma

i ∧M
p
i ∧Mu

i ∧ µ ∧ ν | µ ∈

minh(M1,M2),ν ∈ maxh(M1,M2)
}
. We extend this notation recursively to any set of minterms of size n > 2:

[M1,M2, . . . ,Mn]
def
=

⋃
M ∈[M1, ...,Mn−1] [M,Mn].

Proposition 5.25. Given mintermsM1, . . . ,Mn , we have
∧n

i=1Mi ≡
∨

M ∈[M1, ...,Mn]M .

Proof. We prove the result for n = 2, the general result follows by induction. For n = 2, this is a consequence of

the fact that |h | ≥ minM1
∧ |h | ≥ minM2

≡
∨
µ ∈minh(M1,M2) µ, and |h | < maxM1

∧ |h | < maxM2
≡

∨
ν ∈maxh(M1,M2) ν .

We prove the first fact in the case where minM1
=m1 and minM2

= |U | −m2, the other cases are similar. Consider

a structure S = (U, s,I, h) such that S |= |h | ≥ m1 ∧ |h | ≥ |U | −m2. Then | |h| | ≥ m1 and | |h| | ≥ | |U | | −m2, and

we distinguish two cases.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

26 • Mnacho Echenim, Radu Iosif, and Nicolas Peltier

• ifm1 ≥ ||U | | −m2, then necessarily | |U | | < m1 +m2 + 1, so that S |= |h | ≥ m1 ∧ |U | < m1 +m2 + 1.

• otherwise, we have | |U | | ≥ m1 +m2 + 1, so that S |= |h | ≥ |U | −m2 ∧ |U | ≥ m1 +m2 + 1.

Conversely, if S is a structure such that either S |= |h | ≥ m1 ∧ |U | < m1 +m2 + 1 or S |= |h | ≥ |U | −m2 ∧ |U | ≥
m1 +m2 + 1, then it is straightforward to verify that S |= |h | ≥ m1 ∧ |h | ≥ |U | −m2. □

The following proposition states some properties of the literals occurring in [M1, . . . ,Mn].

Proposition 5.26. Given mintermsM1, . . . ,Mn andM ∈ [M1, . . . ,Mn], if ℓ ∈ M is a literal then either ℓ ∈ Mi ,
for some i = 1, . . . ,n, or ℓ ∈ {|U | ≥ m1 +m2, |U | < m1 +m2, |U | ≥ m1 +m2 + 1, |U | < m1 +m2 + 1}, where
M1 ∪ · · · ∪Mn contains two literals ℓi ∈ {|h | ≥ mi , |h | < mi , |h | ≥ |U | −mi , |h | < |U | −mi }, for i = 1, 2.

Proof. Assume thatn = 2. If ℓ < M1∪M2 then by definition of [M1,M2], necessarily ℓ occurs inminh(M1,M2)∪
maxh(M1,M2) and the proof is immediate, by definition of these sets. The proof for n > 2 goes by induction on

n. □

For two sets K ,L of literals, a completion of K w.r.t. L is a set of literals K ′ that is minimal with respect to

inclusion of sets, such that K ⊆ K ′ and atoms(L) ⊆ atoms(K) (i.e., K ⊆ K ′ and for every ℓ ∈ L, K ′ contains either

ℓ or ℓ). We denote by (K)L the set of completions of K w.r.t. L.

Proposition 5.27. If K and L are sets of literals, then K ≡
∨
ψ ∈(K)L ψ . If further K is a minterm and L contains

no literals of the form |h | ≥ t or |h | < t , then every set P ∈ (K)L is a minterm such that Var(P) = Var(K) ∪ Var(L),
minP = minK and maxP = maxK .

Proof. Immediate, by the definition of (K)L . □

For a literal ℓ, let [ℓ]mt
be an equivalent minterm obtained from ℓ by adding the missing lower/upper bounds on

the cardinality of the heap, namely |h | ≥ 0 if ℓ < {|h | ≥ n, |h | ≥ |U | −n | n ∈ Z}} and |h | < ∞ if ℓ < {|h | < n, |h | <

|U |−n | n ∈ Z}. We extend this notation to sets (i.e., conjunctions) of literals as [ℓ1, . . . , ℓn]
mt def
= [[ℓ1]

mt , . . . , [ℓn]
mt
].

We have ℓ ≡ [ℓ]mt
for any literal ℓ and L ≡

∨
M ∈[L]mt M , for any set L of literals. For a boolean combination of

literals ϕ, we denote by (ϕ)dnf its disjunctive normal form. We assume from now on that the disjunctive normal

form of a formula is canonical and all the conjunctions are incomparable with respect to logical entailment.

Given a formula ϕ in disjunctive normal form ϕ =
∨n

i=1Ci , where C1, . . . ,Cn are conjunctions (repre-

sented by sets) of literals, we define

[
ϕ
]mt def
=

⋃n
i=1 [Ci]

mt
. We have

[
ϕ
]mt
≡

∨
M ∈[ϕ]

mt M . Further, let E(L)
def
={

x ≈ y | x ,y ∈ Var(L)
}
and A(L)

def
= {alloc(x) | x ∈ Var(L)}, for a set L of literals.

For each † ∈
{
fin, inf

}
, we define the set of minterms µ† (ϕ) recursively on the structure of ϕ:

µ† (emp)
def
= {|h | ≃ 0} µ† (x 7→ y) def

=
{
x ↪→ y ∧ |h | ≃ 1

}
µ† (x ≈ y)

def
=

{
x ≈ y ∧ |h | ≥ 0 ∧ |h | < ∞

}
µ† (q(x1, . . . ,x#(q))

def
=

{
q(x1, . . . ,x#(q)) ∧ |h | ≥ 0 ∧ |h | < ∞

}

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

The Bernays-Schönfinkel-Ramsey Class of Separation Logic with Uninterpreted Predicates • 27

µ† (ϕ1 ∧ ϕ2)
def
=

⋃
Mi ∈µ† (ϕi)
i=1,2

[M1,M2]

µ† (¬ϕ1)
def
=

⋃ { [
ℓ1, . . . , ℓn

]mt ����ℓi ∈ Mi , i ∈ [1,n]
}
, where µ† (ϕ1) = {M1, . . . ,Mn }

µ† (ϕ1 ∗ ϕ2)
def
=

⋃
Mi ∈µ† (ϕi)
i=1,2

{ [
(elim∗ (P1, P2))

dnf
]mt ����Nj ∈ (Mj)

E(M
1
∪M

2
), Pj ∈ (Nj)

Np
3−j , j = 1, 2

}

µ† (ϕ1 ⊸ ϕ2)
def
=

⋃
Mi ∈µ† (ϕi)
i=1,2

{ [(
elim†

⊸ (Q1,N2)
)dnf]mt ����Nj ∈ (Mj)

E(M
1
∪M

2
), P1 ∈ (N1)

A(M
1
∪M

2
),Q1 ∈ (P1)

Ma
2
∪Mp

2 , j = 1, 2
}

Intuitively, µ† (ϕ1 ∗ ϕ2) and µ† (ϕ1 ⊸ ϕ2) are obtained by first recursively computing µ† (ϕ1) and µ† (ϕ2), then
extending the obtained minterms in such a way that the hypotheses of Lemmas 5.16 or 5.20 are satisfied, and

finally applying elim†

∗ and elim†

⊸, respectively.

Lemma 5.28. Given a quantifier-free SLk formula ϕ, the following equivalences hold: (1) ϕ ≡fin
∨

M ∈µfin (ϕ) M , and
(2) ϕ ≡inf

∨
M ∈µ inf (ϕ) M .

Proof. We show that ϕ ≡fin
∨

M ∈µfin (ϕ) M by induction on the structure of ϕ. The fact that ϕ ≡inf
∨

M ∈µ inf (ϕ) M
is proved in the same way. The base cases are immediate and the inductive cases are dealt with below:

• If ϕ = ϕ1 ∧ ϕ2 and ϕi ≡
fin ∨

Mi ∈µfin (ϕi) Mi for i = 1, 2 by the inductive hypothesis and Proposition 5.25, we

have:

ϕ ≡fin
∨

M1∈µfin (ϕ1) M1 ∧
∨

M2∈µfin (ϕ2) M2

≡fin
∨

Mi ∈µfin (ϕi), i=1,2M1 ∧M2

≡fin
∨

Mi ∈µfin (ϕi), i=1,2
∨

M ∈[M1,M2]
M

• If ϕ = ¬ϕ1, µ
fin (ϕ1) = {M1, . . . ,Mn }, Mi =

{
ℓi1, . . . , ℓini

}
for all i ∈ [1,n], then since ϕ1 ≡

fin ∨n
i=1

∧ni
j=1 ℓi j

by the inductive hypothesis, we have:

¬ϕ1 ≡fin
∧n

i=1
∨ni

j=1 ℓi j

≡fin
∧n

i=1
∨ni

j=1

[
ℓi j

]mt

≡fin
∨ { [
ℓ1

]mt
∧ . . . ∧

[
ℓn

]mt ��� ℓi ∈ Mi , i ∈ [1,n]
}

≡fin
∨ { [
ℓ1, . . . , ℓn

]mt ��� ℓi ∈ Mi , i ∈ [1,n]
}

• If ϕ = ϕ1 ∗ ϕ2 and ϕi ≡
fin ∨

M ∈µfin (ϕi) M for i = 1, 2 by the induction hypothesis, we compute successively
7
:

(ϕ1 ∗ ϕ2) [distributivity of ∗ with ∨]

≡fin
∨

Mi ∈µfin (ϕi), i=1,2M1 ∗M2[
becauseMi ≡

∨
Ni ∈(Mi)E(M1

∪M
2
) Ni

]

≡fin
∨

Mi ∈µfin (ϕi), i=1,2
∨

Ni ∈(Mi)E(M1
∪M

2
) N1 ∗ N2[

because Ni ≡
∨

Pi ∈(Ni)
Np
3−i

Pi

]

≡fin
∨

Mi ∈µfin (ϕi), i=1,2
∨

Ni ∈(Mi)E(M1
∪M

2
)∨

Pi ∈(Ni)
Np
3−i

P1 ∗ P2

7
See Definition 5.2 for the definition of N p

.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

28 • Mnacho Echenim, Radu Iosif, and Nicolas Peltier

At this point, observe that Ni , and thus Pi , are E-complete for Var(M1 ∪M2), for i = 1, 2. Moreover,

atoms(Pp
1
) = atoms(Pp

2
), because Pi ∈ (Ni)

Np
3−i , for i = 1, 2. We can thus apply Lemma 5.16 and infer that:

P1 ∗ P2 ≡ elim∗ (P1, P2)
≡ (elim∗ (P1, P2))

dnf

≡
∨

M ∈
[
(elim∗ (P1,P2))dnf

]mt M

• If ϕ = ϕ1 ⊸ ϕ2 and ϕi ≡
fin ∨

M ∈µfin (ϕi) M , i = 1, 2, by the induction hypothesis, we compute, successively:

(ϕ1 ⊸ ϕ2) [distributivity of ⊸ with ∨]

≡fin
∨

Mi ∈µfin (ϕi), i=1,2M1 ⊸ M2[
becauseMi ≡

∨
Ni ∈(Mi)E(M1

∪M
2
) Ni

]

≡fin
∨

Mi ∈µfin (ϕi), i=1,2
∨

Ni ∈(Mi)E(M1
∪M

2
) N1 ⊸ N2[

because N1 ≡
∨

P1∈(N1)A(M1
∪M

2
) P1

]

≡fin
∨

Mi ∈µfin (ϕi), i=1,2
∨

Ni ∈(Mi)E(M1
∪M

2
)∨

P1∈(N1)A(M1
∪M

2
) P1 ⊸ N2[

because P1 ≡
∨

Q1∈(P1)
Na
2
∪Np

2

Q1

]

≡fin
∨

Mi ∈µfin (ϕi), i=1,2
∨

Ni ∈(Mi)E(M1
∪M

2
)∨

P1∈(N1)A(M1
∪M

2
)

∨
Q1∈(P1)

Na
2
∪Np

2

Q1 ⊸ N2

Observe that Ni and thus Pi are E-complete for Var(M1 ∪M2), for i = 1, 2. Moreover, P1 is A-complete for

Var(M1 ∪M2), because P1 ∈ (N1)
A(M

1
∪M

2
)
and atoms(N a

2
∪ N

p
2
) ⊆ atoms(Qa

1
∪Q

p
1
), becauseQ1 ∈ (P1)

Na
2
∪Np

2 .

Then we can apply Lemma 5.20 and infer that:

Q1 ⊸ N2 ≡fin elimfin
⊸ (Q1,N2)

≡
(
elimfin

⊸ (Q1,N2)
)dnf

≡
∨

M ∈
[(
elimfin

⊸ (Q1,N2)
)dnf]mt M

□

As explained in Section 4.3, boolean combinations of minterms can only be transformed into sat-equivalent

BSR(FO) formulæ if there is no positive occurrence of test formulæ |h | ≥ |U | − n or alloc(x) (see Definition 4.8

and the second item of Lemma 4.9). Consequently, we relate the polarity of these formulæ in some minterm

M ∈ µfin (ϕ)∪ µ inf (ϕ) with that of a separating implication within ϕ. The analysis depends on whether the universe

is finite or infinite.

Lemma 5.29. For any quantifier-free SLk formula ϕ, the following properties hold:
(1) For allM ∈ µ inf (ϕ), we haveM ∩ {|h | ≥ |U | − n, |h | < |U | − n | n ∈ N} = ∅.
(2) If |h | ≥ |U | − n ∈ M (resp. |h | < |U | − n ∈ M) for some mintermM ∈ µfin (ϕ), then a formulaψ1 −−∗ ψ2 occurs

at a positive (resp. negative) polarity in ϕ.
(3) If alloc(x) ∈ M (resp. ¬alloc(x) ∈ M) for some minterm M ∈ µ inf (ϕ), then a formula ψ1 −−∗ ψ2, such that

x ∈ Var(ψ1) ∪ Var(ψ2), occurs at a positive (resp. negative) polarity in ϕ.
(4) IfM ∩ {alloc(x),¬alloc(x) | x ∈ Var} , ∅ for some mintermM ∈ µfin (ϕ), then a formulaψ1 −−∗ ψ2, such that

x ∈ Var(ψ1)∪Var(ψ2), occurs in ϕ at some polarity p ∈ {−1, 1}. Moreover, alloc(x) occurs at a polarity −p, only
if alloc(x) is in the scope of a λfin subformula8 of a formula elimfin

⊸ (M1,M2) used to compute
∨

M ∈µfin (ϕ) M .

8
See equation (15) in Lemma 5.20.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

The Bernays-Schönfinkel-Ramsey Class of Separation Logic with Uninterpreted Predicates • 29

Proof.

(1) By induction on the structure of ϕ, one shows that no literal from {|h | ≥ |U | − n, |h | < |U | − n | n ∈ N} is
introduced during the construction of µ inf (ϕ).
(2) Let ℓ ∈ M ∩ {|h | ≥ |U | − n, |h | < |U | − n | n ∈ N} be a literal. The proof is by induction on the structure of ϕ:
• The cases ϕ = emp, ϕ = x ↪→ y, ϕ = q(x) and ϕ = x ≈ y are trivial, because ℓ < µfin (ϕ).
• ϕ = ϕ1 ∧ ϕ2: we have M ∈ [M1,M2], for some minterms Mi ∈ µ

fin (ϕi), for i = 1, 2. By Proposition 5.26,

since ℓ < {|U | ≥ n, |U | < n | n ∈ N}, we deduce that ℓ ∈ M1 ∪M2 and the proof follows from the induction

hypothesis, since any formula occurring in ϕi , i = 1, 2, occurs at the same polarity in ϕ.

• ϕ = ¬ϕ1: assuming µfin (ϕ1) = {M1, . . . ,Mm }, we have M ∈
[
ℓ1, . . . , ℓm

]mt
, for some literals ℓi ∈ Mi , i ∈

[1,m]. By Proposition 5.26, we deduce that ℓ = ℓi for some i = 1, . . . ,n, because ℓ < {|U | ≥ n, |U | < n | n ∈ N}.
By the induction hypothesis, there exists a formulaψ1 −−∗ ψ2 occurring at polarity p ∈ {1,−1} in ϕ1, where
p = 1 if ℓi = |h | ≥ |U | − n and p = −1 if ℓi = |h | < |U | − n. Then ℓ occurs at polarity −p inM andψ1 −−∗ ψ2

occurs at polarity −p in ϕ.

• ϕ = ϕ1 ∗ ϕ2: for i = 1, 2, there exist minterms Mi ∈ µ
fin (ϕi), Ni ∈ (Mi)

E(M
1
∪M

2
)
and Pi ∈ (Ni)

Np
3−i , such that

M ∈
[
(elim∗ (P1, P2))

dnf
]mt

. Since by hypothesis ℓ ∈ {|h | ≥ |U | − n, |h | < |U | − n | n ∈ N}, by Proposition

5.26, this literal is necessarily introduced by elim∗ (P1, P2) and, by inspection of elim∗ (P1, P2), one of the
following must hold:

– ℓ = |h | ≥ minM1
+minM2

, where minM1
and/or minM2

is of the form |U | −n. By the induction hypothesis

ϕi contains a formulaψ1 −−∗ ψ2 at polarity 1, for some i = 1, 2, and the proof is completed.

– ℓ = |h | < maxM1
+maxM2

− 1, where maxM1
and/or maxM2

is of the form |U | − n. The proof is similar,

with polarity −1.

– ℓ = |h | ≥ #a (Mi) + |Y |Mi +minMj , where minMj is of the form |U | − n. The proof is similar.

• ϕ = ϕ1 ⊸ ϕ2 = ¬(ϕ1 −−∗ ¬ϕ2): there exist minterms Mi ∈ µfin (ϕi), Ni ∈ (Mi)
E(M

1
∪M

2
)
, for i = 1, 2, P1 ∈

(N1)
A(M

1
∪M

2
)
and Q1 ∈ (P1)

Ma
2
∪Mp

2 , such that M ∈
[(
elimfin

⊸ (Q1,N2)
)dnf]mt

. By inspection of elimfin
⊸ (Q1,N2),

one of the following cases must occur:

– ℓ = |h | ≥ minM2
−maxM1

−1, where minM2
is of the form |U |−n2. By the induction hypothesis,ϕ2 contains

a formulaψ1 −−∗ ψ2 at polarity 1, and this formula also occurs at polarity 1 in ϕ, thus the proof is completed.

Note that if maxM1
= |U | −n1 then either minM2

= |U | −n2 and |h | ≥ minM2
−maxM1

− 1 = |h | ≥ n1 −n2,
or minM2

= n2 ∈ N and |h | ≥ minM2
−maxM1

− 1 = |h | ≥ −|U | + (n1 + n2) =
∧

1≤n<n
1
+n

2

|U | ≃ n → |h | ≥
n1 + n2 − n by Definition 4.3, thus |h | ≥ minM2

−maxM1
− 1 contains no literal of the above form.

– ℓ = |h | < maxM2
−minM1

. The proof is similar.

– ℓ = |h | < |U | −minM1
− #n (Y ,M1) + 1. In this case since (ϕ1 −−∗ ¬ϕ2) occurs at polarity −1 in ϕ, the proof

is completed.

(3) Let ℓ ∈ M ∩ {alloc(x),¬alloc(x) | x ∈ Var} be a literal occurring in some minterm M ∈ µ inf (ϕ). The proof is
by induction on the structure of ϕ:
• The cases ϕ = emp, ϕ = x ↪→ y, ϕ = x ≈ y and ϕ = q(x) are trivial, because ℓ < µ inf (ϕ).
• The cases ϕ = ϕ1 ∧ ϕ2 and ϕ = ¬ϕ1 are similar to point (2) of the Lemma.

• ϕ = ϕ1 ∗ ϕ2: there exist minterms Mi ∈ µ inf (ϕi), Ni ∈ (Mi)
E(M

1
∪M

2
)
and Pi ∈ (Ni)

Np
3−i , such that M ∈[

(elim∗ (P1, P2))
dnf

]mt
, for all i = 1, 2. By inspection of elim∗ (P1, P2), one of the following cases must occur:

– ℓ = ¬alloc(x) with x ∈ nv(M1) ∩ nv(M2). Assuming that the definition of elim∗ (P1, P2) is changed
according to Remark 5.19, it must be the case that¬alloc(x) occurs at a positive polarity inM1 orM2. Then,

by the induction hypothesis ϕi contains a subformulaψ1 −−∗ ψ2 at polarity −1 with x ∈ Var(ψ1) ∪ Var(ψ2).
But thenψ1 −−∗ ψ2 also occurs at polarity −1 in ϕ and the proof is completed.

– ℓ = ¬alloc(x) with x ∈ Y ⊆ nv(Mj). Similar to the previous case.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

30 • Mnacho Echenim, Radu Iosif, and Nicolas Peltier

• ϕ = ϕ1 ⊸ ϕ2 = ¬(ϕ1 −−∗ ¬ϕ2): there exist minterms Mi ∈ µ
inf (ϕi), Ni ∈ (Mi)

E(M
1
∪M

2
)
, for i = 1, 2, P1 ∈

(N1)
A(M

1
∪M

2
)
and Q1 ∈ (P1)

Ma
2
∪Mp

2 , such that M ∈
[(
eliminf

⊸ (Q1,N2)
)dnf]mt

. By inspection of eliminf
⊸ (Q1,N2),

the only possible case is ℓ = ¬alloc(x) with x ∈ av(M1) (Equation (13) in Lemma 5.20), thus x ∈ Var(ϕ1) ∪
Var(ϕ2) and (ϕ1 −−∗ ¬ϕ2) occurs at polarity −1 in ϕ, which completes the proof.

(4) The proof is similar to point (3). The only difference is that alloc(x) may occur in the λfin subformula (Equation

(15) in Lemma 5.20) of the elimfin
⊸ (Q1,N2), in which case its polarity may be different from that of ϕ1 −−∗ ϕ2. □

Note that Property 3 in Lemma 5.29 does not hold for µfin (ϕ):

Example 5.30. Consider a fixed number n ≥ 1, as well as the following formulæ:

ϕ
def
= |h | ≃ U − n

ψ1

def
= (¬alloc(x) ∧ |h | ≃ n) −−∗ ⊥

ψ2

def
= alloc(x)

We verify thatψ2 ∧ ϕ ≡
fin ¬ψ1 ∧ ϕ:

• If (U, s,I, h) |= ψ2 ∧ϕ, then s(x) is allocated in h and there are exactly n unallocated cells. Then the heap h′

whose domain is the set of unallocated cells in h is disjoint from h and satisfies ¬alloc(x) ∧ |h | ≃ n, which
proves that (U, s,I, h) |= ¬ψ1.

• If (U, s,I, h) |= ¬ψ1 ∧ ϕ, then there are exactly n unallocated cells in U, and there exists a heap h′ disjoint

from h with n elements in its domain, non of which is s(x). Thus, s(x) must occur in the domain of h, and

(U, s,I, h) |= ψ2.

However, the polarity of alloc(x) is positive inψ2, whereas x only occurs in the scope of neutral occurrences of −−∗

in ¬ψ1. ■

We provide another example illustrating Property 4.

Example 5.31. Let M1 = {|h | ≥ 0, |h | < 2,¬alloc(x)} and M2 = {|h | ≥ 0, |h | < ∞,¬x ↪→ x }. We have

M1 ⊸ M2 ≡
fin ¬x ≈ y ∧ |h | ≥ 0 ∧ |h | < |U | ∧ ¬alloc(x) → (|U | ≥ 2 ∧ |h | < |U | − 1). The last two formulæ

are parts of λfin in Lemma 5.20: |h | < |U | ensures that there exists at least one free location (so that there exists

a disjoint heap satisfying M1), and if x is not allocated, then there must actually exist 2 free locations, since x
cannot be allocated in the extension. Observe that alloc(x) occurs positively in the latter formula (since it is in

scope of 2 negations), whereas x only occurs in the scope of negative (or neutral) occurrences of −−∗ inM1 ∗M2

(i.e., positive occurrences of ⊸). This happens because alloc(x) occurs in λfin. ■

5.4 Testing Membership in µ† (ϕ) in PSPACE
Given a quantifier-free SLk formula ϕ, the number of minterms occurring in µfin (ϕ) (resp. µ inf (ϕ)) is exponential
in the size of ϕ, in the worst case. Therefore, an optimal decision procedure cannot generate and store these sets

explicitly, but rather must enumerate minterms lazily. We show that (i) the size of the minterms in µfin (ϕ)∪ µ inf (ϕ)
is bounded by a polynomial in the size of ϕ, and that (ii) the problem “given a mintermM , doesM occur in µfin (ϕ)
(resp. in µ inf (ϕ))?” is in PSPACE. To this aim, we define a measure on a quantifier-free formula ϕ, which bounds

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

The Bernays-Schönfinkel-Ramsey Class of Separation Logic with Uninterpreted Predicates • 31

the size of the minterms in the sets µfin (ϕ) and µ inf (ϕ), inductively on the structure of the formulæ:

M (⊤)
def
= 0 M (⊥)

def
= 0

M (x ≈ y)
def
= 0 M (q(x)) def

= 0

M (emp)
def
= 1 M (x 7→ y) def

= 2

M (¬ϕ1)
def
= M (ϕ1) M (ϕ1 ∧ ϕ2)

def
= max(M (ϕ1),M (ϕ2))

M (ϕ1 ∗ ϕ2)
def
=

∑
2

i=1 (M (ϕi) + | |Var(ϕi) | |) M (ϕ1 −−∗ ϕ2)
def
=

∑
2

i=1 (M (ϕi) + | |Var(ϕi) | |)

The intuition is thatM (ϕ) is an upper bound on natural number occurring in the test formulæ in µfin (ϕ) ∪ µ inf (ϕ),
when viewed as linear inequalities on |U | and |h |. For instance,M (emp) is 1, because emp ≡ |h | < 1, whereas

M (x 7→ y) is 2, becauseM (x 7→ y) ≡ x ↪→ y ∧ |h | ≥ 1 ∧ |h | < 2. The extension to the standard connectives is

straightforward, but the handling of the separating connectives is more involved: first, the combination of two

inequalities may increase the bound (for instance, |h | ≥ 1 ∗ |h | ≥ 2 ≡ |h | ≥ 3) and second, the elimination of these

connectives yields additional inequalities (see Lemma 5.16 and Lemma 5.20).

Proposition 5.32. For any n ∈ N, we have:

M (|h | ≥ n) =M (|U | ≥ n) = n
M (|h | ≥ |U | − n) = n + 1

Proof. By induction on n ≥ 0. □

Note that, because |h | < ∞ is a shorthand for ⊤, we haveM (|h | < ∞) = 0.

Definition 5.33. A minterm M isM-bounded by a formula ϕ, if for each literal ℓ ∈ M , the following hold:

(i)M (ℓ) ≤ M (ϕ) if ℓ ∈
{
|h | ≥ minMi , |h | < maxMi

}
; (ii)M (ℓ) ≤ 2M (ϕ) + 1, if ℓ ∈ {|U | ≥ n, |U | < n | n ∈ N}.

Proposition 5.34. Given mintermsM1, . . . ,Mn allM-bounded by ϕ, each mintermM ∈ [M1, . . . ,Mn] is also
M-bounded by ϕ.

Proof. This is an immediate corollary of Proposition 5.26. □

The following lemma provides the required result:

Lemma 5.35. Given a quantifier-free SLk formula ϕ, each mintermM ∈ µfin (ϕ) ∪ µ inf (ϕ) isM-bounded by ϕ.

Proof. We prove that each M ∈ µfin (ϕ) is M-bounded by ϕ. The proof for M ∈ µ inf (ϕ) follows from the

observation that, because of the definition of eliminf
⊸ , for each M ∈ µ inf (ϕ) there exists M ′ ∈ µfin (ϕ) such that

M (M) ≤ M (M ′). By induction on the structure of ϕ:
• If ϕ = emp then µfin (ϕ) = {|h | ≥ 0 ∧ |h | < 1}, M (|h | ≥ 0) = 0, M (|h | < 1) = M (|h | ≥ 1) = 1 and

M (emp) = 1, by definition.

• Ifϕ = x 7→ y then µfin (ϕ) =
{
x ↪→ y ∧ |h | ≥ 1 ∧ |h | < 2

}
,M (|h | ≥ 1) = 1,M (|h | < 2) = 2 andM (x 7→ y) =

2, by definition.

• If ϕ = q(y) with q ∈ F then µfin (ϕ) =
{
q(y) ∧ |h | ≥ 0 ∧ |h | < ∞

}
,M (|h | ≥ 0) = 0,M (|h | < ∞) = 0 and

M (q(y)) = 0, by definition.

• If ϕ = x ≈ y then µfin (ϕ) =
{
x ≈ y ∧ |h | ≥ 0 ∧ |h | < ∞

}
andM (|h | ≥ 0) =M (|h | < ∞) = 0, by definition.

• If ϕ = ϕ1 ∧ ϕ2, let ℓ ∈ M be a literal, where M ∈ µfin (ϕ1 ∧ ϕ2) is a minterm. Then M ∈ [M1,M2], for some

mintermsMi ∈ µ
fin (ϕi), i = 1, 2 and the proof follows from Proposition 5.34, becauseMi isM-bounded by

ϕi andM (ϕi) ≤ M (ϕ), so thatMi isM-bounded by ϕ, for i = 1, 2.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

32 • Mnacho Echenim, Radu Iosif, and Nicolas Peltier

• If ϕ = ¬ϕ1 assume that µfin (ϕ1) = {M1, . . . ,Mm }. Let ℓ ∈ M be a literal, whereM ∈ µfin (¬ϕ1) is a minterm.

Then M ∈
[[
ℓ1

]mt
, . . . ,

[
ℓn

]mt]
, for some literals ℓi ∈ Mi , i ∈ [1,m]. By the induction hypothesis, ℓi is

M-bounded by ϕ, for every i ∈ 1, . . . ,n, thus the same holds for ℓi . SinceM (|h | ≥ 0) =M (|h | < ∞) = 0,

we deduce that

[
ℓi

]mt
isM-bounded by ϕ, and the proof follows from Proposition 5.34.

• If ϕ = ϕ1 ∗ ϕ2, let ℓ ∈ M be a literal, where M ∈ µfin (ϕ1 ∗ ϕ2). Then there exist minterms Mi ∈ µ
fin (ϕi),

Ni ∈ (Mi)
E(M

1
∪M

2
)
and Pi ∈ (Ni)

Np
3−i , such thatM ∈

[
(elim∗ (P1, P2))

dnf
]mt

, for i = 1, 2. First assume that ℓ is

of the form |h | ≥ t or |h | < t . We only consider the case where ℓ occurs in elim∗ (P1, P2), the rest of the
cases follow from Proposition 5.34. We distinguish the following:

– ℓ is a subformula of |h | ≥ minP1 +minP2 = |h | ≥ minM1
+minM2

, because minPi = minMi , for i = 1, 2,
by Proposition 5.27. By the inductive hypothesis we haveM (|h | ≥ minMi) ≤ M (ϕi), for i = 1, 2. If
minMi ∈ N for i = 1, 2 then ℓ = |h | ≥ minM1

+minM2
and we have:

M (ℓ) =M (|h | ≥ minM1
+minM2

) = M (|h | ≥ minM1
) +M (|h | ≥ minM2

)
≤ M (ϕ1) +M (ϕ2) ≤ M (ϕ).

If minMi = |U | − ni and ni ,minM3−i ∈ N, then ℓ = |h | ≥ minM1
+minM2

and we obtain:

M (ℓ) =M (|h | ≥ minM1
+minM2

) = M (|h | ≥ |U | − (ni −minM3−i))
≤ M (|h | ≥ |U | − ni)
≤ M (ϕi) ≤ M (ϕ).

Otherwise, minMi = |U | − ni , for i = 1, 2, where n1,n2 ∈ N, thus by Definition 4.3:

|h | ≥ minM1
+minM2

= |h | ≥ 2 · |U | − n1 − n2
= |U | < 1 + n1 + n2 ∧∧

1≤n≤n1+n2
|U | ≃ n → |h | ≥ 2n − n1 − n2

and

∗ either ℓ ∈ {|U | ≥ n, |U | < n + 1} for some n ∈ [1,n1 + n2], and we haveM (ℓ) ≤ n + 1 ≤ n1 + n2 + 1 ≤
2(M (ϕ1) +M (ϕ2)) + 1 = 2M (ϕ) + 1;
∗ or ℓ = |h | ≥ 2n − n1 − n2 for some n ∈ [1,n1 + n2], and we haveM (ℓ) = 2n − n1 − n2 ≤ n1 + n2 =
M (ϕ1) +M (ϕ2) =M (ϕ).

– The proof in the case where ℓ is a subformula of |h | < maxM1
+maxM2

− 1 is analogous.

– ℓ = |h | ≥ #a (Pi) + |Y |Pi +minP3−i , where Y ⊆ nv(P3−i) \ av(Pi), for some i = 1, 2. Because Y ∩ av(Pi) = ∅,
we have (Definition 5.6 and Proposition 5.27): #a (Pi) + |Y |Pi ≤ ||Var(Pi) | | + | |Var(P3−i) | | ≤ | |Var(ϕ1) | | +
| |Var(ϕ2) | | and thusM (ℓ) ≤ M (|h | ≥ minP3−i) + | |Var(ϕ1) | | + | |Var(ϕ2) | | ≤ M (ϕ).

Now assume ℓ ∈ {|U | ≥ m, |U | < m | m ∈ N}. Then one of the following holds:

– ℓ ∈ dc(Pi)u , for some i = 1, 2, and we have two cases:

∗ ℓ ∈ {|U | ≥ n1 + n2 + 1, |U | < n1 + n2}, where minPi = minMi = n1 and maxPi = maxMi = |U | − n2. By
the induction hypothesis, we have n1,n2 ≤ M (ϕi), thusM (ℓ) ≤ 2M (ϕi) + 1 ≤ 2M (ϕ) + 1.

∗ ℓ = |U | ≥
⌈
k
√
maxx ∈av(M) (δx (Pi) + 1)

⌉
, in which case either Var(M1) ∪ Var(M2) = ∅ so that we have

⌈
k
√
maxx ∈av(M) (δx (Pi) + 1)

⌉
= 0 and the proof is immediate, or we haveM (ℓ) ≤

k
√
| |Var(Mi) | |

k + 1 ≤

|Var(Mi) | + 1 ≤ 2M (ϕ) + 1.
– ℓ = |U | > ni + #a (Pi) + |Y |Mi , where Y ⊆ nv(M3−i) \ av(Mi) and maxMi = |U | − ni , for some i = 1, 2.
Because Y ∩ av(Pi) = ∅, we have #a (Pi) + |Y |Pi ≤ ||Var(Pi) | | + | |Var(P3−i) | | ≤ | |Var(ϕ1) | | + | |Var(ϕ2) | |
and thusM (ℓ) ≤ M (ϕi) + | |Var(ϕ1) | | + | |Var(ϕ2) | | ≤ 2M (ϕ) + 1.

• If ϕ = ϕ1 ⊸ ϕ2, consider a literal ℓ ∈ M , whereM ∈ µfin (ϕ1 ⊸ ϕ2). Then there exist mintermsMi ∈ µ
fin (ϕi)

and Ni ∈ (Mi)
E(M

1
∪M

2
)
, for i = 1, 2, and minterms P1 ∈ (N1)

A(M
1
∪M

2
)
and Q1 ∈ (P1)

Ma
2
∪Mp

2 , such that

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

The Bernays-Schönfinkel-Ramsey Class of Separation Logic with Uninterpreted Predicates • 33

M ∈
[(
elimfin

⊸ (Q1,N2)
)dnf]mt

. We only consider the case where ℓ occurs in elimfin
⊸ (Q1,N2), in the remaining

cases, the result follows directly from Proposition 5.34. If ℓ is of the form |h | ≥ t or |h | < t then either:

– ℓ is a subformula of |h | ≥ minN2
− maxQ1

− 1 = |h | ≥ minM2
− maxM1

− 1, because minN2
= minM2

and maxQ1
= maxP1 = maxN1

= maxM1
by Proposition 5.27. Then minM2

∈ {n2, |U | − n2} and maxM1
∈

{n1, |U | − n1} with n1,n2 ∈ N∞, and by the induction hypothesis ni ≤ M (ϕi). If maxM1
= n1 or

minM2
, n2, then by an inspection of the different cases and using Proposition 5.32, we have ℓ = |h | ≥

minM2
−maxM1

+ 1, thus:

M (ℓ) =M (|h | ≥ minM2
−maxM1

+ 1) ≤ n1 + n2 ≤ M (ϕ1) +M (ϕ2) ≤ M (ϕ)

Otherwise, minM2
= n2 and maxM1

= |U | − n1 hence:
∗ either ℓ ∈ {|U | ≥ n, |U | < n + 1}, for some n ∈ [1,n1 + n2 − 1] and we haveM (ℓ) ≤ n + 1 ≤ n1 + n2 ≤
2(M (ϕ1) +M (ϕ2)) + 1 =M (ϕ);
∗ or ℓ = |h | ≥ n1 + n2 − n, for some n ∈ [1,n1 + n2 − 1] and we haveM (ℓ) = n1 + n2 − n ≤ n1 + n2 − 1 ≤
M (ϕ1) +M (ϕ2) =M (ϕ).

– The case ℓ = |h | < maxN2
−minQ1

is proved in a similar way.

– ℓ = |h | < |U | − minQ1
− #n (Y ,Q1) + 1, for some Y ⊆ Var(Q1 ∪ N2). Because nv(Q1) ⊆ nv(P1) ⊆

Var(ϕ1)∪Var(ϕ2), we have #n (Y ,Q1) ≤ ||Var(ϕ1) | |+ | |Var(ϕ2) | |. Moreover, minQ1
= minM1

by Proposition

5.27. We distinguish the following cases:

∗ If minM1
∈ N, we compute:

M (ℓ) = minM1
+ #n (Y ,Q1) − 1, by Proposition 5.32

≤ M (ϕ1) + | |Var(ϕ1) | | + | |Var(ϕ2) | | sinceM (|h | ≥ minM1
) ≤ M (ϕ1), by the inductive hypothesis.

≤ M (ϕ).

∗ Otherwise, minM1
= |U | − n1, for some n1 ∈ N, thus ℓ = |h | < n1 − #n (Y ,Q1) + 1. By Proposition 5.32,

we haveM (|h | ≥ minM1
) = n1 + 1 andM (ℓ) = n1 − #n (Y ,Q1) + 1, therefore:

M (ℓ) = M (|h | ≥ minM1
) − #n (Y ,Q1)

≤ M (ϕ1) ≤ M (ϕ)

If ℓ is of the form |U | ≥ m or |U | < m, withm ∈ N, then either:

– if ℓ ∈ dc(Q1) ∪ dc(N2) the argument is similar to the previous case ϕ = ϕ1 ∗ ϕ2,
– otherwise, ℓ = |U | ≥ minM2

+#n (Y ,M1) and eitherminM2
∈ N, in which caseM (ℓ) = minN2

+#n (Y ,Q1) ≤
M (ϕ2) + | |Var(ϕ1) | | + | |Var(ϕ2) | | ≤ M (ϕ) as in the previous, or minM2

= |U | − n2, for some n2 ∈ N, in
which case ℓ ≡ n2 ≥ #n (Y ,Q1) andM (ℓ) = 0.

□

SinceM (ϕ) is polynomially bounded by size(ϕ), this entails that it is possible to check whetherM ∈ µfin (ϕ)
(resp. µ inf (ϕ)) using space bounded also by a polynomial in size(ϕ).

Proposition 5.36. Given a quantifier-free SLk formula ϕ and a mintermM ∈ µfin (ϕ)∪ µ inf (ϕ), we have size(M) =
O (size(ϕ)2). As a consequence, N (

∨
M ∈µ inf (ϕ)) = O (size(ϕ)

2) and N (
∨

M ∈µfin (ϕ)) = O (size(ϕ)
2).

Proof. We give the proof for M ∈ µfin (ϕ), the case M ∈ µ inf (ϕ) being similar. Let ℓ ∈ M be a literal. We

distinguish the following cases, based on the form of ℓ:
• ℓ ∈ {alloc(x),¬alloc(x) | x ∈ Var}: ℓ must occur in ϕ or has been introduced by µfin (.), in which case, at

most 2 · | |Var(ϕ) | | such literals are introduced.

• ℓ ∈ {x ↪→ y,¬x ↪→ y | x ∈ Var, y ∈ Vark } ∪ {q(z) | q ∈ F , z ∈ Var#(q) }: ℓ occurs in ϕ, since µfin (.) does not
introduce literals of this form.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

34 • Mnacho Echenim, Radu Iosif, and Nicolas Peltier

• ℓ ∈ {x ≈ y,¬x ≈ y | x ,y ∈ Var}: ℓ occurs in ϕ or has been introduced by µfin (.), in which case at most

2 · | |Var(ϕ) | |2 such literals are introduced.

• ℓ ∈ {|U | ≥ n, |U | < n | n ∈ N}: by Lemma 5.35,M (ℓ) ≤ 2M (ϕ) + 1, thus size(ℓ) = O (size(ϕ)2) for each
such literal. Furthermore,M contains at most two literals of this form (up to redundancy).

• ℓ ∈ {|h | ≥ minM , |h | < maxM }: by Lemma 5.35,M (ℓ) ≤ M (ϕ) and consequently, size(ℓ) = O (size(ϕ)2) for
each such literal. Furthermore,M contains exactly two literals of this form by definition of minterms.

Summing up, we obtain that size(M) = O (size(ϕ)2). This second result follows immediately. □

Proposition 5.37. Let L be a set of literals and ϕ be a boolean combination of literals. The problem of deciding
whether L ∈ (ϕ)dnf is in NSPACE(size(L) + size(ϕ)).

Proof. W.l.o.g., we may assume that ϕ is in negation normal form. The algorithm is nondeterministic and

proceeds recursively on the structure of ϕ:
• ϕ = ℓ is a literal: then (ϕ)dnf = {ℓ} hence it suffices to verify whether L = {ℓ}, using O (size(L) + size(ϕ))
space.

• ϕ = ϕ1 ∨ϕ2: then (ϕ)dnf = (ϕ1)
dnf
∪ (ϕ2)

dnf
and we check that one of L ∈ (ϕ1)

dnf
and L ∈ (ϕ2)

dnf
holds. By the

induction hypothesis, checking L ∈ (ϕi)
dnf

can be done using O (size(L) + size(ϕi)) space. Since the working
space used for L ∈ (ϕ1)

dnf
can be reused for L ∈ (ϕ2)

dnf
, the entire check takes O (size(L) + size(ϕ)) space.

• ϕ = ϕ1 ∧ϕ2: then L ∈ (ϕ)dnf ⇔ L = L1 ∪ L2, with L1 ∈ (ϕ1)
dnf

and L2 ∈ (ϕ2)
dnf
, thus we guess two subsets L1

and L2 with L1 ∪ L2 = M and check that Li ∈ (ϕi)
dnf
, using O (size(Li) + size(ϕi)) space, for i = 1, 2. Since

we must store L2 during the check L1 ∈ (ϕ1)
dnf

and the working space can be reused for L2 ∈ (ϕ2)
dnf
, the

entire check takes O (size(L) + size(ϕ)) space.
□

Proposition 5.38. Let L be a set of literals and letM1,M2 be minterms. Checking whether L ∈ ((elim∗ (M1,M2))
dnf

is in NSPACE(size(L) + size(M1) + size(M2)).

Proof. The algorithm proceeds by induction on the structure of (elim∗ (M1,M2))
dnf

as in the proof of Proposition

5.37. The only difference concerns the subformulæ ηi j (Line 6 in Lemma 5.16) which cannot be constructed

explicitly since they are of exponential size. However, ηi j is of positive polarity, and to check that L ∈
(
ηi j

)dnf
, it

suffices to guess a set of variables Y ⊆ nv(Mj) \ av(Mi) and check whether:

L ∈
(
alloc(Y) → (|h | ≥ #a (Mi) + |Y |Mi +minMj ∧ #a (Mi) + |Y |Mi < maxMi)

)dnf
The size of the above formula is of the order of O (size(M1) + size(M2)), thus L ∈ ((elim∗ (M1,M2))

dnf
can be

checked in NSPACE(size(L) + size(M1) + size(M2)), by Proposition 5.37. □

Proposition 5.39. LetL be a set of literals and letM1,M2 beminterms. The problemswhetherL ∈
(
(elimfin

⊸ (M1,M2)
)dnf

and L ∈
(
(eliminf

⊸ (M1,M2)
)dnf

are both in NSPACE(size(L) + size(M1) + size(M2)).

Proof. The proof is similar to that of Proposition 5.38 (again, the formula λ† is exponential, but does not have
to be constructed explicitly). □

Proposition 5.40. Checking whether M ∈ [M1, . . . ,Mn], where M,M1, . . . ,Mn are minterms, n ≥ 2, is in
NSPACE(size(M) + (size(M1) + . . . + size(Mn))

2).

Proof. The proof is by induction on n ≥ 2. If n = 2 then by definition of [M1,M2] it suffices to check that

M = M
f
1
∧Me

1
∧Ma

1
∧M

p
1
∧Mu

1
∧M

f
2
∧Me

2
∧Ma

2
∧M

p
2
∧Mu

2
∧µ∧ν for some µ ∈ minh(M1,M2), ν ∈ maxh(M1,M2).

By definition, the size of each formula in minh(M1,M2)∪maxh(M1,M2) is of the order of O (size(M1)+ size(M2)),
thus the algorithm requires O (size(M) + size(M1) + size(M2)) space.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

The Bernays-Schönfinkel-Ramsey Class of Separation Logic with Uninterpreted Predicates • 35

If n > 2,M ∈ [M1, . . . ,Mn]⇔ M ∈ [M ′,Mn], whereM
′ ∈ [M1, . . . ,Mn−1]. By Proposition 5.26, the literals in

M ′ are either literals fromM1, . . . ,Mn−1 or occur in {|U | ≥ m1+m2, |U | < m1+m2, |U | ≥ m1+m2+1, |U | < m1+

m2+1}, whereM1∪· · ·∪Mn−1 contains two literals ℓ1 and ℓ2 and ℓi is of the form |h | ≥ mi , |h | < mi , |h | ≥ |U |−mi
or |h | < |U | −mi , for i = 1, 2. Thus size(M ′) ≤

∑n−1
i=1 size(Mi). The nondeterministic algorithm guesses and

stores a mintermM ′
1
of size at most

∑n−1
i=1 size(Mi) and checks thatM ∈

[
M ′

1
,Mn

]
and thatM ′

1
∈ [M1, . . . ,Mn−1].

According to the base case n = 2, the first check takes up O (size(M) + size(M ′
1
) + size(Mn)) = O (size(M) +∑n

i=1 size(Mi)) space, and the second check takes space O (size(M ′
1
) + (

∑n−1
i=1 size(Mi))

2) = O ((
∑n

i=1 size(Mi))
2),

by the induction hypothesis. Because we only need to store M ′
1
between the two checks, the algorithm takes

O (size(M) + (
∑n

i=1 size(Mi))
2) space. □

Proposition 5.41. LetM be a minterm and let L be a set of literals. The problem of checking whetherM = [L]mt

is in NSPACE(size(M) + (
∑

ℓ∈L size(ℓ))2).

Proof. By definition, [L]mt = [[ℓ1]
mt , . . . , [ℓn]

mt
], with L = {ℓ1, . . . , ℓn }, and each minterm [ℓi]

mt
is of size

O (size(ℓi)), thus the proof follows immediately from Proposition 5.40. □

Lemma 5.42. Given a minterm M and an SLk formula ϕ, the problems of checking whether M ∈ µfin (ϕ) and
M ∈ µ inf (ϕ) are in PSPACE.

Proof. We show the existence of a nondeterministic algorithm that decidesM ∈ µfin (ϕ) in space O (size(M) +
size(ϕ)8). The PSPACE upper bound is by an application of Savitch’s Theorem [21]. We only give the proof for

M ∈ µfin (ϕ), the proof forM ∈ µ inf (ϕ) is similar and omitted. By induction on the structure of ϕ, we distinguish
the following cases:

• ϕ = emp: we checkM = |h | ≃ 0 in space O (size(M) + size(ϕ)).
• ϕ = x 7→ y: we checkM =

{
x ↪→ y ∧ |h | ≃ 1

}
in space O (size(M) + size(ϕ)).

• ϕ = q(x1, . . . ,x#(q)): we checkM =
{
q(x1, . . . ,x#(q)) ∧ |h | ≥ 0 ∧ |h | < ∞

}
in space O (size(M) + size(ϕ)).

• ϕ = ϕ1 ∧ ϕ2:M ∈ µ
fin (ϕ) ⇔ M ∈ [M1,M2] withMi ∈ µ

fin (ϕi), for every i = 1, 2. Since, by Proposition 5.36,

size(Mi) = O (size(ϕi)2) = O (size(ϕ)2), for i = 1, 2, it suffices to guess two such minterms M1 and M2,

check thatMi ∈ µ
fin (ϕi), i = 1, 2 and thatM ∈ [M1,M2]. By the induction hypothesis, checkingMi ∈ µ

fin (ϕi)
requires spaceO (size(Mi)+size(ϕi)8), for each i = 1, 2, and by the proof of Proposition 5.40 in the casen = 2,

checkingM ∈ [M1,M2] requires space O (size(M) + size(M1) + size(M2)) = O (size(M) + size(ϕ)). Since we
only need to storeM1 andM2 between the checks, the entire procedure takes space O (size(M) + size(ϕ)8).
• ϕ = ¬ϕ1: M ∈ µ

fin (ϕ) if and only if M ∈
[[
ℓ1

]mt
, . . . ,

[
ℓm

]mt]
, for some literals ℓi ∈ Mi , i ∈ [1,m], where

µfin (ϕ) = {M1, . . . ,Mm }. For any i ∈ [1,m], we distinguish the following cases:

– if ℓi ∈
{
x ↪→ y,¬x ↪→ y | x ∈ Var, y ∈ Vark

}
then ℓi occurs in ϕ1, thus there are at most size(ϕ1) such

literals,

– if ℓi ∈
{
x ≈ y,¬x ≈ y | x ,y ∈ Var

}
then there are at most 2| |Var(ϕ) | |2 such literals,

– if ℓi ∈ {|U | ≥ n, |U | < n | n ∈ N}, by Lemma 5.35,M (ℓi) ≤ 2M (ϕ1)+ 1, thus there are at most 2M (ϕ1)+
1 = O (size(ϕ1))2 such literals.

Summing up, we obtain that | |{ℓi | i ∈ [1,m]}| | = O (size(ϕ1)2). Thus it suffices to guess a set

{
ℓ′
1
, . . . , ℓ′n

}

of literals and a set of minterms

{
M ′

1
, . . . ,M ′n

}
such that ℓ′i ∈ M

′
i , where n = O (size(ϕ1)

2) and size(M ′i) =
O (size(ϕ1)2), for all i ∈ [1,n]. Then we can check that:

– M ′i ∈ µfin (ϕ1), which can be done in space O (size(M ′i) + size(ϕ1)8) = O (size(ϕ1)2 + size(ϕ1)8) =
O (size(ϕ1)8), by the inductive hypothesis,

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

36 • Mnacho Echenim, Radu Iosif, and Nicolas Peltier

– M ∈
[[
ℓ1

]mt
, . . . ,

[
ℓn

]mt]
, which can be done in space O (size(M) + (n · size(ϕ1)2)2) = O (size(M) +

size(ϕ1)8), by Proposition 5.40. Observe that this case is the most complex one, and it leads to the

exponent 8 in the above inductive invariant.

To ensure that the set {ℓ1, . . . , ℓm } contains no literal other than ℓ′
1
, . . . , ℓ′n , we also have to check that

every minterm Mj , for j ∈ [1,m] contains a literal ℓ′i , for some i ∈ [1,n]. To this aim, we use a non-

deterministic algorithm for the complement: we guess a minterm M ′ M-bounded by ϕ1, check that

M ′ ∈ µ (ϕ1) and that it contains no literal ℓi , for i ∈ [1,n]. By the inductive hypothesis, this is possible in

space O (size(M ′) + size(ϕ1)8) = O (size(ϕ1)2 + size(ϕ1)8) = O (ϕ8
1
). Then, checking that every mintermMj ,

for j ∈ [1,m] contains a literal ℓ′i , for some i ∈ [1,n] can be done in the same amount of space, using a

nondeterministic algorithm, see e.g. [2, Corollary 4.21].

• ϕ = ϕ1 ∗ ϕ2:M ∈ µ
fin (ϕ) iff there exist mintermsMi ∈ µ (ϕi), Ni ∈ (Mi)

E(M
1
∪M

2
)
and Pi ∈ (Ni)

Np
3−i , such that

M ∈
[
(elim∗ (P1, P2))

dnf
]mt

, for i = 1, 2.We first guess mintermsM1,M2 of sizeO (size(ϕ1)2) andO (size(ϕ2)2),

respectively, check that Mi ∈ µ
fin (ϕi), then guess Ni ∈ (Mi)

E(M
1
∪M

2
)
and Pi ∈ (Ni)

Np
3−i , for i = 1, 2. This is

feasible since by definition each minterm in these sets is of size O (size(M1) + size(M2)). Next, we guess
mintermsM ′,M ′′, of size O (size(M1) + size(M2)) as well, and check thatM ′ ∈ (elim∗ (P1, P2))

dnf
in space

O (size(M ′) + size(P1) + size(P2)), by Proposition 5.40 andM ′′ ∈ [M ′]mt
in space O (size(M ′′) + size(M ′)2),

by Proposition 5.41.

• ϕ1 ⊸ ϕ2: the proof is similar to the previous case.

□

6 BERNAYS-SCHÖNFINKEL-RAMSEY SLk

This section contains the results concerning decidability of the (in)finite satisfiability problemswithin theBSR(SLk)
fragment. First, we show that, contrary to BSR(FO), the satisfiability of BSR(SLk) is undecidable for k ≥ 2. Second,

we carve two nontrivial fragments of BSR(SLk), for which the infinite and finite satisfiability problems are both

PSPACE-complete. defined based on restrictions of (i) polarities of the occurrences of the separating implication,

and (ii) occurrences of universally quantified variables in the scope of separating implications. These results draw

a rather precise chart of decidability within the BSR(SLk) fragment.

6.1 Undecidability of BSR(SLk)
Theorem 6.1. The finite and infinite satisfiability problems are both undecidable for formulæ in BSR(SLk) even if

the formulæ contain no uninterpreted predicates.

Proof. Let φ = ∀x . ϕ be a formula in BSR2 (FO), where ϕ is quantifier-free, contains no predicate symbol,

one variable x , one constant symbol c and two monadic function symbols f and д of sort U. It is known that

the finite satisfiability problem is undecidable for such formulæ, by Proposition 2.3. We reduce this problem to

the infinite and finite satisfiability problems for BSR(SLk) formulæ. We proceed by first flattening each term in

ϕ consisting of nested applications of f and д. The result is an equivalent sentence φflat = ∀x1 . . .∀xn . ϕflat , in
which the only terms are xi , c , f (xi), д(xi), f (c) and д(c), for i ∈ [1,n]. For example, the formula ∀x . f (д(x)) ≈ c
is flattened into ∀x1∀x2 . д(x1) ̸≈ x2 ∨ f (x2) ≈ c . The formal construction is standard and thus omitted. We define

the following BSR(SL2) formulæ, for † ∈
{
fin, inf

}
:

φ†sl
def
= α† ∧ xc ↪→ (yc , zc) ∧ ∀x1 . . .∀xn∀y1 . . .∀yn∀z1 . . .∀zn .

n∧
i=1

(xi ↪→ (yi , zi) → ϕsl) (18)

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

The Bernays-Schönfinkel-Ramsey Class of Separation Logic with Uninterpreted Predicates • 37

where
9 αfin def

= |h | ≥ |U | − 0, α inf def
= ∀x∀y∀z . x ↪→ (y, z) → alloc(y) ∧ alloc(z) and ϕsl is obtained from ϕflat by

replacing each occurrence of c by xc , each term f (c) (resp. д(c)) by yc (resp. zc) and each term f (xi) (resp. д(xi))
by yi (resp. zi). Next, we show that the following statements are equivalent:

(1) φflat has a finite model (U, s,I),

(2) φ
fin
sl has a finite model (U, s′,I, h), and

(3) φ
inf
sl has an infinite model (U∞, s′,I, h).

“(1)⇒ (2)” We define the store s′
def
= s[xc ← cI ,yc ← f I (cI), zc ← дI (cI)] and the heap h such that dom(h) = U

and h(ℓ)
def
= (f I (ℓ),дI (ℓ)), for all ℓ ∈ U. By construction, we have (U, s′, h) |= αfin ∧ xc ↪→ (yc , zc), because

dom(h) = U and h(cI) = (f I (cI),дI (cI)). Consider a store s′′
def
= s′[xi ← ℓi ,yi ← ℓ

′
i , zi ← ℓ

′′
i | i = 1, . . . ,n],

for an arbitrary set {ℓi , ℓ
′
i , ℓ
′′
i | i ∈ [1,n]} ⊆ U and assume that (U, s′′, h) |=

∧n
i=1 xi ↪→ (yi , zi). Then by definition

of h, for all i ∈ [1,n], we have ℓ′i = f I (ℓi) and ℓ
′′
i = д

I (ℓi); hence, (U, s
′′, h) |= ϕsl. Since ℓi , ℓ

′
i and ℓ

′′
i are arbitrary,

for i ∈ [1,n], this proves that (U, s′, h) is a finite model of φ
fin
sl .

“(2)⇒ (3)” We define U∞
def
= U ⊎ L, where L is an infinite set of locations not in U. Clearly (U∞, s′, h) |= α inf

,

because x ↪→ (y, z) is false for any extension of s′ with a pair of the form [x ← ℓ], [y ← ℓ] or [z ← ℓ], where
ℓ ∈ L. Furthermore, the valuation of xc ↪→ (yc , zc) is unchanged between (U, s′, h) and (U∞, s′, h). Consider

a store s′′
def
= s′[xi ← ℓi ,yi ← ℓ

′
i , zi ← ℓ

′′
i | i = 1, . . . ,n], for an arbitrary set {ℓi , ℓ

′
i , ℓ
′′
i | i ∈ [1,n]} ⊆ U and

assume that (U, s′′, h) |=
∧n

i=1 xi ↪→ (yi , zi). Then necessarily,

{
ℓi , ℓ

′
i , ℓ
′′
i | i ∈ [1,n]

}
∩ L = ∅. Next, we show that

(U, s′′, h) |= ϕsl ⇔ (U∞, s′′, h) |= ϕsl, by induction on the structure of ϕsl. Since (U, s
′′, h) |= ϕsl by the hypothesis,

we have (U∞, s′′, h) |= ϕsl, thus (U
∞, s, h) |= φ

inf
sl .

“(3)⇒ (1)” Let U
def
= dom(h) ∪ {ℓ1, ℓ2 | ∃ℓ ∈ U

∞ . h(ℓ) = (ℓ1, ℓ2)}. Since h is finite, so is U. Let s be an arbitrary
10

store on U and define I such that:

• cI = s′(xc), and,
• for each ℓ ∈ U, such that h(ℓ) = (ℓ′, ℓ′′), we have f I (ℓ) = ℓ′ and дI (ℓ) = ℓ′′.

Note that cI ∈ U, because by hypothesis (U∞, s′, h) |= xc ↪→ (yc , zc), hence s
′(xc) ∈ dom(h). Similarly,

f I (ℓ),дI (ℓ) ∈ U, for each ℓ ∈ U, by the definition of U. Moreover, since (U∞, s′, h) |= α inf
we obtain that f I

and дI are well-defined total functions. For each set {ℓi | i = 1, . . . ,n} ⊆ U, the function s′′ = s[xi ← ℓi ,yi ←
f I (ℓi), zi ← дI (ℓi) | i = 1, . . . ,n] is a store onU∞ such that (U∞, s′′, h) |= xi ↪→ (yi , zi) for every i ∈ [1,n], hence
(U∞, s′′, h) |= ϕsl. By induction on the structure of ϕflat , one shows that (U

∞, s′′, h) |= ϕsl ⇔ (U, s′′,I) |= ϕflat .
Since (U∞, s′′, h) |= ϕsl, we have (U, s,I) |= ϕflat . □

Note that, by the previous proof, the undecidability result still holds for finite satisfiability if a single occurrence

of −−∗ is allowed, in a ground formula (indeed, we may take αfin = (|h | ≥ |U | − 0) = (¬emp −−∗ ⊥)). For infinite
satisfiability one occurrence of −−∗ is still sufficient, however there must be a universally quantified variable within

the scope of −−∗.

The reductions (18) use positive occurrences of test formulæ |h | ≥ |U | − n and alloc(x), where x is universally

quantified. We obtain decidable subsets of BSR(SLk) by devising conditions that are sufficient to discard positive

occurrences of such formulæ from µ† (ϕ), where † ∈
{
fin, inf

}
and ∀y1 . . .∀ym . ϕ is a BSR(SLk) formula. Note

that µ inf (ϕ) contains no formulæ of the form |h | ≥ |U | − n (as such test formulæ are trivially false in all infinite

structures) which explains why slightly less restrictive conditions are needed for infinite structures. As we shall

see (Proposition 6.5), these conditions are sufficient to ensure that the formula ∀y1, . . . ,∀ym .
∨

M ∈µ inf (ϕ) M is

BSR-compatible (but not that ∀y1, . . . ,∀ym .
∨

M ∈µfin (ϕ) M is BSR-compatible, see Section 6.2.3 for details).

9
Note that an equivalent definition of αfin

is αfin def
= ∀x . alloc(x).

10
The store is arbitrary because φ contains no free variables.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

38 • Mnacho Echenim, Radu Iosif, and Nicolas Peltier

6.2 Decidability Proofs
6.2.1 Model Checking. We first show that the first-order model checking problem, considering the translation of

minterms to FO, is in PSPACE. We first recall the following well-known result, proved for instance in [22].

Proposition 6.2. Let S be an FO-structure and let ϕ be an FO formula. The problem of testing whether S |= ϕ is
in PSPACE.

Proposition 6.2 does not by itself entails the desired result since | |µ† (ϕ) | | is exponential w.r.t. size(ϕ). We need

the following:

Lemma 6.3. Given a finite FO-structureS = (U, s,I) and an SL formula ∀y1 . . .∀ym . ϕ where ϕ is quantifier-free,
the problem S |= τ (∀y1 . . .∀ym .

∨
M ∈µ† (ϕ) M) is in PSPACE, for each † ∈

{
fin, inf

}
.

Proof. Since PSPACE is closed under complement (see, e.g., [2, Corollary 4.21]), we consider instead the

problem S |= ¬τ (∀y1 . . .∀ym .
∨

M ∈µ† (ϕ) M). Because τ (.) is homomorphic w.r.t. the propositional connectives,

we have the equivalences:

¬τ (∀y1 . . .∀ym .
∨

M ∈µ† (ϕ) M) ≡ ¬∀y1 . . .∀ym . τ (
∨

M ∈µ† (ϕ) M)
≡ ∃y1 . . . ∃ym . ¬τ (

∨
M ∈µ† (ϕ) M)

≡ ∃y1 . . . ∃ym . ¬
∨

M ∈µ† (ϕ) τ (M)
≡ ∃y1 . . . ∃ym .

∧
M ∈µ† (ϕ) ¬τ (M)

To check that S ̸|= τ (∀y1 . . .∀ym .
∨

M ∈µ† (ϕ) M), we may thus guess locations ℓ1, . . . , ℓm ∈ U and check that

(U, s[y1 ← ℓ1] . . . [ym ← ℓm],I) |=
∧

M ∈µ† (ϕ) ¬τ (M). There remains to prove that the latter test in is PSPACE.
To this aim, we consider again the complement problem (U, s[y1 ← ℓ1] . . . [ym ← ℓm],I) ̸ |=

∧
M ∈µ† (ϕ) ¬τ (M).

We guess a minterm M that isM-bounded by ϕ, then check that M ∈ µ† (ϕ) and that (U, s[y1 ← ℓ1] . . . [ym ←
ℓm],I) |= τ (M). The first check is in PSPACE, by Lemma 5.42. The second check is also in PSPACE, by Proposition
6.2. □

Remark 6.4. Note that the size of an FO-structure S = (U, s,I) is exponential w.r.t. the arity of the symbols in
F . In our context, the arity of all symbols is bounded by a constant, except that of the special symbol p that encodes
the heap. Further, in the following (see for instance the proof of Theorem 6.11), we will only consider structures that
satisfy the formula Heap in Definition 4.6 , so that pI is a partial function and | |pI | | ≤ | |U | |. Hence we may assume
that the size of S is polynomial in | |U | | + k + dom(s). ■

6.2.2 Infinite Satisfiability (BSRinf (SLk)). We start by showing decidability, in PSPACE, of the infinite satisfiability
problem for the BSRinf (SLk) fragment. We first establish the following result:

Proposition 6.5. Let φ = ∀y1 . . .∀ym . ϕ be a formula in BSRinf (SLk), where ϕ is quantifier-free. The formula
χ

def
=

∨
M ∈µ inf (ϕ) M is BSR-compatible.

Proof. By Lemma 5.29 (1), no formula of the form |h | ≥ |U | − i occurs positively in χ . Furthermore, if alloc(x)
positively occurs in χ , then it must occur in a minterm in µ inf (ϕ), and by Lemma 5.29 (3), x necessarily occurs

in the scope of a positive occurrence of −−∗, which entails by definition of BSRinf (SLk) that x < {y1, . . . ,yn }.
Consequently, χ is BSR-compatible. □

Proposition 6.5, together with Lemma 5.28, ensures that a reduction from BSRinf (SLk) to BSR(FO) is feasible.
However, we also have to ensure that the cardinality of the universe is infinite and that the cardinality of the

heap is finite, which cannot be expressed in FO. To this aim, we rely on existing results about the cardinality of

models of BSR(FO) formulæ. The definition and theorem below are from [12] (they have been slightly adapted

to handle formulæ containing free variables).

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

The Bernays-Schönfinkel-Ramsey Class of Separation Logic with Uninterpreted Predicates • 39

Definition 6.6. Let S = (U, s,I) be an FO-structure. Let A
def
= {s(x) | x ∈ dom(s)} ∪ {cI | c ∈ F , #(c) =

0,σ (c) = U} and B
def
= U \A. The structure S ism-repetitive if | |B | | ≥ m and there exists a total order ≺ on U such

that for every n ≤ m and strictly increasing sequences e1 ≺ · · · ≺ en and e ′
1
≺ · · · ≺ e ′n of elements in B, for every

predicate symbol q ∈ F and every d1, . . . ,d#(q) ∈ A ∪ {e1, . . . , en } the following holds:

(d1, . . . ,d#(q)) ∈ q
I ⇔ (d ′

1
, . . . ,d ′

#(q)) ∈ q
I , where d ′i

def
=

{
e ′j if di = ej
di otherwise

The following theorem, proved in [12], characterizes the existence of an infinite model of a BSR(FO) formula.

The intuition is that, due to the above condition, the interpretation of the predicate symbols in anm-repetitive

model fulfills some symmetry properties that make it possible to extend this model into an infinite one by adding

infinitely many copies of existing elements. Conversely, it is possible to show that every infinite model (actually,

every model of sufficiently large cardinality) admits a restriction that is m-repetitive (the proof is based on

Ramsey’s theorem for hypergraphs [?]).

Theorem 6.7. Consider a BSR(FO) formula φ containing n free variables and constants, no existential quantifier
andm distinct universally quantified formulæ. The formulaφ has an infinite model if and only if it has anm-repetitive
model (U, s,I) such that | |U | | ≤ n +m.

Proof. See [12, Theorems 4 and 5]. The addition of free variables is not problematic as they can be handled as

constants. □

Proposition 6.8. Testing whether a first-order structure S = (U, s,I) ism-repetitive for a givenm ∈ N is in
PSPACE.

Proof. The algorithm is straightforward: it is clear that A and B can be computed in polynomial time, then it

suffices to guess some total order < on U, to iterate over the increasing sequences (e1, . . . , en), (e
′
1
, . . . , e ′n) ∈ B

n
,

with n ≤ m, over the predicate symbols q ∈ F and elements d1, . . . ,d#(q) ∈ A ∪ {e1, . . . , en }, to compute in each

case the elements d ′
1
, . . . ,d ′

#(q) according to Definition 6.6 and to check that the equivalence (d1, . . . ,d#(q)) ∈

qI ⇔ (d ′
1
, . . . ,d ′

#(q)) ∈ q
I
holds. □

Theorem 6.7 and Proposition 6.8 provide an effective method to decide whether a formula ϕ in BSR(FO) has an
infinite model. To ensure that the domain of the predicate p encoding the heap is finite we rely on the following

definition and result:

Definition 6.9. Let φ be a BSR(FO) formula. We denote by φp the formula:

∀x1, . . . ,xk+1 .
k+1∨
i=1

∧
z∈Var(φ)∪Const(φ)

¬xi ≈ z → ¬p(x1, . . . ,xk+1)

where x1, . . . ,xk+1 are pairwise distinct variables not occurring in φ.

Proposition 6.10. Let φ be a BSR(FO) formula. The two following assertions are equivalent.
• φ has an infinite model (U, s,I) such that pI is finite.
• φ ∧ φp has an infinite model.

Proof. Assume that φ admits a model (U, s,I) such that | |U | | = ∞ and | |pI | | ∈ N. Let A
def
= {s(x) | x ∈

Var(φ)} ∪ {cI | c ∈ Const(φ)}, let B be the set of elements of U that do not occur in any vector in pI and

U′
def
= A∪B. Since pI is finite, necessarily B and U′ are both infinite. By Proposition 2.2, the restriction (U′, s′,I ′)

of (U, s,I) to U′ validates φ, since φ is a BSR(FO) formula and A ⊆ U′. It is clear that (U′, s′,I ′) |= φp, since by

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

40 • Mnacho Echenim, Radu Iosif, and Nicolas Peltier

definition, U′k+1∩pI = Ak+1∩pI . Conversely, let S = (U, s,I) be an infinite model of φ ∧φp. Then by definition

of φp for every (ℓ1, . . . , ℓk+1) such that (ℓ1, . . . , ℓk+1) ∈ p
I
, and for every i ∈ [1,k + 1], either ℓi = cI for some

c ∈ F (φ), or ℓi = s(x) for some x ∈ Var(φ). Since F (φ) and Var(φ) are both finite, pI is also finite. □

Putting all results together, we obtain the first decidability result of this paper:

Theorem 6.11. The infinite satisfiability problem for BSRinf (SLk) is PSPACE-complete.

Proof. PSPACE-hardness is an immediate consequence of the fact that the quantifier-free fragment of SLk ,
without the separating implication, but with the separating conjunction and negation, is PSPACE-hard [7,

Proposition 5].

To showmembership in PSPACE, let φ = ∀y1 . . .∀ym . ϕ be a formula in BSRinf (SLk), where ϕ is quantifier-free

and Var(φ) = {x1, . . . ,xn }. Letφ
′ def
= ∀y1 . . .∀ym . χ , with χ

def
=

∨
M ∈µ inf (ϕ) M and letψ

def
= τ (φ ′)∧A (φ ′). By Lemma

5.28, φ ≡inf φ ′. By Proposition 6.5, χ is BSR-compatible and we deduce by Lemma 4.9 that φ ′ (and hence φ) has
an infinite model iffψ has an infinite model where the interpretation of p is finite.

We now show how to solve the latter problem. By Proposition 4.10,ψ is a BSR(FO) formula with no existential

variable and contains k · n + (k + 6) · N (χ) + 5 constants. By Proposition 5.36, N (χ) = O (size(ϕ)2), thus we
deduce thatψ is a BSR(FO) formula, with O (k · size(φ)2) constants and free variables. By Proposition 6.10,ψ has

an infinite model where the interpretation of p is finite iffψ ∧ψp has an infinite model. By Theorem 6.7,ψ ∧ψp
has an infinite model iff it has anm-repetitive model (U, s,I) of cardinality | |U | | = O (k · size(φ)2), becauseψp is
a BSR(FO) formula with no existential variable and contains no constant or free variable other than those inψ .

The algorithm is then defined as follows. We guess an FO-structure (U, s,I) such that | |U | | = O (k · size(φ)2)
and (U, s,I) |= Heap (where Heap is the formula in Definition 4.6). Note that since k may depend on the input,

Uk is of exponential size, hence in principle the interpretation of p may be exponential. However, since we assume

that (U, s,I) |= Heap, for every element x ∈ U, there is at most one vector y ∈ Uk such that (x , y) ∈ pI , hence
| |pI | | ≤ | |U | |. To ensure that Heap holds, it suffices to guess a subset of U (the set of allocated locations), and

choose for every element x in this subset one vector y ∈ Uk such that (x , y) ∈ pI . Moreover, the arity of each

predicate symbol in φ that are different from p is bounded by a constant, thus their interpretation is polynomial

w.r.t. U. Then we check that (U, s,I) ism-repetitive and that (U, s,I) |= τ (φ ′) ∧ A (φ ′) ∧ψp. This test is feasible
in PSPACE:
• the problem of testing whether (U, s,I) ism-repetitive is in PSPACE by Proposition 6.8.

• the problem (U, s,I) |= τ (φ ′) is in PSPACE by Lemma 6.3,

• the problems (U, s,I) |= A (φ ′) and (U, s,I) |= ψp are both in PSPACE, by Proposition 6.2.

□

Remark 6.12. The algorithm given in the proof of Theorem 6.11 is based on guessing some structure of size s , with
s = O (k · size(φ)2). To apply the algorithm one needs of course to know an upper bound of s . Because our aim in the
present paper is only to prove the existence of such an algorithm, we do not bother to give this bound explicitly, as
this would only hinder readability, and we only state that it exists. However, the bound can easily be extracted from
the above proofs, if needed. Similarly, an explicit bound on the size of the minterms in µ inf (ϕ) could be extracted from
the proof of Lemma 5.42. ■

6.2.3 Finite Satisfiability (BSRfin (SLk)). We now prove that finite satisfiability is PSPACE-complete for the class

BSRfin (SLk), defined as the set of formulæ with no positive occurrence of separating implications. Even with

this stronger restriction, the previous proof based on a translation to first-order logic cannot be carried over

without any additional argument, because Proposition 6.5 does not hold for BSRfin (SLk). The problem is that,

in the case of a finite universe, alloc(x) test formulæ may occur at a positive polarity, even if every ϕ1 −−∗ ϕ2
subformula occurs at a negative polarity, due to the positive occurrences of alloc(x) within the subformula λfin in

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

The Bernays-Schönfinkel-Ramsey Class of Separation Logic with Uninterpreted Predicates • 41

the definition of elimfin
⊸ (M1,M2) (Equation (15) in Lemma 5.20), see also Example 5.30. As previously discussed,

positive occurrences of alloc(x) hinder the translation into BSR(FO), because of the existential quantifiers that
may occur in the scope of a universal quantifier.

The solution is to distinguish a class of finite structures (U, s,I, h). Given α ∈ N, we consider the so-called α-
controlled structures, for which there exists a set of locations ℓ1, . . . , ℓα , such that every location ℓ ∈ U\{ℓ1, . . . , ℓα }
points to a tuple from the set {ℓ1, . . . , ℓα , ℓ}. An example of a 3-controlled structure is given in Figure 2.

x1 x2 x3

Fig. 2. A finite 3-controlled SL2 structure.

Definition 6.13. An SL-structure S is α-controlled if S |= ∃x1, . . . , xα . C (α), with

C (α)
def
= ∀x .

α∨
i=1

x ≈ xi ∨
∨

y∈vectk (x1, ...,xα ,x)

x ↪→ y

where vectk (x1, . . . ,xn) is the set of k-tuples of symbols in {x1, . . . ,xn }, and x1, . . . , xα ,x are pairwise distinct

variables. Analogously, an FO-structure S is α-controlled if S |= ∃x1, . . . , xα . τ (C (α)), with

τ (C (α)) = ∀x .
α∨
i=1

x ≈ xi ∨
∨

y∈vectk (x1, ...,xα ,x)

p(x , y)

Any α-controlled SL-structure is finite, sinceU = dom(h)∪{s(x1), . . . , s(xα)}, but its cardinality is not bounded.
Furthermore, if | |U | | ≤ α , then (U, s,I, h) is necessarily α-controlled.
Overview of the Proof for Finite Satisfiability. For a formula φ = ∀y1 . . .∀ym . ϕ in BSRfin (SLk), we distin-
guish the following cases:

(1) If φ has an α-controlled model S, the formula obtained by replacing each occurrence of an alloc(x) with∧α
i=1 (x ≈ xi → alloc(xi)) in ∀y1 . . .∀ym

∨
M ∈µfin (ϕ) M is satisfied by S (as stated by Proposition 6.15).

(2) Otherwise, each finite model of φ is non-α-controlled and we can build a model S, with a sufficiently

large universe, such that each test formula θ ∈ {|U | ≥ n, |h | < |U | − n | n ∈ N} becomes true in S. Assume

alloc(x) occurs positively in a λfin subformula of some formula elimfin
⊸ (M1,M2). The latter must have been

generated by the elimination of a separating implication from ϕ, hence alloc(x) occurs in a disjunction

with a formula of the form |h | < |U | −n1 ∧ |U | ≥ n2; its truth value in S can thus be ignored and the entire

subformula deleted.

In both cases, we obtain an equisatisfiable universally quantified boolean combination of test formulæ with no

positive occurrence of alloc(yi) formulæ. We translate this into an equisatisfiable BSR(FO) formula, for which

finite satisfiability is decidable and apply a similar argument to that for the infinite case, to obtain the PSPACE
upper bound.

The Case of Controlled Structures. We first consider the case where the considered models are α-controlled.

Proposition 6.14. Let S = (U, s,I) be an FO-structure. The problem of testing whether S |= τ (C (α)) is in P.

Proof. Note that the size of C (α) is exponential w.r.t. k . However, to test that S |= τ (C (α)), it suffices to

check that for every u ∈ U \ s({x1, . . . , xα }), there exist v1, . . . ,vk such that (u,v1, . . . ,vk) ∈ p
I
and v1, . . . ,vk ⊆

{u} ∪ s({x1, . . . , xα }), which can be done in time polynomial in size(S). □

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

42 • Mnacho Echenim, Radu Iosif, and Nicolas Peltier

Proposition 6.15. If x is a variable distinct from x1, . . . , xα , then:

C (α) |= ∀x . (alloc(x) ↔
α∧
i=1

(x ≈ xi → alloc(xi))

Proof. This is immediate, since C (α) entails that every element distinct from x1, . . . , xα is allocated. □

Lemma 6.16. Given a formula φ ∈ BSRfin (SLk) and a number α ∈ N encoded in unary, the problem of checking
whether φ has an α-controlled model is in PSPACE.

Proof. We assume that the formula φ is of the form ∀y1, . . . ,ym . ϕ, with Var(φ) = {x1, . . . ,xn }. Let x1, . . . , xα
be pairwise distinct variables not occurring in {x1, . . . ,xn ,y1, . . . ,ym }. It is clear that φ admits an α-controlled

model iff it admits a model that also validates C (α). Let χ
def
=

∨
M ∈µfin (ϕ) M , let χ ′ the formula obtained from χ

by replacing every formula alloc(x) with
∧α

i=1 (x ≈ xi → alloc(xi)) and let φ ′
def
= ∀y1 . . .∀ym . χ

′
. By Proposition

6.15, C (α) |= χ ↔ χ ′, thus, since any model of C (α) is finite, we deduce by Lemma 5.28 that C (α) |= ϕ ↔ χ ′.
Consequently φ has an α-controlled model iff φ ′ ∧ C (α) has a model. By Lemma 5.29 (2), χ contains no test

formulæ |h | ≥ |U | − i at positive polarity, thus the same holds for χ ′. Moreover, the formula χ ′ contains
no occurrence of alloc(yi), since by definition the only test formulæ alloc(x) occurring in χ ′ are such that

x ∈ {x1, . . . , xα }. Hence χ ′ is BSR-compatible, and we deduce by Lemma 4.9 that φ has an α-controlled model iff

ψ
def
= τ (φ ′ ∧ C (α)) ∧ A (φ ′ ∧ C (α)) has a finite model.

We now show how to solve the latter problem. Since φ ′ and C (α) contain no cardinality constraints other

than those in χ , we have N (φ ′ ∧ C (α)) ≤ N (χ), thus by Proposition 5.36, we deduce that N (φ ′ ∧ C (α)) =
O (k · size(φ)2). By Proposition 4.10, this entails thatψ is a BSR(FO) formula with O (k · size(φ)2 +k ·α) constants
and free variables (since Var(φ ′ ∧ C (α)) = Var(φ ′) ∪ Var(C (α)) = {x1, . . . ,xn , x1, . . . , xα }). By Proposition 2.2,ψ
has a finite model iff it has a model (U, s,I), with | |U | | = O (k · size(φ)2 + k · α).
The algorithm is defined as follows (see the proof of Theorem 6.11 for details). We first guess a structure

(U, s,I) such that | |U | | = O (k · size(φ)2 + k · α) and (U, s,I) |= Heap. Then we check that (U, s,I) |= τ (φ ′) (as
done in the proof of Lemma 6.3, except that all formulæ alloc(x) are replaced by

∧α
i=1 (x ≈ xi → alloc(xi))), that

(U, s,I) |= τ (C (α)) (using Proposition 6.14) and that (U, s,I) |= A (φ ′ ∧ C (α)) (using Proposition 6.2). □

The General Case. To handle the case where no α-controlled model exists, the following results are used.

Proposition 6.17. Let (U, s,I) be a non-α -controlled FO-structure satisfying the (Heap) axiom, defined on page
11. Let E ⊆ U, with | |E | | ≤ α . There exists an element u ∈ U \ E such that either u is not allocated, or there exist
v1, . . . ,vk ∈ U and j ∈ [1,k] such that (u,v1, . . . ,vk) ∈ pI and vj < E ∪ {u}.

Proof. Because (U, s,I) is not α-controlled, we have

(U, s,I) |= ∀x1, . . . , xα . ∃x .
α∧
i=1

¬x ≈ xi ∧
∧

y∈vectk (x1, ...,xα ,x)

¬p(x , y).

Let s′ be any extension of s to x1, . . . , xα such that s′({x1, . . . , xα }) = E (such as store necessarily exists since

| |E | | ≤ α). We have (U, s′,I) |= ∃x .
∧α

i=1 ¬x ≈ xi ∧
∧

y∈vectk (x1, ...,xα ,x) ¬p(x , y) hence U contains an element

u < E such that (U, s′[x ← u],I) |=
∧

y∈vectk (x1, ...,xα ,x) ¬p(x , y). If u is not allocated then the proof is completed.

Otherwise, let (u,v1, . . . ,vk) ∈ p
I
and assume that ∀j ∈ [1,k], vj ∈ E ∪ {u}. Since s′({x1, . . . , xα }) = E, this

entails that for every j ∈ [1,k], there exists yj ∈ {x1, . . . , xα ,x } such that vj = s
′(yj). But then (x ,y1, . . . ,yk) ∈

vectk (x1, . . . , xα ,x) and (U, s′[x ← u],I) |= p(x ,y1, . . . ,yk), which contradicts the fact that (U, s′[x ← u],I) |=∧
y∈vectk (x1, ...,xα ,x) ¬p(x , y). □

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

The Bernays-Schönfinkel-Ramsey Class of Separation Logic with Uninterpreted Predicates • 43

Lemma 6.18. Letn ∈ N. Consider a BSR(FO) formulaφ, letm def
= | |Var(φ) | |+ | |Const(ϕ) | | and let α ≥ (k+2) ·n+m.

If φ ∪
{
Heap

}
has a non-α -controlled model S then there is a restriction of S that also validates φ ∪

{
Heap

}
and has

at least n unallocated elements.

Proof. The result is trivial if n = 0, since S is a restriction of itself and trivially contains at least 0 unallocated

elements. Thus we assume that n > 0. Let S = (U, s,I) be a non α-controlled model of φ ∪
{
Heap

}
. Let

A = s(Var(φ)) ∪ {cI | c ∈ Const(φ)}. Note that by definition, | |A| | ≤ m. We construct a sequence of pairwise

distinct elements x1, . . . ,xn ∈ U and a sequence of sets of elementsY0 ⊆ Y1 ⊆ · · · ⊆ Yn ⊆ U \A such that | |Yi | | ≤ i ,
x1, . . . ,xi < Yi and for every j ∈ [1, i], either x j is unallocated or points to a vector containing an element of

Yi . The sequence is constructed inductively as follows. Let Y0
def
= ∅. Assume that x1, . . . ,xi ,Y1, . . . ,Yi have been

constructed, for some i ∈ [0,n−1]. LetX = {x1, . . . ,xi }, E = {z1, . . . , zk | (x j , z1, . . . , zk) ∈ p
I , 1 ≤ j ≤ i}. Because

S |= Heap, for every j ∈ [1, i] there is at most one vector (z1, . . . , zk) such that (x j , z1, . . . , zk) ∈ p
I
, hence

| |E | | ≤ k · i ≤ k ·n. Further, | |X | | = i ≤ n and | |Yi | | ≤ i ≤ n. Thus | |E ∪A ∪ X ∪ Yi | | ≤ | |E | |+ | |A| |+ | |X | |+ | |Yi | | ≤
k ·n+m+2·n ≤ α . Thus, sinceφ is not α-controlled, by Proposition 6.17, there exists an element xi+1 < E∪A∪X∪Yi
such that either xi+1 is not allocated, or there exists a (unique) vector zi such that (xi+1, zi) ∈ pI and z has a
component yi+1 with yi+1 < E ∪ X ∪ Yi ∪A ∪ {xi+1}. In the former case, we take Yi+1

def
= Yi and in the latter case,

Yi+1
def
= Yi ∪ {yi+1}. Note that in both cases Yi+1 ⊇ Yi and | |Yi+1 | | ≤ | |Yi | | + 1 ≤ i + 1. Further, since xi+1 < Yi and

yi+1 < X ∪ {xi+1}, necessarily x1, . . . ,xi+1 < Yi+1, thus the sequences fulfill the required properties.

Then, we consider the restriction S′ of S to U′
def
= U \ Yn . As x1, . . . ,xn < Yn , U \ Yn is not empty and contains

x1, . . . ,xn . By Proposition 2.2, since Yn ∩A = ∅, S
′ |= φ ∪

{
Heap

}
. If xi is allocated in S

′
, then there exists z ∈ U′k

such that (xi , z) ∈ pI . But by the construction above, z contains an element in Yi ⊆ Yn , which contradicts the

fact that z ∈ U′k . Thus necessarily xi is unallocated in S′. Since the elements x1, . . . ,xn are pairwise distinct, the

proof is completed. □

Proposition 6.19. Let φ be an SL formula. If φ has a non-α-controlled SL-model (U, s,I, h) then τ (φ) ∧ A (φ)
has a non-α-controlled FO-model where the interpretation of p is finite.

Proof. By Lemma 4.9 (1), there exists J such that (U, s,J) |= τ (φ) ∧ A (φ), where h is associated with

J . If (U, s,J) is α-controlled, then there exists an extension s′ of s such that (U, s′,J) |= τ (C (α)). This
entails that for all extensions s′′ of s′ to x , (U, s′′,J) |=

∨α
i=1 x ≈ xi ∨

∨
y∈vectk (x1, ...,xα ,x) p(x , y). By definition,

(U, s′′,J) |= x ≈ xi iff (U, s′′,I, h) |= x ≈ xi . Furthermore, since h is associated with J , we have by definition

(U, s′′,J) |= p(x , y) iff (U, s′′,I, h) |= x ↪→ y. Therefore (U, s′′,I, h) |=
∨α

i=1 x ≈ xi ∨
∨

y∈vectk (x1, ...,xα ,x) x ↪→ y.
As s′′ is arbitrary, this entails that (U, s,I, h) is α-controlled, contradicting our hypothesis. □

We are now in the position to state the second decidability result of the paper, concerning the decidability of

the finite satisfiability for BSRfin (SLk):

Theorem 6.20. The finite satisfiability problem for BSRfin (SLk) is PSPACE-complete.

Proof. PSPACE-hardness is proved using the same argument as in the proof of Theorem 6.11, which does not

rely on the infiniteness of the universe.

Let φ
def
= ∀y1, . . . ,ym . ϕ be a formula in BSRfin (SLk), where ϕ is quantifier-free and Var(φ) = {x1, . . . ,xn }.

Let χ
def
=

∨
M ∈µfin (ϕ) M and α

def
= (k + 2) · (N (χ) + 1) + (k + 1) · n + (k + 6) · N (χ) + 5. We first test whether

φ admits an α-controlled model, which can be done in PSPACE, by Lemma 6.16 since, by Proposition 5.36,

N (χ) = O (size(ϕ)2), thus α = O (k · size(φ)2). In this case, φ has a finite model, and otherwise φ has a finite

model iff it has a non-α-controlled finite model. We now assume that φ does not have any α-controlled model.

Let φ ′
def
= ∀y1, . . . ,ym . χ

′
, where χ ′ is obtained from χ by replacing all positive occurrences of a formula

alloc(x), where x ∈ {x1, . . . ,xn ,y1, . . . ,ym }, by ⊥. We prove that φ ′ has a finite model iff φ has a finite model.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

44 • Mnacho Echenim, Radu Iosif, and Nicolas Peltier

By Lemma 5.28, φ ≡fin ∀y1, . . . ,ym .χ . Because the replaced occurrences of alloc(x) are all positive, it is clear
that χ ′ |= χ , thus φ ′ = ∀y1, . . . ,ym .χ

′ |= ∀y1, . . . ,ym .χ ≡
fin φ and the direct implication holds. Now, assume

that φ admits a finite model. Note that by the above assumption this model is necessarily non-α-controlled.
The formula χ can be written in cnf as χ1 ∧ χ2 where χ1 is a conjunction of clauses not containing any literal

alloc(x) and χ2 is a conjunction of clauses containing at least one such literal. It is clear that N (χ1),N (χ2) ≤
N (χ) and φ |= ∀y1, . . . ,ym . χ1, thus ∀y1, . . . ,ym . χ1 has a non-α-controlled model. By Proposition 4.10, the

formula ξ = τ (∀y1, . . . ,ym . χ1) ∧ A (∀y1, . . . ,ym . χ1) is a BSR(FO) formula with at most n free variables and

k · n + (k + 6) · N (χ) + 5 constants, since N (χ1) ≤ N (χ). Furthermore, by Proposition 6.19, ξ admits a non-

α-controlled FO-model such that the interpretation of p is finite, since ∀y1, . . . ,ym . χ1 has a non-α-controlled
SL-model. By Lemma 6.18, and by definition of α , this entails that there exists an FO-model of ξ with strictly more

than N (χ) unallocated elements and such that the interpretation of p is finite. By Lemma 5.29 (2), the formula

χ (hence also χ1) contains no positive occurrence of a formula of the form |h | ≥ |U | − i , and by definition, χ1
contains no positive occurrence of a formula alloc(x). Thus ∀y1, . . . ,ym . χ1 is BSR-compatible. By Lemma 4.9 (2),

we deduce that ∀y1, . . . ,ym . χ1 admits an SL-model S = (U, s,I, h) with strictly more than N (χ) unallocated
elements. Assume that S ̸|= ∀y1, . . . ,ym .χ

′
. This entails that there exist e1, . . . , em ∈ U and a clause C in χ2

such that (U, s′,I, h) ̸ |= C ′, where s′ = s[xi ← ei | 1 ≤ i ≤ m] and C ′ is obtained from C by removing all the

literals alloc(x). By definition C must contain at least one literal alloc(x). Because all occurrences of −−∗ in φ are

negative or neutral, by Lemma 5.29 (4), every literal alloc(x) occurs within a subformula λfin of some formula

elimfin
⊸ (M1,M2), hence inside a formula of the form alloc(x) ∨ (|h | < |U | − q ∧ |U | ≥ r). Thus C (hence C ′)

contains either |h | < |U | − q or |U | ≥ r , and necessarily, q, r ≤ N (χ2) ≤ N (χ). But S has more than N (χ)
unallocated elements, hence S |= (|h | < |U | − q ∧ |U | ≥ r). Therefore, (U, s′,I, h) |= C ′, which contradicts our

previous assumption.

Consequently, the initial problem boils down to testing whether φ ′ has a finite model. It is clear that φ ′ is
BSR-compatible (since by definition all positive occurrences of alloc(x) have been removed), hence by Lemma

5.28, it is sufficient to test whether τ (φ ′)∧A (φ ′) has a finite model. By Proposition 4.10, the formula τ (φ ′)∧A (φ ′)
is equivalent to a formula in BSR(FO). We have N (φ ′) ≤ N (∀y1, . . . ,ym . χ), hence, using Propositions 2.2, 4.10

and 5.36 we deduce as it is done in the proof of Theorem 6.11, that τ (φ ′) ∧ A (φ ′) has a finite model iff it has a

model (U, s,I), with | |U | | = O (k · size(φ)2).
The algorithm is then defined as follows (see the proof of Theorem 6.11 for details). We guess an FO-structure

(U, s,I) satisfying Heap such that | |U | | = O (k · size(φ)2) and check in polynomial space that (U, s,I) |= τ (φ ′)
(this is done as in Lemma 6.3, except that the test formulæ alloc(x) are replaced by ⊤) and that (U, s,I) |= A (φ ′)
(using Proposition 6.2) . □

7 CONCLUSION
We have studied the decidability problem for SL formulæ with quantifier prefix in the language ∃∗∀∗, denoted as

BSR(SLk), for finite and infinite universes, in the presence of uninterpreted predicate symbols. Although both

problems were found to be undecidable, we identified two non-trivial subfragments for which the infinite and

finite satisfiability are PSPACE-complete. These fragments are defined by restricting the polarity of occurrences

of separating implications as well as the occurrence of universally quantified variables within the scope of

separating implications. In both cases, the number of record fields k may be part of the input, but we assume

that the arity of the uninterpreted predicates is bounded by a constant. If the latter condition does not hold,

then the provided algorithms run in exponential space, and the problem is NEXPTIME-complete. Note that the

PSPACE-completeness results for BSRfin (SLk) and BSRinf (SLk) allow us to (re-)establish the PSPACE-membership

of the satisfiability problem for quantifier-free formulæ of SLk , both in finite and infinite domains. Indeed, every

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

The Bernays-Schönfinkel-Ramsey Class of Separation Logic with Uninterpreted Predicates • 45

quantifier-free formula ϕ is sat-equivalent to a formula ϕ ⊸ ⊤ that is both in BSRfin (SLk) and BSRinf (SLk), since
the left-hand side of −−∗ has neutral polarity.

Future work includes the implementation of an effective procedure for testing satisfiability of BSR(SL) formulæ

in the above fragments. Since a non deterministic algorithm based on a guess-and-check approach is not practical,

such a procedure could rely either on an encoding in QBF based on the finite model property derived in the

present paper, or on some compact computational representations of boolean combinations of test formulæ. The

bottleneck of the approach is certainly the computation of equivalent boolean combinations of test formulæ. To

make the transformation more efficient, refined versions of Lemmas 5.16 and 5.20 could be derived, getting rid of

some hypotheses such as E-completeness or A-completeness (as enforcing these hypotheses yield an exponential

blow-up). Instead, the needed test formulæ could be added on demand, only if needed.

An extension of the presented results to formulæ containing inductively defined predicates (such as singly-

linked lists) or interpreted predicates or functions (such as arithmetic symbols) will also be considered. This

would allow us to extend existing approaches to test satisfiability of such formulæ [5?] to formulæ containing

negation.

ACKNOWLEDGMENTS
The authors wish to acknowledge the contributions of Stéphane Demri and Étienne Lozes to the insightful

discussions during the early stages of this work.

REFERENCES
[1] Timos Antonopoulos, Nikos Gorogiannis, Christoph Haase, Max Kanovich, and Joël Ouaknine. 2014. Foundations for Decision Problems

in Separation Logic with General Inductive Predicates. In Foundations of Software Science and Computation Structures, Anca Muscholl

(Ed.). Springer Berlin Heidelberg, 411–425.

[2] Sanjeev Arora and Boaz Barak. 2009. Computational Complexity - A Modern Approach. Cambridge University Press.

[3] Egon Börger, Erich Grädel, and Yuri Gurevich. 1997. The Classical Decision Problem. Springer.

[4] James Brotherston, Dino Distefano, and Rasmus L. Petersen. 2011. Automated Cyclic Entailment Proofs in Separation Logic. In Automated
Deduction – CADE-23: 23rd International Conference on Automated Deduction, Wrocław, Poland, July 31 - August 5, 2011, Proceedings.
Springer Berlin Heidelberg, Berlin, Heidelberg, 131–146.

[5] James Brotherston, Carsten Fuhs, Juan A. Navarro Pérez, and Nikos Gorogiannis. 2014. A Decision Procedure for Satisfiability in

Separation Logic with Inductive Predicates. In Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer
Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) (CSL-LICS ’14). ACM, Article

25, 25:1–25:10 pages.

[6] Cristiano Calcagno, Philippa Gardner, and Matthew Hague. 2005. From Separation Logic to First-Order Logic. In Foundations of Software
Science and Computational Structures. Springer Berlin Heidelberg, Berlin, Heidelberg, 395–409.

[7] Cristiano Calcagno, Hongseok Yang, and Peter W. O’Hearn. 2001. Computability and Complexity Results for a Spatial Assertion

Language for Data Structures. In FST TCS 2001: Foundations of Software Technology and Theoretical Computer Science. Springer Berlin
Heidelberg, Berlin, Heidelberg, 108–119.

[8] Stéphane Demri and Morgan Deters. 2016. Expressive Completeness of Separation Logic with Two Variables and No Separating

Conjunction. ACM Trans. Comput. Log. 17, 2 (2016), 12:1–12:44. https://doi.org/10.1145/2835490

[9] Stéphane Demri, Étienne Lozes, and Alessio Mansutti. 2018. The Effects of Adding Reachability Predicates in Propositional Separation

Logic. In Foundations of Software Science and Computation Structures - 21st International Conference, FOSSACS 2018, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings (Lecture
Notes in Computer Science), Christel Baier and Ugo Dal Lago (Eds.), Vol. 10803. Springer, 476–493.

[10] Mnacho Echenim, Radu Iosif, and Nicolas Peltier. 2019. Prenex Separation Logic with One Selector Field. In Automated Reasoning with
Analytic Tableaux and Related Methods - 28th International Conference, TABLEAUX 2019, London, UK, September 3-5, 2019, Proceedings
(Lecture Notes in Computer Science), Serenella Cerrito and Andrei Popescu (Eds.), Vol. 11714. Springer, 409–427.

[11] Mnacho Echenim, Radu Iosif, and Nicolas Peltier. 2019. The Bernays-Schönfinkel-Ramsey Class of Separation Logic on Arbitrary

Domains. In Foundations of Software Science and Computation Structures - 22nd International Conference, FOSSACS 2019, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings
(Lecture Notes in Computer Science), Mikolaj Boja’nczyk and Alex Simpson (Eds.), Vol. 11425. Springer, 242–259. https://doi.org/10.1007/

978-3-030-17127-8_14

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

https://doi.org/10.1145/2835490
https://doi.org/10.1007/978-3-030-17127-8_14
https://doi.org/10.1007/978-3-030-17127-8_14

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

46 • Mnacho Echenim, Radu Iosif, and Nicolas Peltier

[] P. Erdós and R. Rado. 1952. Combinatorial Theorems on Classifications of Subsets of a Given Set. Pro-
ceedings of the London Mathematical Society s3-2, 1 (1952), 417–439. https://doi.org/10.1112/plms/s3-2.1.417

arXiv:https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s3-2.1.417

[12] Pascal Fontaine. 2007. Combinations of Theories and the Bernays-Schönfinkel-Ramsey Class. In Proceedings of 4th International
Verification Workshop in connection with CADE-21, Bremen, Germany, July 15-16, 2007 (CEUR Workshop Proceedings), Bernhard Beckert

(Ed.), Vol. 259. CEUR-WS.org. http://ceur-ws.org/Vol-259/paper06.pdf

[13] Radu Iosif, Adam Rogalewicz, and Jiri Simacek. 2013. The Tree Width of Separation Logic with Recursive Definitions. In Proc. of CADE-24
(LNCS), Vol. 7898. Springer.

[14] Samin S Ishtiaq and Peter W O’Hearn. 2001. BI as an assertion language for mutable data structures. In ACM SIGPLAN Notices, Vol. 36.
ACM, 14–26.

[15] Jens Katelaan, Christoph Matheja, and Florian Zuleger. 2019. Effective Entailment Checking for Separation Logic with Inductive

Definitions. In Tools and Algorithms for the Construction and Analysis of Systems - 25th International Conference, TACAS 2019, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings,
Part II (Lecture Notes in Computer Science), Tomás Vojnar and Lijun Zhang (Eds.), Vol. 11428. Springer, 319–336.

[] Quang Loc Le, Makoto Tatsuta, Jun Sun, and Wei-Ngan Chin. 2017. A Decidable Fragment in Separation Logic with Inductive Predicates

and Arithmetic. InComputer Aided Verification - 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings,
Part II (Lecture Notes in Computer Science), Rupak Majumdar and Viktor Kuncak (Eds.), Vol. 10427. Springer, 495–517.

[] Harry R. Lewis. 1980. Complexity results for classes of quantificational formulas. J. Comput. System Sci. 21, 3 (1980), 317 – 353.

[16] Etienne Lozes. 2004. Separation Logic preserves the Expressive Power of Classical Logic. In SPACE.
[] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local Reasoning about Programs that Alter Data Structures. In Computer

Science Logic, 15th International Workshop, CSL 2001. 10th Annual Conference of the EACSL, Paris, France, September 10-13, 2001, Proceedings.
1–19.

[17] C.H. Papadimitriou. 1994. Computational Complexity. Addison-Wesley. https://books.google.fr/books?id=JogZAQAAIAAJ

[18] F. P. Ramsey. 1987. On a Problem of Formal Logic. Classic Papers in Combinatorics (1987), 1–24.
[19] Andrew Reynolds, Radu Iosif, and Cristina Serban. 2017. Reasoning in the Bernays-Schönfinkel-Ramsey Fragment of Separation Logic. In

Verification, Model Checking, and Abstract Interpretation, Ahmed Bouajjani and David Monniaux (Eds.). Springer International Publishing,

Cham, 462–482.

[20] John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In Proceedings of the 17th Annual IEEE Symposium
on Logic in Computer Science (LICS ’02). IEEE Computer Society, 55–74.

[21] Walter J. Savitch. 1970. Relationships between nondeterministic and deterministic tape complexities. J. Comput. System Sci. 4, 2 (1970),
177 – 192.

[22] Moshe Y. Vardi. 1982. The Complexity of Relational Query Languages. In Proceedings of the 14th Annual ACM Symposium on Theory of
Computing, May 5-7, 1982, San Francisco, California, USA. ACM, 137–146.

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: December 2019.

https://doi.org/10.1112/plms/s3-2.1.417
http://arxiv.org/abs/https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s3-2.1.417
http://ceur-ws.org/Vol-259/paper06.pdf
https://books.google.fr/books?id=JogZAQAAIAAJ

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 First Order Logic
	2.2 Separation Logic

	3 The BSR(SLk) Class
	4 Test formulæ for SLk
	4.1 Definition and Basic Properties
	4.2 A Generalization of Test Formulæ
	4.3 From Test formulæ to FO

	5 From Quantifier-Free SLk to Test formulæ
	5.1 Minterms
	5.2 Eliminating Spatial Connectives
	5.3 Translating Quantifier-free SLk into Minterms
	5.4 Testing Membership in () in PSPACE

	6 Bernays-Schönfinkel-Ramsey SLk
	6.1 Undecidability of BSR(SLk)
	6.2 Decidability Proofs

	7 Conclusion
	Acknowledgments
	References

