
HAL Id: hal-02388317
https://hal.science/hal-02388317

Submitted on 1 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improved local search for graph edit distance
Nicolas Boria, David Blumenthal, Sébastien Bougleux, Luc Brun

To cite this version:
Nicolas Boria, David Blumenthal, Sébastien Bougleux, Luc Brun. Improved local search for graph
edit distance. Pattern Recognition Letters, 2020, 129, pp.19-25. �10.1016/j.patrec.2019.10.028�. �hal-
02388317�

https://hal.science/hal-02388317
https://hal.archives-ouvertes.fr


ar
X

iv
:1

90
7.

02
92

9v
2 

 [
cs

.D
S]

  2
6 

N
ov

 2
01

9
1

Accepted manuscript, published in Pattern Recognition Letters 129, pages 19-25, 2020

c© 2019. This version is made available under the CC-BY-NC-SA 4.0 license: http://creativecommons.org/licenses/by-nc-sa/4.0/

Journal version available at https://doi.org/10.1016/j.patrec.2019.10.028

Code available at https://github.com/dbblumenthal/gedlib

Work supported by Région Normandie (France) under project RIN AGAC

Improved local search for graph edit distance

Nicolas Boriaa, David B. Blumenthalb, Sébastien Bougleuxa, Luc Bruna
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ABSTRACT

The graph edit distance (GED) measures the dissimilarity between two graphs as the minimal cost of a

sequence of elementary operations transforming one graph into another. This measure is fundamental

in many areas such as structural pattern recognition or classification. However, exactly computing

GED is NP-hard. Among different classes of heuristic algorithms that were proposed to compute

approximate solutions, local search based algorithms provide the tightest upper bounds for GED. In

this paper, we present K-REFINE and RANDPOST. K-REFINE generalizes and improves an existing

local search algorithm and performs particularly well on small graphs. RANDPOST is a general warm

start framework that stochastically generates promising initial solutions to be used by any local search

based GED algorithm. It is particularly efficient on large graphs. An extensive empirical evaluation

demonstrates that both K-REFINE and RANDPOST perform excellently in practice.

1. Introduction

In many areas such as pattern recognition or graph classifi-

cation, computing a graph (dis-)similarity measure is a central

issue [1, 2, 3, 4]. One popular approach is to embed the graphs

into multi-dimensional vector spaces and then to compare their

vector representations [5, 6, 7]. This approach has the advan-

tage that is allows fast computations. The main drawback is

that embedding the graphs into vector spaces always comes at

the price of information loss.

If local information that would be lost by the embeddings

is crucial, it is recommendable to compare the graphs directly

in the graph space. The graph edit distance (GED) is one of

the most widely used measures for this purpose [8, 9]. GED is

defined as the minimum cost of an edit path transforming one

graph into another, where an edit path is a sequence of node

and edge insertions, deletions, and substitutions. Equivalently,

it can be defined as the minimum cost of an edit path induced

by a node map that assigns nodes of the source graph to nodes

of the target graph [10].

As exactly computing GED is NP-hard [11], research has

mainly focused on heuristics [12]. The development of heuris-

tics was particularly triggered by the algorithms presented in

[13] and [11], which use transformations to the linear sum as-

signment problem with error correction (LSAPE) [14] — a vari-

ant of the linear sum assignment problem (LSAP) where rows

and columns may also be inserted and deleted — to compute

upper bounds for GED. Further transformations from GED to

LSAPE have been proposed in [15, 16, 17, 18, 19, 20, 21, 22].

LSAPE based heuristics are typically quite fast but yield

loose upper bounds on some graphs. Tighter upper bounds

for GED can be obtained by algorithms that use variants of

local search. Given one or several initial node maps, lo-

cal search based algorithms explore suitably defined neighbor-

hoods to find improved node maps that induce cheaper edit

paths. Several algorithms have been proposed that instantiate

this paradigm: REFINE [11] varies the initial node maps via bi-

nary swaps; IPFP [23, 24, 25] computes locally optimal node

maps by using a variant of the classical Frank-Wolfe algorithm

[26, 27]; BP-BEAM [28] uses beam search to improve the initial

node maps; and IBP-BEAM [29] further improves BP-BEAM by

iteratively running it with different processing orders.

In this paper, we propose a new local search based algorithm

K-REFINE and a warm start framework RANDPOST. K-REFINE

generalizes and improves the existing algorithm REFINE in

three respects: Firstly, K-REFINE considers not only binary

swaps, but rather swaps of size up to K, where K ∈ N≥2 is a

meta-parameter. Secondly, K-REFINE computes the swap costs

more efficiently than REFINE, which leads to a significant gain

in runtime performance. Thirdly, unlike REFINE, K-REFINE

allows the improved node map to contain fewer node substitu-

tions than the original node map, which tightens the produced

upper bound.

The framework RANDPOST extends the local search paradigm

and hence improves all local search based GED algorithms. In

a first step, RANDPOST runs a local search algorithm from a set

of initial node maps. Subsequently, RANDPOST stochastically

generates a new set of initial node maps from the converged

solutions, and then re-runs the local search algorithm. This pro-

cess iterates until a user-specified number of iterations has been
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reached. Extensive experiments show that K-REFINE performs

extremely well on small to medium sized graphs, while using

RANDPOST is particularly effective on larger graphs.

The remainder of this paper is organized as follows: In Sec-

tion 2, we fix concepts and notations and present the general

local search framework. In Section 3, we summarize exist-

ing local search algorithms. In Section 4 and Section 5, we

present K-REFINE and RANDPOST. In Section 6, K-REFINE and

RANDPOST are evaluated empirically. Section 7 concludes the

paper. The paper extends the results published in [30], where a

preliminary version of RANDPOST was presented.

2. Preliminaries

2.1. Definitions and notations

An undirected labeled graph G is a 4-tuple G = (VG, EG,

ℓG
V
, ℓG

E
), where VG and EG are sets of nodes and edges, ΣV and

ΣE are label alphabets, and ℓG
V

: VG → ΣV , ℓG
E

: EG → ΣE

are labeling functions. The dummy symbol ǫ denotes dummy

nodes and edges as well as their labels. Throughout the paper,

we denote the nodes of a graph G by VG
≔ {ui | i ∈ [|VG |]} and

the nodes of a graph H by VH
≔ {vk | k ∈ [|VH |]}, where the

index set [N] is defined as [N] ≔ {n ∈ N | 1 ≤ n ≤ N}, for all

N ∈ N.

We denote by assignment a pair (u, v) in (VG∪{ǫ})×(VH∪{ǫ}),

and we define a node map π as a set of assignments such that

each node in VG and VH appears in exactly one assignment of π.

The notation (u, v) ∈ π is considered equivalent to both π(u) = v

and π−1(v) = u, and Π(G,H) denotes the set of all node maps

between G and H. For edges e = (u, u′) ∈ EG and f = (v, v′) ∈

EH , we introduce the short-hand notations π(e) ≔ (π(u), π(u′))

and π−1( f ) ≔ (π−1(v), π−1(v′)).

A node map π ∈ Π(G,H) specifies for all nodes and edges of

G and H whether they are substituted, deleted, or inserted. Each

of these operations has an induced cost. An assignment (u, v)

induces a node substitution with cost cV (u, v) if u , ǫ and v , ǫ,

a node deletion with cost cV (u, ǫ) if u , ǫ and v = ǫ, and a node

insertion with cost cV (ǫ, v) if u = ǫ and v , ǫ. Similarly, a pair

of assignments ((u, v), (u′, v′)) induces an edge substitution with

cost cE((u, u′), (v, v′)) if (u, u′) ∈ EG and (v, v′) ∈ EH , an edge

deletion with cost cE((u, u′), ǫ) if (u, u′) ∈ EG and (v, v′) < EH ,

and an edge insertion with cost cE(ǫ, (v, v′)) if (u, u′) < EG and

(v, v′) ∈ EH . The edit cost functions cV and cE are defined in

terms of the labeling functions ℓG
V

, ℓH
V

, ℓG
E

, and ℓH
E

, i. e., nodes

and edges with the same labels induce the same edit costs.

Any node map π ∈ Π(G,H) hence induces an edit path Pπ
between G and H. The cost c(Pπ) of Pπ is given as follows:

c(Pπ) =
∑

u∈VG

π(u)∈VH

cV (u, π(u))

︸                ︷︷                ︸
node substitutions

+
∑

u∈VG

π(u)<VH

cV (u, ǫ)

︸           ︷︷           ︸
node deletions

+
∑

v∈VH

π−1(v)<VG

cV (ǫ, v)

︸             ︷︷             ︸
node insertions

+
∑

e∈EG

π(e)∈EH

cV (e, π(e))

︸               ︷︷               ︸
edge substitutions

+
∑

e∈EG

π(e)<EH

cE(e, ǫ)

︸           ︷︷           ︸
edge deletions

+
∑

f∈EH

π−1( f )<EG

cE(ǫ, f )

︸              ︷︷              ︸
edge insertions

We can now formally define GED.

Definition 1 (GED). The graph edit distance (GED) be-

tween two graphs G and H is defined as GED(G,H) ≔

minπ∈Π(G,H) c(Pπ).

2.2. Upper bounding GED via local search

By Definition 1, each node map π ∈ Π(G,H) induces an up-

per bound UB ≔ c(Pπ) for GED(G,H). Hence, a straightfor-

ward application of the local search paradigm to the problem of

upper bounding GED works as follows: Given an initial node

map π ∈ Π(G,H), run a local search algorithm to obtain an

improved node map π′ with c(Pπ′ ) ≤ c(Pπ).

With this approach, the quality of the obtained node map π′

clearly depends a lot on the initial node map π. In order to

reduce this dependency, it was suggested in [31] to generate κ

different initial solutions, run the local search algorithm on each

of them (possibly in parallel), and return the best among the κ

computed local optima. In order to reduce the computing time

when parallelization is available, it was suggested in [30] to

run in parallel more local searches than the number of desired

local optima and to stop the whole process once the number

local searches that have converged has reached the number of

desired local optima. In this context, the framework runs with

two parameters: κ represents the number of initial solutions,

and 0 < ρ ≤ 1 is defined such that ⌈ρ · κ⌉ represents the number

of desired computed local optima.

3. Existing local search algorithms for GED

3.1. The algorithm REFINE

Given an initial node map π ∈ Π(G,H), the algorithm

REFINE [11] proceeds as follows: Let ((us, vs))
|π|

s=1
be an arbi-

trary ordering of the initial node map π, and Gπ ≔ (VG
π ∪VH

π , Aπ)

be an auxiliary directed bipartite graph, where VG
π ≔ {us | s ∈

[|π|]}, VH
π ≔ {vs | s ∈ [|π|]}, and Aπ ≔ π ∪ {(vs, us′) | (s, s′) ∈

[|π|] × [|π|] ∧ s , s′}. In other words, Gπ contains a forward arc

for each assignment contained in π, and backward arcs between

nodes in VG
π and VH

π that are not assigned to each other by π. A

directed cycle C ⊆ Aπ in Gπ with |C| = 4 is called swap.

For each swap C = {(us, vs), (vs, us′), (us′, vs′), (vs′ , us)},

REFINE checks if the swapped node map π′ ≔ (π \

{(us, vs), (us′ , vs′)}) ∪ {(us, vs′), (us′ , vs)} induces a smaller upper

bound than π. If, at the end of the for-loop, a node map has

been found that improves the upper bound, π is updated to the

node map that yields the largest improvement and the process

iterates. Otherwise, the current node map π is returned.

3.2. The algorithm IPFP

The algorithm IPFP [27] is a variant of the Frank-Wolfe

algorithm [26] for cases where an integer solution is re-

quired. Its adaptation to GED suggested in [23, 24, 25] im-

plicitly constructs a matrix D ∈ R((|VG |+1)·(|VH |+1))×((|VG |+1)·(|VH |+1))

such that minX∈Π′(G,H) vec(X)TD vec(X) = GED(G,H), where

Π′(G,H) ⊆ {0, 1}(|V
G |+1)×(|VH |+1) contains all node maps between

G and H in matrix form and vec(·) is a vectorization operator.

Let the cost function c : [0, 1](|VG|+1)×(|VH |+1) → R be defined

as c(X) ≔ vec(X)TD vec(X). Starting from an initial node map

X0 ∈ Π
′(G,H) with induced upper bound UB ≔ c(X0), the
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algorithm initializes X′ ≔ X0 and converges to a, possibly frac-

tional, local minimum by repeating the five following steps:

1. Populate LSAPE instance Ck ≔ D vec(Xk).

2. Compute Bk+1 ∈ arg minB∈Π′(G,H) vec(Ck)T vec(B).

3. Set X′ ≔ arg minX∈{X′ ,Bk+1}
c(X).

4. Compute αk+1 ≔ minα∈[0,1] c(Xk + α · (Bk+1 − Xk)).

5. Set Xk+1 ≔ Xk + αk+1(Bk+1 − Xk).

IPFP iterates until |c(Xk) − vec(Ck)T vec(Bk+1)|/c(Xk) is

smaller than a threshold ε or a maximal number of iterations

I has been reached. Subsequently, the local optimum Xk+1 is

projected to the closest integral solution X̂, and the best encoun-

tered node map X′ ≔ arg min
X∈{X′ ,X̂}

c(X) is returned.

3.2.1. The algorithm BP-BEAM

Given an initial node map π ∈ Π(G,H) and a constant B ∈

N≥1, the algorithm BP-BEAM [28] starts by producing a random

ordering ((us, vs))
|π|

s=1
of the initial node map π. BP-BEAM now

constructs an improved node map π′ by partially traversing an

implicitly constructed tree T via beam search with beam size

B. The nodes of T are tuples (π′′, s), where π′′ ∈ Π(G,H) is an

ordered node map and s ∈ [|π|] is the depth of the tree node in T .

Tree nodes (π′′, s) with s = |π| are leafs, and the children of an

inner node (π′′, s) are {(SWAP(π′′, s, s′), s + 1) | s′ ∈ {s, . . . , |π|}}.

Here, SWAP(π′′, s, s′) is the ordered node map obtained from π′′

by swapping the assignments (us, vs) and (us′ , vs′).

At initialization, BP-BEAM sets the output node map π′ to the

initial node map π. Furthermore, BP-BEAM maintains a priority

queue q of tree nodes which is initialized as q ≔ {(π, 1)} and

sorted w. r. t. non-decreasing induced edit cost of the contained

node maps. As long as q is non-empty, BP-BEAM extracts the

top node (π′′, s) from q and updates the output node map π′ to

π′′ if c(Pπ′′ ) < c(Pπ′). If s < |π|, i. e., if the extracted tree node is

no leaf, BP-BEAM adds all of its children to q and subsequently

discards all but the first B tree nodes contained in q. Once q is

empty, the cheapest encountered node map π′ is returned.

3.3. The algorithm IBP-BEAM

Since the size of the priority queue q is restricted to B, which

parts of the search tree T are visited by BP-BEAM crucially de-

pends on the ordering of the initial node map π. Therefore,

BP-BEAM can be improved by considering not one but several

initial orderings. The algorithm IBP-BEAM suggested in [29]

does exactly this. That is, given a constant number of iterations

I ∈ N≥1, IBP-BEAM runs BP-BEAM with I different randomly

created orderings of the initial node map π, and then returns the

cheapest node map π′ encountered in one of the iterations.

4. The local search algorithm K-REFINE

In this section, we extend and improve the algorithm REFINE

[11] in three ways. Firstly, instead of considering only bi-

nary swaps, we make K-REFINE consider all K′-swaps for all

K′ ∈ [K] \ {1}, where K ∈ N≥2 is a constant (Section 4.1).

Secondly, we show that for computing the induced cost c(Pπ′)

of a node map π′ obtained from π via a K′-swap C, it suffices

Algorithm 1: The algorithm K-REFINE.

Input: Graphs G and H, initial node map π ∈ Π(G,H),

constant K ∈ N≥2.

Output: Node map π′ ∈ Π(G,H) with c(Pπ′ ) ≤ c(Pπ).

1 K′ ≔ 2; // initialize current size

2 C⋆ ≔ ∅; ∆⋆ ≔ 0; // initialize best swap

3 while ∆⋆ < 0 ∨ K′ ≤ K do // main loop

4 for C ∈ Cπ,K′ do // enumerate swaps of current size

5 ∆ ≔ SWAP-COST(π,C); // compute swap cost

6 if ∆ < ∆⋆ then // found better swap

7 C⋆ ≔ C; ∆⋆ ≔ ∆; // update best swap

8 if ∆⋆ < 0 then // found better node map

9 π′ ≔ SWAP(π,C⋆, ); // compute swapped node map

10 c(Pπ′) ≔ c(Pπ) + ∆
⋆; // set swapped node map cost

11 π ≔ π′; // update current node map

12 K′ ≔ 2; // reset current swap size

13 else

14 K′ ≔ K′ + 1; // increment current swap size

15 C⋆ ≔ ∅; ∆⋆ ≔ 0; // reset best swap

16 return π′ ≔ π; // return improved node map

to consider the nodes and edges that are incident with C (Sec-

tion 4.2). This observation yields an improved implementation

of K-REFINE, which is much more efficient than the naı̈ve im-

plementation suggested in [11]. Thirdly, we suggest to include

the dummy assignment (ǫ, ǫ) into the initial node map π be-

fore enumerating the swaps (Section 4.3). This modification

allows the number of node substitutions to decrease and hence

improves the quality of the obtained upper bound.

4.1. Generalization to swaps of size larger than two

Algorithm 1 gives an overview of the algorithm K-REFINE,

which generalizes REFINE to swaps of size larger than two.

Given graphs G and H, an initial node map π ∈ Π(G,H), and

a maximal swap size K ∈ N≥2, K-REFINE starts by initializing

the current swap size K′, the best swap C⋆, and the best swap

cost ∆⋆ as K′ ≔ 2, C⋆ ≔ ∅, and ∆⋆ ≔ 0 (lines 1 to 2). Subse-

quently, K-REFINE enters its main while-loop and iterates until

no improved node map has been found and the current swap

size exceeds the maximal swap size (line 3).

Inside the main while-loop, the algorithm K-REFINE

first enumerates the set Cπ,K′ ≔ {C ⊆ Aπ |

C is cycle of length K′ in Gπ} of all K′-swaps of π (line 4). The

auxiliary directed bipartite graph Gπ ≔ (VG
π ∪VH

π , Aπ) is defined

as in Section 3.1 above, i. e., we have VG
π ≔ {us | s ∈ [|π|]},

VH
π ≔ {vs | s ∈ [|π|]}, and Aπ ≔ π ∪ {(vs, us′) ∈ VH

π × VG
π |

(s, s′) ∈ [|π|] × [|π|] ∧ s , s′}, where ((us, vs))
|π|

s=1
is an arbitrary

ordering of π.

For each K′-swap C ∈ Cπ,K′ , let F(C) ≔ C ∩ π and B(C) ≔

{(u, v) ∈ (VG ∪ {ǫ}) × (VH ∪ {ǫ}) | (v, u) ∈ C \ π} be the sets

of node assignments corresponding to forward and backwards

arcs contained in C, respectively. K-REFINE computes the swap

cost

SWAP-COST(π,C) ≔ c(Pπ) − c(PSWAP(π,C)), (1)
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where SWAP(π,C) ≔ (π \ F(C)) ∪ {(u, v) ∈ B(C) | (u, v) ,

(ǫ, ǫ)} is the node map obtained from π by carrying out the swap

encoded by C (line 5). If C yields an improvement, K-REFINE

updates the best swap C⋆ and the best swap cost ∆⋆ (lines 6

to 7).

Once all K′-swaps C ∈ Cπ,K′ have been visited, K-REFINE

checks whether one of them yields an improvement w. r. t. the

current node map π (line 8). If this is the case, K-REFINE

updates π (lines 9 to 11) and resets the current swap size to

K′ ≔ 2 (line 12). Otherwise, K′ is incremented (line 14). Sub-

sequently, K-REFINE resets the best swap and the best swap

cost to C⋆ ≔ ∅ and ∆⋆ ≔ 0, respectively (line 15). Upon ter-

mination of the main loop, K-REFINE returns the current node

map π (line 16).

Assume that SWAP-COST(π,C) can be computed in O(ω) time

(cf. Section 4.2 for details). Furthermore, let I ∈ N be the num-

ber of times K-REFINE finds an improved node map in line 8.

Note that, if the edit costs are integral, it holds that I ≤ c(Pπ),

where π is K-REFINE’s initial node map. Proposition 1 be-

low implies that, for all K′ ∈ [K] \ {1} and each node map

π ∈ Π(G,H), we have |Cπ,K′ | = O((|VG| + |VH |)K′). Therefore,

K-REFINE’s overall runtime complexity is O(I(|VG|+ |VH |)Kω).

Proposition 1. For each node map π ∈ Π(G,H) and each K′ ∈

N≥2, it holds that |Cπ,K′ | =
(
|π|

K′

)
(K′ − 1)!.

Proof. The proposition immediately follows from the definition

of Cπ,K′ . Details are omitted due to space constraints.

4.2. Efficient computation of swap costs

Given a node map π ∈ Π(G,H) and a K′-swap C ∈ Cπ,K′ ,

let π′ ≔ SWAP(π,C) be the node map obtained from π by

swapping the forward and backward arcs contained in C. As-

sume that c(Pπ) has already been computed. By line 16, the

swap cost SWAP-COST(π,C) can be computed naı̈vely by com-

puting the induced costs c(Pπ′) of the swapped node map

and then considering the difference between c(Pπ) and c(Pπ′ ).

By definition of c(Pπ), this requires O(max{|EG |, |EH |}) time.

Since SWAP-COST(π,C) has to be computed in every iteration of

K-REFINE’s inner for-loop, it is highly desirable to implement

SWAP-COST(·, ·) more efficiently. The following Proposition 2

provides the key ingredient of a more efficient implementation.

Proposition 2. Let π ∈ Π(G,H) be a node map, K′ ∈ N≥2

be a constant, and C ∈ Cπ,K′ be a K′-swap. Furthermore, let

VG
C
≔ {u ∈ VG | ∃v ∈ VH ∪ {ǫ} : (u, v) ∈ F(C)}, VH

C
≔ {v ∈ VH |

∃u ∈ VG ∪ {ǫ} : (u, v) ∈ F(C)}, EG
C
≔ {e ∈ EG | e ∩ VG

C
, ∅},

and EH
C
≔ { f ∈ EH | f ∩ VH

C
, ∅}, ∆ ≔ SWAP-COST(π,C), and

π′ ≔ SWAP(π,C). Then the following equation holds:

∆ =
∑

u∈VG
C

π′(u),ǫ

cV (u, π′(u)) +
∑

u∈VG
C

π′(u)=ǫ

cV (u, ǫ) +
∑

v∈VH
C

π′−1(v)=ǫ

cV (ǫ, v)

+
∑

e∈EG
C

π′(e),ǫ

cE(e, π′(e)) +
∑

e∈EG
C

π′(e)=ǫ

cE(e, ǫ) +
∑

f∈EH
C

π′−1( f )=ǫ

cE(ǫ, f )

−
∑

u∈VG
C

π(u),ǫ

cV (u, π(u))−
∑

u∈VG
C

π(u),ǫ

cV (u, π(u))−
∑

v∈VH
C

π−1(v)=ǫ

cE(ǫ, v)

−
∑

e∈EG
C

π(e),ǫ

cE(e, π(e)) −
∑

e∈EG
C

π(e)=ǫ

cE(e, ǫ) −
∑

f∈EH
C

π−1( f )=ǫ

cE(ǫ, f )

Proof. By construction of VG
C

and VH
C

, we have π(u) = π′(u),

for all u ∈ VG \ VG
C

, and π−1(v) = π′−1(v), for all v ∈ VH \ VH
C

.

Similarly, π(e) = π′(e) and π−1( f ) = π′−1( f ) holds for all e ∈

EG \ EG
C

and all f ∈ EH \ EH
C

. This proves the proposition.

Proposition 2 implies that, for computing SWAP-COST(π,C),

only the nodes and edges contained in VG
C

, VH
C

, EG
C

,

and EH
C

must be considered. Since K′ is constant,

|VG
C
|, |VH

C
| ≤ K′, |EG

C
| ≤ K′max deg(G), and |EH

C
| ≤

K′max deg(H), SWAP-COST(π,C) can hence be computed in

O(max{max deg(H),max deg(G)}) time. This is a significant

improvement w. r. t. the naı̈vely computing SWAP-COST(π,C) in

O(max{|EG |, |EH |}) time.

4.3. Improvement of upper bound via dummy assignment

For each node map π ∈ Π(G,H), let S (π) ≔ |{(u, v) ∈ π |

u , ǫ ∧ v , ǫ}| denote the number of node substitutions con-

tained in π. Now assume that K-REFINE as specified in Algo-

rithm 1 is run from an initial node map π ∈ Π(G,H) that does

not contain the dummy assignment (ǫ, ǫ). Since π and π∪{(ǫ, ǫ)}

induce the same edit path, this assumption is likely to hold

in most implementations of K-REFINE. The following Propo-

sition 3 shows that, under this assumption, the search space of

K-REFINE is restricted in the sense that it includes only node

maps π′ ∈ Π(G,H) with S (π′) ≥ S (π). This has a negative ef-

fect on the quality of the upper bound produced by K-REFINE,

as some potentially promising node maps are excluded a priori.

Proposition 3. Let π ∈ Π(G,H) be a node map that satisfies

(ǫ, ǫ) < π and π′ ∈ Π(G,H) be the improved node map obtained

from π by running K-REFINE as specified in Algorithm 1. Then

it holds that S (π′) ≥ S (π).

Proof. Let π ∈ Π(G,H) be a node map that satisfies (ǫ, ǫ) < π,

K′ ∈ N≥2 be a constant, and C ∈ Cπ,K′ be a K′-swap. By

definition of B(C), we have (ǫ, ǫ) < SWAP(π,C). Therefore,

the proposition follows by induction on the number of times

K-REFINE finds an improved node map in line 8, if we can

show that S (SWAP(π,C)) ≥ S (π). To show this inequality,

we define S ǫ
F

(C) ≔ |{(u, v) ∈ F(C) | u = ǫ ∧ v = ǫ}| and

S ǫ
B
(C) ≔ |{(u, v) ∈ B(C) | u = ǫ ∧ v = ǫ}|. It is easy to see

that we have S (SWAP(π,C)) = S (π) + S ǫ
B
(C) − S ǫ

F
(C). Since

(ǫ, ǫ) < π, we additionally know that S ǫ
F

(C) = 0. We hence

obtain S (SWAP(π,C)) = S (π) + S ǫ
B
(C) ≥ S (π), as required.

The proof of Proposition 3 tells us how we have to modify

K-REFINE in order to ensure that node maps with fewer node

substitutions than the initial node map are contained its search

space: We simply have to update the current node map π as π ≔

π ∪ {(ǫ, ǫ)} before enumerating all K′-swaps C ∈ Cπ,K′ in line 4

of Algorithm 1. This modification is particularly important if

the edit costs are non-metric, i. e., if it can happen that deleting

plus inserting is cheaper than substituting.
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Algorithm 2: The framework RANDPOST.

Input: Graphs G and H, constants κ ∈ N≥1, L ∈ N,

ρ ∈ (0, 1], and η ∈ [0, 1], local search algorithm

ALG, initial node map set S0 ⊆ Π(G,H) with

|S0| = κ, lower bound LB for GED(G,H).

Output: Upper bound UB for GED(G,H).

1 S′
0
≔ ALG(S0, ρ); // run local search on initial node maps

2 UB ≔ minπ′∈S′
0

c(Pπ′ ); // set first upper bound

3 M ≔ 0(|VG |+1)×(|VH |+1); // initialize scores matrix

4 for r ∈ [L] do // main loop

5 M ≔ UPD-SCORES(M,S′
r−1
, η, LB,UB); // update scores

6 Sr ≔ GEN-NODE-MAPS(M, κ); // generate node maps

7 S′r ≔ ALG(Sr, ρ); // run local search on new node maps

8 UB ≔ min{UB,minπ′∈S′r c(Pπ′ )}; // update upper bound

9 return UB ; // return upper bound

5. The framework RANDPOST

In this section, we present RANDPOST, a framework that can

be used to improve any local search based algorithm for upper

bounding GED. Intuitively, RANDPOST iteratively runs a given

local search algorithm. In each iteration, previously computed

locally optimal node maps are combined stochastically to ob-

tain new promising initial node maps to be used in the next

iteration.

Algorithm 2 provides an overview of the framework. Given

a set of initial node maps S0 ⊆ Π(G,H) with |S0| = κ, a con-

stant ρ ∈ (0, 1], and a local search algorithm ALG, RANDPOST

computes a set S′
0
⊆ Π(G,H) of improved node maps with

|S′
0
| = ⌈ρ · κ⌉ by (parallelly) running ALG on all initial node

maps and terminating once ⌈ρ · κ⌉ runs have converged (line 1).

Subsequently, the upper bound UB is initialized as the cost of

the cheapest induced edit path encountered so far (line 2). Note

that, up to this point, RANDPOST is equivalent to the local search

framework with multi-start described in Section 2.2 above.

RANDPOST now initializes a matrix M ∈ R
(|VG |+1)×(|VH |+1)

≔

0(|VG |+1)×(|VH |+1) that contains scores mi,k for each possible node

assignment (ui, vk) ∈ (VG ∪ {ǫ}) × (VH ∪ {ǫ}) (line 3). The score

for each substitution (ui, vk) ∈ VG × VH is represented by the

value mi,k, while the scores for the deletion (ui, ǫ) and the inser-

tion (ǫ, vk) are represented by the values mi,|VH |+1 and m|VG |+1,k,

respectively. Throughout the algorithm, M is maintained in

such a way that mi,k is large just in case the corresponding node

assignment appears in many cheap locally optimal node maps.

After initializing M, RANDPOST carries out L iterations of

its main for-loop, where L ∈ N is a meta-parameter (lines 4

to 8). Inside the rth iteration, RANDPOST starts by updating the

scores matrix M by calling UPD-SCORES(M,S′
r−1
, η, LB,UB),

where M is the current scores matrix, S′
r−1
⊆ Π(G,H) is

the set of improved node maps obtained from the previous it-

eration, η ∈ [0, 1] is a meta-parameter used to give greater

weight to cheap node maps, LB is a previously computed lower

bound for GED(G,H), and UB is the current upper bound

(line 5). Let the matrix M′ ∈ R
(|VG |+1)×(|VH |+1) be defined as

Table 1. Properties of test datasets.

grec fp protein muta

max./avg. |VG| 11.5/26 5.4/26 126/32.6 30.3/417

max./avg. |EG | 12.2/30 4.4/25 149/62.1 30.8/112

M′
≔ UPD-SCORES(M,S′

r−1
, η, LB,UB). Then M′ is given as

M′
≔ M +

∑

π′∈S′
r−1

[
(1 − η) + η

UB − LB

c(Pπ′) − LB

]
X′,

where X′ ∈ {0, 1}(|V
G |+1)×(|VH |+1) is the matrix representation of

the improved node map π′ ∈ S′
r−1

, i. e., for all ui ∈ VG and all

vk ∈ VH , we have x′
i,k
= 1 just in case (ui, vk) ∈ π′, x′

i,|VH |+1
= 1

just in case (ui, ǫ) ∈ π
′, and x′

|VG |+1,k
= 1 just in case (ǫ, vk) ∈

π′. If η = 0, mi,k represents the number of converged local

optima that contain the corresponding assignment. If η > 0,

assignments that appear in node maps with lower costs receive

higher scores.

Once M has been updated, RANDPOST creates a new κ-

sized set Sr ⊆ Π(G,H) of initial node maps by calling

GEN-NODE-MAPS(M, κ) (line 6). GEN-NODE-MAPS(M, κ) works as

follows: For each of the first |VG | rows Mi of M, RANDPOST

draws a column k ∈ [|VH | + 1] from the distribution encoded

my Mi. If k = |VH | + 1, the node deletion (ui, ǫ) is added to the

node map π that is being constructed. Otherwise, the substitu-

tion (ui, vk) is added to π, the score m j,k is temporarily set to 0

for all j ∈ [|VG|] \ [i], and the column k is marked as covered.

Once all nodes of G have been processed, node insertions (ǫ, vk)

are added to π for all uncovered columns k ∈ [|VH |]. This pro-

cess is repeated until κ different node maps have been created.

After creating the set Sr of new initial node maps, RANDPOST

constructs a new ⌈ρ · κ⌉-sized set S′r ⊆ Π(G,H) of improved

node maps by (parallelly) running the local search algorithm

ALG on the initial node maps contained in Sr and terminating

once ⌈ρ · κ⌉ runs have converged (line 7). Subsequently, the

upper bound is updated as the minimum of the current upper

bound and the cost of the cheapest edit path induced by one

of the newly computed improved node maps (line 8). Finally,

RANDPOST returns the best encountered upper bound (line 9).

6. Empirical evaluation

In order to empirically evaluate K-REFINE and RANDPOST,

extensive tests were conducted on four standard datasets from

the IAM Database Repository [32, 33]: muta, protein, grec, and

fp (cf. Table 1). For all datasets, we tested on the metric edit

costs suggested in [33]. For muta, we additionally defined non-

metric edit costs by setting the costs of node and edge deletions

and insertions to 1, and setting the costs of node and edge sub-

stitutions to 3 (the resulting dataset is denoted as muta-n). For

each dataset, subsets of 50 graphs were chosen randomly, and

upper bounds for GED were computed for each pair of graphs

in the subsets, as well as for each graph and a shuffled copy of

itself. In the following, d, d̂, and t denote the average upper

bound, the average upper bound between graphs and their shuf-

fled copies, and the average runtime in seconds, respectively.
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Note that the test metric d̂ gives us a hint to how close to op-

timality each algorithm is, as the optimal value, namely 0, is

known. All methods were implemented using the GEDLIB li-

brary and were run in 20 parallel threads.1

We tested two versions 2-REFINE and 3-REFINE of our lo-

cal search algorithm K-REFINE, which use swaps of maximum

size two and three, respectively. We compared them to the

existing local search algorithms REFINE, IPFP, BP-BEAM, and

IBP-BEAM. As suggested in [28] and [29], we set the beam size

employed by BP-BEAM and IBP-BEAM to 5 and the number of

iterations employed by IBP-BEAM to 20. IPFP was run with

convergence threshold set to 10−3 and maximum number of it-

erations set to 100, as proposed in [25]. In order to evaluate

RANDPOST, we ran each algorithm with κ ≔ 40 initial solutions.

Indeed, experiments reported in [31] show that on all tested

datasets, using more initial solutions does not bring a significant

decrease of the estimated GED. We also varied the pair of meta-

parameters (L, ρ) on the set {(0, 1), (1, 0.5), (3, 0.25), (7, 0.125)}.

Recall that L is the number of RANDPOST loops and ρ is de-

fined such that each iteration produces exactly ⌈ρ · κ⌉ locally

optimal node maps. Therefore, our setup ensures that each con-

figuration produces exactly 40 local optima. For each algorithm

and each dataset, we conducted pre-tests where we varied the

penalty parameter η on the set {n/10 | n ∈ N≤10}, and then

picked the value of η for the main experiments that yielded the

best average upper bound across all RANDPOST configurations.

6.1. K-REFINE vs. REFINE

In a first series of experiments, we compared the versions

2-REFINE and 3-REFINE of our improved and generalized

local search algorithm K-REFINE to the baseline algorithm

REFINE. All algorithms were run without RANDPOST, i. e., with

(L, ρ) = (0, 1), and the tests were carried out on a computer us-

ing an Intel Xeon E5-2620 v4 2.10GHz CPU. Table 2 shows

the results. By comparing t(2-REFINE) and t(REFINE), we

see that efficiently computing the swap costs as suggested in

Section 4.2 indeed significantly improves the runtime perfor-

mance. Unsurprisingly, the speed-up is especially large on the

datasets protein and muta containing the larger graphs. Compar-

ing d(2-REFINE) and d(REFINE) shows that the inclusion of the

dummy assignment proposed in Section 4.3 slightly improves

the quality of the produced upper bound. As expected, the per-

centual improvement is largest on the dataset muta-n with non-

metric edit costs. Finally, we observe that running K-REFINE

with swaps of size three slightly improves the upper bounds on

all datasets, but significantly increases the runtime of the algo-

rithm.

6.2. Behaviour of RANDPOST framework

In a second series of experiments, we evaluated

the behaviour of RANDPOST by running each algo-

rithm with four different pairs of meta-parameters

(L, ρ) ∈ {(0, 1), (1, 0.5), (3, 0.25), (7, 0.125)}. We remind

that the case (L, ρ) = (0, 1) amounts to a basic multi-start

1Sources and datasets: https://github.com/dbblumenthal/gedlib/ .

Table 2. K-REFINE vs. REFINE without RANDPOST.

dataset REFINE 2-REFINE 3-REFINE

d t d t d t

grec 859.92 2.46 · 10−2 857.89 1.15 · 10−2 857.12 3.85 · 10−2

fp 2.82 5.34 · 10−4 2.82 4.49 · 10−4 2.82 1.58 · 10−3

protein 295.61 3.43 · 10−1 295.55 9.07 · 10−2 295.29 4.89 · 10−1

muta 74.12 1.22 · 10−1 74.12 3.92 · 10−2 73.61 1.87 · 10−1

muta-n 49.49 1.14 · 10−1 49.11 3.58 · 10−2 48.44 1.81 · 10−1
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Fig. 1. Effect of RANDPOST on local search algorithms.

framework with no RANDPOST loop. An additional subset of 10

graphs having exactly 70 nodes was extracted from muta and is

denoted by muta-l. The tests were run on a computer using an

Intel(R) Xeon E5-2640 v4 2.4GHz CPU. Figure 1 visualizes

the results. Since 2-REFINE was always faster and more

accurate than the baseline REFINE (cf. Section 6.1), we do not

show plots for REFINE. Table 3 provides detailed numerical

https://github.com/dbblumenthal/gedlib/
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Table 3. Detailed experimental results on muta-l.

(L, ρ) 2-REFINE 3-REFINE IPFP BP-BEAM IBP-BEAM

d d̂ t d d̂ t d d̂ t d d̂ t d d̂ t

(0, 1) 104.57 5.42 2.85 · 10−1 101.82 5.16 2.18 93.81 2.94 3.34 136.21 13.25 2.95 · 10−2 116.92 9.35 8.46 · 10−1

(1, 0.5) 98.61 3.81 6.96 · 10−1 94.34 3.32 4.51 85.05 1.13 6.21 113.18 7.41 5.81 · 10−2 106.39 6.35 1.71

(3, 0.25) 94.69 3.13 7.61 · 10−1 90.64 2.28 6.74 82.34 0.29 1.01 · 101 111.12 6.57 1.11 · 10−1 104.64 5.65 2.61

(7, 0.125) 92.63 2.45 1.22 88.49 1.97 1.16 · 101 81.36 0.29 1.81 · 101 110.32 6.59 2.35 · 10−1 102.84 5.16 5.19

data for the muta-l subset, which turned out to be the subset

with the highest variability in distances and computing times.

Figure 1 indicates that, on the datasets fp, grec, and protein

containing small graphs, near-optimility is reached by most al-

gorithms when run with L ≥ 1 number of RANDPOST loops.

In these contexts, our algorithm 2-REFINE with RANDPOST

configuration (L, ρ) = (1, 0.5) provides the best tradeoff be-

tween runtime and accuracy, as it reaches the same accuracy

as best algorithms, and, in terms of runtime, outperforms all

algorithms except for BP-BEAM by approximately one order

of magnitude. The only faster algorithm BP-BEAM computes

much more expensive node maps, even in the RANDPOST set-

tings with higher number of loops. We also note that our al-

gorithms 2-REFINE and 3-REFINE are already among the best

local search algorithms when run in a simple multi-start setting

without RANDPOST (i. e., when L = 0), both in terms of distance

and computing time.

On the datasets muta and muta-l containing larger graphs, the

behavior of the RANDPOST framework appears clearly and inde-

pendently of the local search algorithm it is applied to. In all

cases, a higher number of RANDPOST loops — and lower num-

ber of computed solutions per loop — leads to a higher com-

putation time (the computation time is approximately doubled

whenever the number of loops is doubled), and to a lower av-

erage distance. In other words, the framework RANDPOST pro-

vides a very useful algorithmic tool in situations where some

time can be dedicated to compute tight upper bounds on big

graphs.

7. Conclusions

In this paper, we proposed K-REFINE, an improved and

generalized version of the local search based GED algorithm

REFINE, and suggested the general framework RANDPOST,

which stochastically generates promising initial solutions to

tighten the upper bounds produced by all local search algo-

rithms. Both K-REFINE and RANDPOST perform excellently in

practice: On small graphs, K-REFINE is among the algorithms

computing the tightest upper bounds and, in terms of runtime,

clearly outperforms all existing algorithms that yield similar ac-

curacy. On larger graphs, K-REFINE provides a very good trade-

off between runtime and accuracy, as it is only slightly less ac-

curate but much faster than the most accurate algorithms. The

framework RANDPOST is particularly effective on larger graphs,

where it significantly improves the upper bounds of all local

search algorithms.
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edit distance as a quadratic assignment problem, Pattern Recognit. Lett.

87 (2017) 38–46. doi:10.1016/j.patrec.2016.10.001 .

[25] D. B. Blumenthal, E. Daller, S. Bougleux, L. Brun, J. Gamper, Quasimet-

ric graph edit distance as a compact quadratic assignment problem, in:

ICPR, 2018, pp. 934–939. doi:10.1109/ICPR.2018.8546055 .

[26] M. Frank, P. Wolfe, An algorithm for quadratic programming, Nav. Res.

Logist. Q. 3 (1-2) (1956) 95–110. doi:10.1002/nav.3800030109 .

[27] M. Leordeanu, M. Hebert, R. Sukthankar, An integer projected fixed

point method for graph matching and MAP inference, in: NIPS, 2009,

pp. 1114–1122.

[28] K. Riesen, A. Fischer, H. Bunke, Combining bipartite graph matching

and beam search for graph edit distance approximation, in: ANNPR 2014,

2014, pp. 117–128. doi:10.1007/978-3-319-11656-3_11 .

[29] M. Ferrer, F. Serratosa, K. Riesen, A first step towards exact graph edit

distance using bipartite graph matching, in: GbRPR, 2015, pp. 77–86.

doi:10.1007/978-3-319-18224-7_8 .

[30] N. Boria, S. Bougleux, L. Brun, Approximating GED using a stochas-

tic generator and multistart IPFP, in: S+SSPR, 2018, pp. 460–469.

doi:10.1007/978-3-319-97785-0_44 .
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