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1 Lattice on the cone of semi positive definite matrices

1.1 Notations
• Sn: the set of n×n symmetric real valued matrices

• S+n : the set of semi-positive definite (SPD) matrices

• S++
n : the set of positive definite matrices

• In: the identity matrix

• tr(M): the trace of matrix M

• MT : transposition of matrix M

• ||M||: the Euclidean norm of matrix M, for the canonical scalar product 〈A,B〉= tr(AT B)

• ∀λ ∈ R, Tλ = {M ∈ Sn, tr(M) = λ}: the set of symmetric matrices with trace λ

1.2 The Loewner ordering is not a lattice ordering
Definition and geometric interpretation The Loewner ordering is defined on Sn as follows: for any
A,B ∈ Sn,

A≥ B ⇐⇒ A−B ∈ S+n .

If A ∈ S+n , it can be geometrically represented by an ellipsoid EA = {x ∈ Rn,xT Ax ≤ 1}, the lengths of
EA’s semi-axis being 1/

√
λi(A), if λ1, . . . ,λn denote the eigenvalues of A (the ellipsoid can be degener-

ated, with infinitely long semi-axis when λi = 0). Then the Loewner ordering corresponds to a reversed
inclusion ordering on ellipsoids: for A,B ∈ S+n ,

A≥ B ⇐⇒ EA ⊆ EB.

To get a more intuitive geometrical correspondance where the ellipsoid associated to the smaller element
is included in the one associated to the bigger element, we can consider the ellipsoid whose semi-axis’s
lenghts are

√
λi. When A ∈ S++

n this corresponds to EA−1 , thus for A,B ∈ S++
n ,

A≥ B ⇐⇒ A−1 ≤ B−1 ⇐⇒ EB−1 ⊆ EA−1 ,

and this can also be extended for non invertible matrices1.
1I prefer not to spend more time on this since the Loewner ordering may not be what we need.
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Figure 1: An example of minimal-volume enclosing ellipsoid (yellow), not comparable (in the Loewner
sense) to another enclosing ellipsoid (in purple).

S+n with the Loewner ordering is an anti-lattice An anti-lattice [4] is a poset in which, for any two
elements A and B, a greatest lower bound exists if and only if A and B are comparable. In [4] Kadison
shows that Sn with the Loewner ordering is an anti-lattice. Moreland and Gudder [5] proved that this is
also true for S+n (that is, a greatest lower bound exists in S+n if and only if A≥ 0 and B≥ 0 are comparable),
and Ando [1] generalizes the result to infinite dimension.

The misleading geometrical interpretation Despite the aforementioned results, one can argue that it is
possible to find a unique smallest (largest) ellipsoid containing (contained in) a set of centered ellipsoids.
The problem in this definition is that it refers to two different orderings: whereas the set of upper/lower
bounds is defined by the Loewner ordering (or equivalently the inclusion ordering on ellipsoids), the
smallest/biggest element of this set is defined by a volume total ordering. Unfortunately, the volume
ordering does not induce the inclusion ordering, and one can find upper/lower bounds in the Loewner
order that are not comparable with the “smallest”/“biggest” (in the volume sense) upper/lower bound -
see Figure 1.

1.3 The (questionable) proposition of [2]
The authors of [2] acknowledge that the Loewner ordering is not a lattice ordering. However, the paper
builds another ordering that is not proved to induce a lattice and that, in fact, seems to suffer from the
same problem (the new order seems to be an anti-lattice as well).

In [2], computing the sup of a set of matrices in S+n boils down to finding the smallest sphere covering
a set of non centered spheres. As in the case of the ellipsoids, here two orderings are mixed: the inclusion
ordering and the volume ordering. Again, we can find examples, as in Figure 2, where the resulting
“smallest upper bound” is not comparable to other upper bounds in the ordering defined by the authors.
These counter-examples seem to prove that this kind of ordering does not define a lattice. Indeed, if it
did, the two blue spheres of Figure 2 would admit a unique sup. Since inclusion implies the ordering
on volume, this sup would be the sphere of minimal volume enclosing the two blue spheres, that is the
green sphere. The red sphere shows the existence of upper bounds not comparabale to the green one, and
contradicts the existence of a unique minimal upper bound.
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Figure 2: An example of minimal-volume enclosing ball (green), not comparable in the inclusion sense
to another enclosing ball (red).

In the following I give a recap and reformulation of the construction presented in[2].

Bases of S+n and their extreme points Figure 3 provides an illustration of the structure of the cone S+n ,
with the main features used for the construction of a new ordering in [2].

For any λ ∈ R, we note Tλ = {M ∈ Sn, tr(M) = λ}. Then [2] recalls that B1 := S+n ∩T1, the set of
positive matrices with trace 1, is a base of the cone S+n , that is to say: for any M ∈ S+n ,M 6= 0, there exists a
unique M̃ ∈B1 and a unique µ > 0 such that M = µM̃. Indeed, here µ = tr(M) and M̃ = M

tr(M) . Moreover,
B1 is convex and its set of extreme points is known: it is the set of matrices E1 := {vvT ,v∈Rn, ||v||= 1}.
For a convex set B, extreme points ext(B) are defined as the points such that for any x∈ ext(B), B\{x}
is still convex, and they have the property to belong to the boundary of the convex set.

In this precise case, E1 has another interesting property: its elements lie on the Euclidean sphere of

centre 1
n In and radius

√
1− 1

n : for any M = vvT ∈ E1, ||M− 1
n In||2 = tr((M− 1

n In)
2) = tr(M2)− 2

n tr(M)+
1
n2 tr(In) = tr(M)− 1

n = 1− 1
n .

Since extreme points are always included in the boundary of the convex set, and since B1 is a base
of S+n , knowing E1 = ext(B1) gives a good idea of the general shape of the cone. Indeed, we can view
B1 as some kind of convex polygone inscribed in the latter sphere, and then any “slice” Bλ = S+n ∩Tλ ,
λ > 0 can be deduced from B1 by homothety. We get that Bλ is also a base of S+n , its extremal points

are exactly λ ·E1, and they lie on the Euclidean sphere Sλ of center λ

n In and radius λ

√
1− 1

n . We note
Cλ = Sλ ∩Tλ the intersection of that sphere with Tλ .

The new cone [2] Just as S+n = ∪λ≥0Bλ , a new cone Cn can be defined as Cn = ∪λ≥0Cλ . Although
this is not explicit in the paper, the new ordering defined in [2] is the one induced by Cn:

A≥ B ⇐⇒ A−B ∈Cn.
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Figure 3: Illustration of the cone S+n . The gray polygones represent two bases of the cone, B1 and an
arbitrary Bλ with λ > 1, intersections of the cone with the hyperplanes T1 and Tλ . The extreme points of
the bases are marked by black dots (there are infinitely many of them in reality), and the central dashed
line indicates the span of the identity matrix In, orthogonal to each Tµ . On each base Bµ , the extreme

points lie on a sphere Sµ centered on µ

n In (marked by a black cross) and with radius rµ = µ

√
1− 1

n .
Whereas S+n is the union of all the gray polygones Bµ , the cone that defines the new ordering in [2] is the
union of the Cµ = Sµ ∩Tµ , µ ≥ 0.
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Figure 4: Examples of translated and reversed cones M−Cn for several M. The light gray cone corre-
sponds to the smallest ball (M−Cn)∩T0 containing all the others. Figure extracted from [2].

Readily, we have S+n ⊆ Cn, which means that the Loewner ordering implies the new ordering. Further-
more, we get an easy characterization of Cn:

M ∈Cn ⇐⇒ M ∈ Ctr(M)

⇐⇒ ||M− tr(M)
n In|| ≤ tr(M)

√
1− 1

n

⇐⇒ tr(M2)− 1
n tr(M)2 ≤ tr(M)2(1− 1

n ) and tr(M)≥ 0

M ∈Cn ⇐⇒ ||M|| ≤ tr(M).

Recalling that a matrix M =

[
a c
c b

]
is in S+2 if and only if a ≥ 0,b ≥ 0 and det(M) ≥ 0, we can see

that the Loewner ordering and the new ordering are equivalent for n = 2: S+2 =C2.

In practice: inclusion ordering on spheres The ordering in [2] is directly defined in terms of inclusion
of spheres. Using the notations introduced above, it can be written as

A≥ B ⇐⇒ (B−Cn)∩T0 ⊆ (A−Cn)∩T0 ⇐⇒ B−Ctr(B) ⊆ A−Ctr(A).

(B−Cn)∩T0 is the intersection of the “ground” plane T0, and the reversed cone −Cn whose vertex has
been placed in B (see Figure 4). It is therefore the sphere of T0 centered in mB = B− tr(B)

n In and of

radius rB = tr(B)
√

1− 1
n . Similarly, (A−Cn)∩T0 is the sphere of T0 centered in mA = A− tr(A)

n In and of

radius rA = tr(A)
√

1− 1
n . By applying a criterion on the distance between centres, we can check that this

definition of the new ordering, based on the inclusion of spheres, is equivalent to the one we gave earlier:

A≥ B ⇐⇒ ||mA−mB|| ≤ rA− rB

⇐⇒ ||A−B− tr(A−B)
n In|| ≤ tr(A−B)

√
1− 1

n
⇐⇒ ||A−B|| ≤ tr(A−B)
⇐⇒ A−B ∈Cn.
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Figure 5: Example of input images.

Conclusion on [2] The paper proposes a new ordering but does not check whether it induces a lattice or
not. From simple geometrical considerations it seems clear that it does not, and [6] asserts this ordering
does not produce a lattice. I wonder if it is worth trying to show it is actually an anti-lattice.

This ordering and the definition of smallest upper bound may still be used as an approximation for
morphological methods on S+n . The thesis [6] gives a quality measure of this approximation, I still need
to have a look at it. However, it is not clear how it is better than the original Loewner ordering and the
inclusion of centered ellipsoids. Therefore, if we decide to work with approximations of dilations and
erosion, I would stay with the Loewner ordering.

2 Analysis of images of vessels based on structure tensors

2.1 Example of images
See Figure 5. In the following, we note f the image and suppose it is of size N×N.
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2.2 Structure tensor
The definition and computation of the structure tensor follows G. Peyré’s numerical tour: http://www.
numerical-tours.com/matlab/pde_3_diffusion_tensor/.

Gradient The following centered finite difference approximation of ∇ f is used:∇ f (x,y)= ( fX (x,y), fY (x,y))T ,
where fX (x,y) = 1

2 ( f (x+1,y)− f (x−1,y)) for any y and 2≤ x≤ N−1, fX (1,y) = 1
2 ( f (2,y)− f (N,y))

and fX (N,y) = 1
2 ( f (1,y)− f (N−1,y)) (and similarly for fY (x,y)).

Tensor at scale zero The scale zero tensor T0 maps each (x,y) to the symmetric matrix with rank ≤ 1

T0(x,y) = ∇ f (x,y) ·∇ f (x,y)T =

[
fX (x,y)2 fX (x,y) fY (x,y)

fX (x,y) fY (x,y) fY (x,y)2

]
.

It is straightforward that ∇ f (x,y) is eigenvector of T0(x,y) with ||∇ f (x,y)||2 as corresponding eigenvalue,
and 0 is the other eigenvalue. Hence for any (x,y), T0(x,y) is an extreme point of the cone of positive
semi-definite matrices S+2 .

Tensor Tσ at scale σ > 0 It is a smoothed version of T0, obtained by convolving the latter with the
σ -scale Gaussian kernel

Tσ = Gσ T0 =

[
Gσ ( f 2

X ) Gσ ( fX fY )
Gσ ( fX fY ) Gσ ( f 2

Y )

]
where Gσ is the smoothing operator. Note that, for any u = (x,y), Tσ (u) is a weighted sum of tensors
T0(v) with positive weights, and is therefore a positive semi-definite matrix.

Eigen-decomposition of Tσ For each u = (x,y), Tσ (u) can be decomposed as

Tσ (u) = λ1(u)e1(u) · e1(u)T +λ2(u)e2(u) · e2(u)T

where 0≤ λ2(u)≤ λ1(u) are Tσ (u)’s eigenvalues and (e1(u),e2(u)) its basis of orthogonal eigenvectors.
If we represent Tσ (u) by its corresponding ellipse

Eu = {X ∈ R2,XT Tσ (u)X ≤ 1}

then the main direction of Eu is given by the second eigenvector e2(u). For σ = 0, this vector is orthogonal
to the gradient ∇ f (u); more generally, for small σ , Peyré points out the Taylor expansion

Tσ (u) = T0(u)+σ
2H f (u)2 +O(σ3),

where H f 2 is the Hessian of f 2. It is not clear what e2(u) represents for larger σ , but it seems that inside
a vessel the ellipse’s main direction roughly coincides with the vessel’s main direction.

Trace and anisotropy images (Figures 7 and 8) From the tensor field Tσ we can build two scalar
images: the anisotropy image Ian and the trace image Itr, respectively defined as

Ian(u) = 1− 2λ2(u)
tr(Tσ (u))

and Itr(u) = tr(Tσ (u)) = λ1(u)+λ2(u).

We have 0 ≤ Ian ≤ 1, and the closer Ian(u) to 1, the more Tσ (u) is anisotropic. Itr can be seen as a
smoothed version of the square norm of the ∇ f .
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Figure 6: Structure tensors Tσ for the bottom left hand image of Figure, with σ = 0.1, σ = 1 and σ = 3.
The shape of the represented ellipses show their anisotropy and main direction, whereas their colors must
encode their trace (this is not clear yet).

Figure 7: Trace images corresponding to the input of Figure 5, and the tensor field Tσ with σ = 3. They
can be seen as smoothed version of the square norm of the ∇ f .
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Figure 8: Anisotropy images corresponding to the input of Figure 5, and the tensor field Tσ with σ = 3.
The closer Ian(u) to 1, the more Tσ (u) is anisotropic.
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Figure 9: Left: a set of elements (p,−→v ) co-circular to the central element (p0,
−→v0 ) where p0 is the origin

and v0 = (1,0)T ; Right: the elements form the left hand image that comply with the additional constraint
that the (smaller) angle between the directions defined by −−→p0 p and −→v is smaller than π

6 .

2.3 Structuring elements
Here we define for each pixel u the neighboorhood to be taken into account in the computation of flat
dilation and erosion. The idea is to choose in a spatial window around u, those pixels v with for which
the main orientation of Tσ (v) is consistent, in some way, with Tσ (u). So far I have used co-circularity as
consistency criterion.

Co-circularity Given two points p1, p2 ∈ R2 and two vectors −→v1 ,
−→v2 , we say that (p1,

−→v1 ) and (p2,
−→v2 )

are co-circular if there is a circle tangent in p1 and p2 to −→v1 and −→v2 respectively. An infinite radius for the
circle corresponds to the case when −−→p1 p2, −→v1 and −→v2 are colinear, which we consider a particular case of
cocircularity.

Additional constraint As shown on the left of Figure 9, co-circularity allows “ladder” configurations,
which we may want to discard in the following. If so, one can impose an additional constraint, namely
that the angle between −−→p1 p2 and −→v2 is below a certain threshold.

Neighbourhood graph From the above we define an (undirected) graph (G,E) as follows: the set of
nodes G is the set of pixels in the image {u1,u2, . . . ,uN2}; (ui,u j)∈ E iff u j is in a square window of fixed
size 2p+1, centered on ui (that is, ||ui−u j||∞ ≤ p), and (ui,e2(ui)) and (u j,e2(u j)) are co-circular up to
a certain angular tolerance, with the additional constraint described earlier to avoid ladder configurations
- see Figure 9.

2.4 Morphological filters
Max-plus convolution Building on the graph (G,E) of the previous section, let W the N2×N2 ad-
jacency matrix defined by Wi j = 1 ⇐⇒ (ui,u j) ∈ E or i = j, and Wi j = 0 otherwise. It encodes the
structuring elements for any pixel, and we can now use it to compute max-plus convolutions (dilations

10



Figure 10: Illustration of the geodesic reconstruction by dilation. From left to right, top to bottom: mask
image I (in this case, the original image); marker image R (defined manually); I5, I25, I35, I50, final
reconstruction Ĩ = I178; residual image I− Ĩ.

and erosions) on any sclar image I of size N×N [7]:

δ (I)(ui) =
∨

j

(
I(u j)+ log(Wi j)

)
and ε(I)(ui) =

∧
j

(
I(u j)− log(Wji)

)
. (1)

In particular, I can be the original image f , the anisotropy image or the trace image (Figures 5, 7 and 8).

Geodesic reconstruction by dilation We want to reconstruct a structure in an image I, e. g. a vessel,
and possibly only this structure. If the structure is bright on a darker background, a possible strategy is
to start from a marker image R representing a small part of the structure, and dilate it recursively under
the constraint that the produced image remains smaller than I. By doing so, we hope to recover the bright
structure as it is in I, while the background should remain relatively flat and smaller than it is in I.

More formally, given a mask image I and a marker image R, both N×N, the geodesic reconstruction
by dilation consists in building recursively a sequence of images (In)n≥0,

I0 = R∧ I and In+1 = δ (In)∧ I,

and finally take the sup Ĩ =
∨

n≥0 In. Since in our case Wii = 1, the dilation is extensive: δ (I)(ui)≥ I(ui),
and the sequence (In)n≥0 is increasing. Furthermore, In ≤ I for any n, hence the sequence converges to its
maximal element Inmax after a finite number nmax of iterations, producing the final reconstruction Ĩ = Inmax .

Figure 10 shows an example of such a reconstruction, in which the mask image I is an original
image of vessels, and the markers have been defined manually to match bright regions in the vessels.
The structuring elements (or equivalently the adjacency matrix W ) was calculated on the tensor field Tσ

associated with the original image, with σ = 3.

Ideas
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• In the geodesic reconstruction, the mask image could be the anisotropy or trace image as well.
Interestingly, they are independent on the contrast (it should work for bright vessels on dark back-
ground as well as for dark vessels on bright background). I have tried to work with the anisotropy
but it is quite a noisy image and the reconstruction is not very accurate with respect to the original
shape of the vessel - more work needs to be done on that. Experiments with the trace are on going
as well.

• In the definition of the structuring elements, more information can be included than the spatial and
angular consistency.I have tried to include the trace information, to avoid the existence of a path
between pixels inside a vessel and pixels outside a vessel. So far this has not really worked out.

• The good part of working with the tensor field Tσ is that it provides positive semi-definite matrices,
on which we can test methods to be adapted later on diffusion tensors. However, it raises some
issues regarding the analysis of vessel images. First, it contains a scale parameter σ , which means
that either a multi-scale approach or an automatic scale definition is required. Second, as said ear-
lier, a structure tensor Tσ (u) is merely a weighted sum of (rank 1) positive semi-definite matrices.
It is not clear how this averaging behaves with respect to orientation information, especially in
bifurcations.

• It seems that Frangi’s vessel enhancement [3], based on the analysis of the Hessian, gives accurate
segmentation of vessels. It may be interesting to figure out how our approach can add to Frangi’s.

• As suggested in previous discussions, we should compare the results obtained with our definition of
the structuring elements, to more classic ones (non-adaptive structuring elements, sets of differently
oriented segments as structuring elements...).

3 Tropical and morphological operators for signal on graphs
This section aims at setting or recalling ([7]) some results about morphological operators for signals on
graphs, defined as max/min-plus convolutions as in Equation 1. These results may help to get an insight
on all the operators we will define based on this setting.

3.1 Setting and definitions
The first two definitions are taken from [7], and deal with a class of real matrices W .

Definition 1 (Morphological weight matrix). A N×N real matrix W = (wi j)1≤i, j≤N is called a morpho-
logical weight matrix if −∞≤ wi j ≤ 0 for any (i, j),1≤ i, j ≤ N.

Definition 2 (Conservative morphological weight matrix). A morphological weight matrix W is said
conservative if wii = 0 for any i,1≤ i≤ N.

We consider a weighted and directed graph G = (V,E) containing N nodes, whose N×N adjacency
matrix, noted W , is a morphological weight matrix:{

−∞ < wi j ≤ 0 if (i, j) ∈ E
wi j =−∞ if (i, j) /∈ E.

Note this can be interpreted as taking the log of weights in [0,1], where the absence of edge from node i
to node j would be represented by wi j = 0.

Definition 3 (Path). We call path from node i to node j in G, a tuple of nodes (k1, . . . ,kn) such that k1 = i,
kn = j, and (kp,kp+1) ∈ E (or equivalently wkpkp+1 >−∞) for 1≤ p≤ n−1.

12



We will note Γi j the set of paths from i to j in G, and Γ
(p)
i j the set of paths from i to j in G containing

at most p nodes, for p≥ 1.

Definition 4 (Weight of a path). Given the weight matrix W, the weight of a path γ = (k1, . . . ,kn) in G,
noted ω(γ), is the sum ω(γ) = ∑

n−1
p=1 wkpkp+1 .

It is easy to see that the set {ω(γ),γ ∈ Γi j} has a maximum value whenever Γi j is non empty. Indeed
every wkpkp+1 is non positive, and so is the weight of a path. Hence, for a non-empty set of paths Γi j,
the set {ω(γ),γ ∈ Γi j} has a least upper bound, noted ω∗(Γi j). Clearly, Γi j must contain at least a path
without a cycle (that is, in which a node is present at most once). Noting Γ′i j the set of paths without
a cylce in Γi j, then Γ′i j is non empty and we notice that ω∗(Γi j) = ω∗(Γ′i j). This is because one can
associate to any path with a cycle a path without a cycle, and the latter has a larger weight. Since Γ′i j
is finite (it contains no more than (N− 2)! paths), ω∗(Γ′i j) is a maximum, achieved by a at least a path
γ∗ ∈ Γ′i j. Since Γ′i j ⊂ Γi j, ω∗(Γi j) is also a maximum. It follows that there is a maximal weight for any
non empty set of paths, which allows Definition 5.

Definition 5 (Maximal weight, maximal path). We call maximal weight for a non-empty set of paths Γ

the number
ω
∗(Γ) := max

γ∈Γ
ω(γ).

Then a maximal path in Γ is a path γ∗ ∈ Γ such that ω(γ∗) = ω∗(Γ), i.e. achieving the maximal
weight among the paths in Γ.

For completeness, we will use the convention ω∗( /0) =−∞.

Now, let x = (x1, . . . ,xN) a signal on G, with values in the lattice L = ([0,1],≤). We define its dilation
and erosion induced by W as

∀i ∈ {1, . . . ,N}, δW (x)i =
N∨

j=1

(
x j +wi j

)
and εW (x)i =

N∧
j=1

(
x j−w ji

)
. (2)

As max-plus products, the dilation δW and erosion εW may be noted:

δW (x) =̇Wx and εW (x) =̇ 1−
(

W T (1− x)
)
.

Similarly, we will note W 2 the max-plus product of W by itself, that is

(W 2)i j =
N∨

k=1

(
wik +wk j

)
,

and more generally W p the p-th power of W in the max-plus sense, for any integer p≥ 0 (for p = 0, W p

is the max-plus identity matrix, for which wii = 0 and wi j =−∞ for i 6= j).
Finally, since −∞ is the neutral element for the max operator and is absorbant for the sum, only the

terms for which wi j >−∞ count in the previous definition of dilation (Eq. 2), that is to say only the nodes
j for which (i, j) ∈ E - the neighbours of i in G. The same remark holds for the erosion, replacing max
by min and switching i and j. We will note Ni =̇

{
j ∈ {1, . . . ,N},(i, j) ∈ E

}
the set of neighbours of i

in G. Then as we just noticed

δW (x)i =
∨

j∈Ni

(
x j +wi j

)
and εW (x)i =

∧
j,i∈N j

(
x j−w ji

)
.

In all the remaining, we will always assume i ∈ Ni, with wii = 0. In other words, we assume W is a
conservative morphological weight matrix (See Definitions 1 and 2).
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3.2 Properties of W p

Proposition 1. Let W a conservative morphological weight matrix and G = (V,E) the associated graph.
Then for any p ∈ N, 1≤ i, j ≤ N,

1. (W p)i j > −∞ if and only if there is at least a path from node i to node j in G containing at most
p+1 node(s) (i.e. iff Γ

(p+1)
i j is non empty)

2. (W p)i j is the maximal weight of the set of paths from node i to node j containing at most p+ 1
node(s): (W p)i j = ω∗(Γ

(p+1)
i j ).

At this point one should remember that the wi j are non positive, wi j = 0 modeling the strongest
possible effect of node i on node j and wi j =−∞ meaning no effect at all. Therefore, a large weight ω(γ)
for path γ ∈ Γi j represents a strong link from node i to node j.

Proof. Note that once point 1 is proven2, we only need to prove point 2 in the case where (W p)i j >−∞.
Indeed if (W p)i j = −∞ then, according to point 1, Γ

(p+1)
i j = /0 and by convention ω∗(Γ

(p+1)
i j ) = −∞ =

(W p)i j.
The case p = 0 is clear although not very informative. There is a path from i to j containing at most

p+1 = 1 node if and only if i = j, and if so there is only one path of weight wii = 0. Recall that W 0 is
the max-plus identity matrix, for which indeed (W 0)i j =−∞ if i 6= j and (W 0)ii = 0.

We assume the proposition true for a given p≥ 0. By definition

(W p+1)i j = (W pW )i j =
N∨

k=1

(
(W p)ik +wk j

)
.

Hence (W p+1)i j >−∞ if and only if, for at least one k, (W p)ik >−∞ and wk j >−∞, which means there
is a path from i to k containing at most p+ 1 nodes, and an edge from k to j, and therefore at least one
path from i to j containing p+2 nodes. This shows point 1.

Now we suppose (W p+1)i j >−∞. By assumption (W p)ik is optimal for any k reachable from i along

a path containing at most p+1 nodes. Then the optimality of
∨N

k=1

(
(W p)ik +wk j

)
among the paths of

Γ
(p+2)
i j is a consequence of a classical dynamic programming argument.

Remark Interestingly, W p is also a conservative morphological weight matrix. Its corresponding graph,
that we note Gp, can be seen as the original graph G to which a direct edge has been added between nodes
i and j whenever there is a path containing at most p+1 nodes from i to j in G. The weight associated
with this new edge is (W p)i j = ω∗(Γ

(p+1)
i j ), the maximal weight for the paths from i to j containing at

most p+1 nodes.

Corollary 1. Let W a N×N conservative morphological weight matrix. Then W N =W N−1 and therefore
there exists an integer pmax = min{p ∈ N,W p =W p+1}.

Proof. This result is a direct consequence of the interpretation of (W N)i j as the length of the largest path
from i to j contanining at most N + 1 nodes. Since the graph contains N nodes, the latter path actually
contains at most N nodes and therefore (W N)i j = (W N−1)i j. This shows that the set of integers p such
that W p =W p+1 is not empty and as such has a smallest element pmax.

2Point 1 can be inferred from a classical graph theory result on the powers (in the usual algebra this time) of the adjaceny matrix,
and taking the log. We will nevertheless prove it here too.
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We will note W ∞ =̇ W pmax = W N−1. It is clear from Proposition 1 that (W ∞)i j > −∞ if and only if
there is a path from i to j, and (W ∞)i j is the maximal weight for the paths from i to j: (W ∞)i j = ω∗(Γi j).

Corollary 2. Let W a conservative morphological weight matrix, and p ∈ N. Then (W T )p = (W p)T .

Proof. Again, this is clear from the graph interpretation. If G = (V,E) is the graph associated with W ,
we note G′ = (V,E ′) the graph associated with W T . G′ has the same nodes as G but its edges are reversed
with respect to G: (i, j) ∈ E ⇐⇒ ( j, i) ∈ E ′, and the associated weight is the same. Threfore, since
(W T )p

i j is the maximal weight for the paths in G′ from i to j containing at most p+1 nodes, it is also the
maximal weight for the paths in G from j to i containing at most p+1 nodes. Hence (W T )p

i j = (W p) ji,
and this holds for any (i, j).

Note that the result can also be shown by induction exactly like in the linear matrix power case.
Indeed, here + law verify the same sufficient conditions as the × law in the linear case: it is associative
and commutative.

3.3 Operators and filters
From now on, W is a N×N conservative morphological weight matrix, and the coefficient on the i-th row
and j-th column of the matrix W p (noted (W p)i j in the previous section) will be noted w(p)

i j . The graph
associated with W is noted G = (V,E) and the one associated with W p is noted Gp = (V,E p).

3.3.1 Iterated erosions and dilations

As it is well known in mathematical morphology, if a dilation δ and an erosion ε form an adjunction, then
δ p = δ ◦ · · ·◦δ and ε p = ε ◦· · ·◦ε are also adjoint dilation and erosion. The associativity of the max-plus
product of matrices yields the following result for the dilation and erosion defined by Eq. 2.

Proposition 2. Let W a conservative morphological weight matrix, and p ∈ N. Then δ
p

W = δ(W p) and
ε

p
W = ε(W p).

Proof. For the dilation, it is a direct consequence of the max-plus product associativity. For the erosion,
we can use the fact that (εW )p(x) = 1− (δW T )p(1− x) and that (W T )p = (W p)T .

A consequence of this is that we can simply express the iterated erosions and dilations as

∀i ∈ {1, . . . ,N}, δ
p

W (x)i =
N∨

j=1

(
x j +w(p)

i j

)
and ε

p
W (x)i =

N∧
j=1

(
x j−w(p)

ji

)
, (3)

where, as shown earlier, w(p)
i j represents the strongest link from i to j among the paths containing at most

p+1 nodes. Another consequence is the semi-group property: δ(W p)δ(W q) = δ(W p+q).

Extensivity, anti-extensivity Since W and any of its max-plus powers W p are conservative morpho-
logical weight matrices, it follows that δ

p
W is extensive and ε

p
W is anti-extensive for any p≥ 0. This holds

for ε∞
W = ε

pmax
W and δ ∞

W = δ
pmax

W . A consequence is that δ ∞
W ε∞

W = ε∞
W and ε∞

W δ ∞
W = δ ∞

W .
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Invariant nodes For a signal x on G and any p≥ 0 or p = ∞, we note Fp(x)=̇{i ∈V,ε p
W (x)i = xi} and

F ′p(x)=̇{i ∈V,δ p
W (x)i = xi} the sets of nodes invariant under ε

p
W and δ

p
W respectively.

Proposition 3. For a signal x and any 0≤ p≤ ∞, the sets Fp(x) and F ′p(x) are non-empty.

Proof. We prove the case of Fp(x), the other one is then obtained by duality. The anti-extensivity of ε
p
W

yields ε
p
W (x)i0 < xi0 for any node i0 that is not in Fp(x). From equation 3, we deduce the existence of a

node i1 such that ε
p
W (x)i0 = xi1 −w(p)

i1i0
≥ xi1 . Therefore, i1 6= i0 and xi0 > xi1 . If Fp(x) were empty, we

could proceed likewise to order the N values of x into a decreasing sequence xi0 > xi1 > · · · > xiN . But
then xiN must be in Fp(x) otherwise there would be a node j such that xiN > x j, which would contradict
the previous ordering.

Idempotence of ε∞
W and δ ∞

W This is straightforward from Corollary 1: ε
pmax
W = ε

pmax+1
W = ε∞

W . The ero-
sion and dilation ε∞

W and δ ∞
W are therefore morphological filters, and this is one of the reasons for studying

them.

We will now focus on ε∞
W but what follows holds for δ ∞

W by duality. The following result gives an idea of
what ε∞

W should look like.

Proposition 4. Let x a signal on G. For any node i, there is a node j ∈ F∞(x) such that

ε
∞
W (x)i = x j−w(∞)

ji

and for any node k on a path from i to j achieving w(∞)
ji ,{

ε∞
W (x)k = x j−w(∞)

jk

ε∞
W (x)i = ε∞

W (x)k−w(∞)
ki .

This means that the tranformed signal y = ε∞
W (x) is composed of some minima y j0 = x j0 , j0 ∈ F∞(x),

and increasing sequences y j0 ≤ y j1 ≤ ·· · ≤ y jk along “strong” paths of G, each step between two consec-
utive values being exactly y jp+1 − y jp = w(∞)

jp jp+1
= w jp jp+1 .

Proof. Let us start with the first statement. Let i ∈V be a node of G.
Case 1: i ∈ F∞(x).
Then we already have the result: ε∞

W (x)i = xi = xi−w(∞)
ii .

Case 2: i /∈ F∞(x).
Then there is a node j 6= i such that ε∞

W (x)i = x j−w(∞)
ji , and we need to show that j ∈ F∞(x). Assume the

contrary, that j /∈ F∞(x). Then there is a node j′ 6= j such that ε∞
W (x) j = x j′−w(∞)

j′ j < x j, the last inequality
coming from the anti-extensitvity of ε∞

W and the fact that ε∞
W (x) j 6= x j by assumption.

Then we get
ε

∞
W (x)i = x j−w(∞)

ji > x j′ −w(∞)
j′ j −w(∞)

ji .

But w(∞)
j′ j +w(∞)

ji is the weight of a path from i to j in G, and as such it is not larger than w(∞)
ji , the largest

weight of a path from i to j. So −w(∞)
j′ j −w(∞)

ji ≥−w(∞)
ji and therefore

ε
∞
W (x)i > x j′ −w(∞)

j′i
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which contradicts the expression of ε∞
W (x)i as an infimum: ε∞

W (x)i =
∧N

k=1

(
xk−w(∞)

ki

)
.

For the second statement, let k a node on a path from i to j achieving w(∞)
ji . By the same argument as

just above, if we assume that ε∞
W (x)k = x j′ −w(∞)

j′k 6= x j −w(∞)
jk for a certain j′ 6= j, then we find again

that ε∞
W (x)i > x j′−w(∞)

j′i . This proves the first line of the second statement, and the second line is then the

consequence of the equality w(∞)
ji =w(∞)

jk +w(∞)
ki when k is a node on a path from i to j achieving w(∞)

ji .

An implication of Proposition 4 is that ε∞
W (x) is fully determined by its values on F∞(x), in the fol-

lowing sense. Given a signal y ≥ ε∞
W (x) such that y coincides with ε∞

W (x) on F∞(x) then ε∞
W (x) = ε∞

W (y)
and F∞(y) = {i,yi = ε∞

W (x)i} (therefore F∞(x) ⊂ F∞(y)). Hence knowing the set of nodes F∞(x) and the
values of ε∞

W (x) on that set, it is possible to reconstruct ε∞
W (x) everywhere, for example by computing

ε∞
W (y) where y = ε∞

W (x) on F∞(x) and y = 1 everywhere else.

Particular cases

1. G is an undirected graph with binary weights: wi j = w ji ∈ {0,−∞}. In this case, ε∞
W (x) is

a signal that is constant on each connected component of G, equal to the minimum of x on that
connected component.

2. G is a graph with binary weights:wi j ∈ {0,−∞}. In this case, ε∞
W (x) is a signal that is constant on

each equivalence class defined by the equivalence relation i j ⇐⇒ w∞
i j > 0 and w∞

ji > 0 (that is to
say, iff there is a path from i to j and from j to i in G), and its value is equal to the minimum of x
on that equivalence class. What is more, if there is a path from a node i in a class Ci to a node j in
a different class C j, then the constant value on Ci is greater than the value on C j.

3.3.2 Openings

Granulometry γ
(p)
W = δ

p
W ε

p
W As a family of openings decreasing with p, (γ(p)

W ), p ≥ 0 forms a gran-
ulometry: γ(p+1) = δ pγε p ≤ δ pε p = γ(p) (since γ is anti-extensive). What is more, as we saw earlier,
γ
(∞)
W = ε∞

W .

Openings with changing weights Another kind of sequence of openings can be defined from a se-
quence (Wn)n≥1 of morphological conservative weight matrices. Then starting from a signal x we com-
pute a sequence of signals defined by xn = γWn ◦ γWn−1 · · · ◦ γW1(x).

4 Application to structure tensors
We work on the same images and use the same definitions of structure tensor and anisotropy as in Sec-
tion 2.

In what folows T is a n×n image of ellipsoids (or tensors). We will index its entries by a single index.
The tensor T (i) is characterized by its coordinates in the image (xi,yi) its eigenvalues 0 ≤ λ2(i) ≤ λ1(i)
and orhtonormal eigenvectors e1(i) and e2(i). The anisotropy at pixel i is ai =

λ1(i)−λ2(i)
λ1(i)+λ2(i)

. Finally, we note
θi the angle in (−π

2 ,
π

2 ] such that e2(i) is colinear to [cos(θi),sin(θi)]
T .

4.1 Binary matrix based on co-circularity
Here we present operators based on a binary conservative morphological weight matrix, computed as
explained in Section 2.3 and 2.4. We recall the idea of this computation and provide more details.
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4.1.1 Definition of W

The graph G = (V,E) we consider is undericted and contains N = n2 nodes. The signal xi on node i is the
anisotropy of the ellipse at pixel i. There is an edge between i and j iff the point u j = (x j,y j) is in a square
window of fixed size 2k+ 1, centered on ui (that is, di j=̇||ui− u j||∞ ≤ k), and (ui,e2(i)) and (u j,e2( j))
are co-circular up to a certain angular tolerance, with the additional constraint described earlier to avoid
ladder configurations - see Figure 9.

More precisely, given a point u ∈ R2 and an angle θ ∈ (−π

2 ,
π

2 ] representing the orientation of a line
passing through u, let fu,θ : R2→ (−π

2 ,
π

2 ] be the function associating to each point v∈R2 the orientation
fu,θ (v) that makes (u,θ) and (v, fu,θ (v)) cocircular. Then we define the degree of cocircularity between
nodes i and j as

ci j = |cos(θ j− fui,θi(u j))|= |cos(θi− fu j ,θ j(ui))|= c ji.

It is a number in [0,1], and the closer it is to 1, the “more cocircular” i and j are. We say that i and j are
cocircular up to the angular precision α ∈ [0, π

2 ] if ci j ≥ cos(α).
The additional constraint to avoid ladder configurations is also controlled by an angular parameter β .

For i and j to be neighbours in G, we require that

max(bi j,b ji)≥ cos(β ),

with the following definition of bi j

bi j =̇ |
−−→uiu j

||−−→uiu j||
· e1( j)|.

As shown in Figure 9, this restricts the space of possible neighbours to a kind of double cone. We will
therefore refer to this constraint as the “conic constraint”.

Finally, the adjacency matrix W is defined by wi j = 0 if the two constraints are fullfilled or if i= j, and
wi j = −∞ otherwise. Noting b̃i j = 1[cos(β ),1](max(bi j,b ji)), c̃i j=̇1[cos(α),1](ci j) and d̃i j = 1[0,2k+1](di j),
we can also write for i 6= j

wi j = log(b̃i j · c̃i j · d̃i j).

Hence, here W depends on the variables (xi,yi,θi)1≤i≤N , but not on λ1(i) and λ2(i).

4.1.2 Granulometry γ
(p)
W

Figure 11 shows the result of openings γ
(p)
W (as defined in Section 3.3.2) on an anisotropy image. The

bright parts (high anisotropy) vanish first in the background, that is to say outside the vessels, but even
the vessels eventually disappear. This is due to the fact that the graph G is connected (it has only one
connected component). This kind of results motivates the search for an operator that would converge
towards an anisotropy image where the brightness is preserved in the vessels but not in the background.

4.2 Non binary matrix including anisotropy information
The original motivation for including anisotropy in the definition of W was to apply a new opening on a
tensor field resulting from a previous opening.
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Figure 11: Example of openings γ
(p)
W on an anisotropy image, in the case of a binary and symmetric

matrix W , computed as explained in Section 4.1.1. From left to right, top to bottom: p = 0 (original
anisotropy image), p = 1,5,15,20,30,40,60. The parameters used here are k = 7 (spatial window),
α = π

20 (cocircularity precision) and β = π

6 (conic constraint).

4.2.1 Definition of W

We use the same notations as in Section 4.1.1. In addition, ai and a j denote the anisotropy at pixels (or
nodes) i and j. Then as before we set wii = 0, and for i 6= j

w̃i j = d̃i j · b̃i j ·max
(√

ci j ·min(ai,a j),1−ai

)1/4

wi j = log(w̃i j).

Not only W is now non-binary (ai,a j,ci j ∈ [0,1]), but it is also asymmetric. Indeed, the idea is that a node
with low anisotropy value should have a strong effect on its spatial neighbourhood during the erosion (that
is the meaning of max(.,1− ai)); and a node which had originally a large anisotropy and is cocircular
with other bright nodes, should recover a large value during dilation if it has been darkened during erosion
(that is the meaning of max(

√
Ci j ·min(ai,a j), .)). The power 1/4 was set empirically to see significant

effects of erosion and dilation.
Here W depends on the whole information containes in T : it depends on the variables (xi,yi,θi)1≤i≤N

and also on λ1(i) and λ2(i) through the anisotropy ai. We note g the function that associates W to these
variables, that is: W = g(u,θ ,a) where u = (xi,yi)1≤i≤N , θ = (θi)1≤i≤N and a = (ai)1≤i≤N .

4.2.2 Granulometry γ
(p)
W

See Figure 12.
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Figure 12: Example of openings γ
(p)
W on an anisotropy image, in the case of a non-binary and non sym-

metric matrix W , computed as explained in Section 4.2. From left to right, top to bottom: p = 0 (original
anisotropy image), p = 1,5,15,20,25,30,37. The value p = 37 is the pmax for W . The parameters used
here are k = 7 (spatial window), α = π

20 (cocircularity precision) and β = π

6 (conic constraint).

4.2.3 Openings with changing weights

Starting from T = (u,θ ,a,λ1 +λ2) we define a sequence by a0 = a, W0 = g(u,θ ,a0), and then{
an+1 = γ

(p)
Wn

(an),

Wn+1 = g(u,θ ,an+1).

An example of results is shown on Figure 13.
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