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We present a model of material degradation relying upon a local damage law supplemented by convex constraints. This results in a damage model with bounded variation that is shown to share the same features of the so-called Thick Level Set approach. Unlike the original model, in the present formulation the level set-based representation is abandoned in favor of an implicit description of damaged regions, whereby one arrives at a non-local Generalized Standard Model with convex constraints. The solution of a one-dimensional problem demonstrate the capabilities of the proposed approach when simulating initiation and growth of damage in quasi-brittle materials.

INTRODUCTION

Regularized damage formulations have become increasingly popular in the last decades for dealing with problems in Mechanics suffering from spurious mesh sensitivity induced by strain softening [START_REF] Bourdin | The variational approach to fracture[END_REF]. In short, the idea underlying almost all such models is that of using regularized constitutive equations in which some suitably defined length parameters bring to the macro level information about material structure at the fine scale.

Classical regularizations are formulated via gradient or averaging operators. They provide globally smoothed solutions by enforcing a greater regularity either on strains or internal variables that, as a consequence, are no longer defined at the local level.

The same concepts are implicitly present into the so-called Thick Level Set (TLS) approach to quasi-brittle fracture [START_REF] Moës | A level set based model for damage growth: The thick level set approach[END_REF][START_REF] Stolz | On moving thick layer approach for graded damage modelling[END_REF], whereby progressive damage takes place in a region of finite thickness whose size is an explicit model parameter. Within this framework one possible way to follow the evolution of damage in the solid amounts to continuously tracking the position of layers in a state of progressive damage. In the original formulation [START_REF] Moës | A level set based model for damage growth: The thick level set approach[END_REF] this was achieved based on distance functions and level sets, whose knowledge requires to solve an eikonal equation.

In the TLS model one prescribes the shape of the damage function d within the moving layer of thickness l c where the transition between the sound material and the completely damaged one occurs. In particular, progressive damage that takes place in the transition zone is given as an explicit function of the distance φ to the boundary Γ o of the undamaged portion of the domain under consideration. The latter turns out to be partitioned into three regions: the undamaged part Ω o , the transition region Ω c where the damage variable ranges between 0 and 1, and the completely damaged zone Ω 1 , see e.g. Figure 1. The boundary of the transition zone is denoted ∂Ω c = Γ o ∪ Γ 1 , and points M belonging to it have the following properties:
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M ∈ Γ o , d(M) = 0, φ(M, t) = 0;
(1)

M ∈ Γ 1 , d(M) = 1, φ(M, t) ≥ l c . (2) 
The zero-level set surface, i.e. the one implicitly defined by equation φ(M, t) = 0, describes the motion of the boundary Γ o , whereas damage is given as an explicit function of the distance φ within the transition zone:

d(φ) = 0, φ(M, t) ≤ 0, M ∈ Ω o ḋ > 0, 0 ≤ φ(M, t) ≤ l c , M ∈ Ω c d(φ) = 1, φ(M, t) ≥ l c , M ∈ Ω 1 (3) 
The function d(φ) is assumed to be continuously increasing with distance φ from the sound material, whereby the inverse function φ(d) exists. Moreover, the damage derivative along φ is bounded by a positive function f (d) and damage evolution is associated to the motion of the interface Γ o . The above conditions can be summarized as follows:

d = d(φ) ||∇φ|| = 1 d ′ (φ) ≤ f (d) (4) 
The present contribution aims at studying an isotropic elastic-damageable model whose constitutive law includes a scalar damage variable subject to two internal constraints. The first one is local and expresses the classical bounds for the order parameter that describes the state of the material within the transition zone:

0 ≤ d ≤ 1. (5) 
The second condition is non-local and non-classical and amounts to bound the norm of the spatial gradient of damage:

||∇d|| ≤ f (d) (6) 
that characterizes the present damage model with bounded variation.

It is worth emphasizing that the above inequality embodies the three relationships (4) provided that the function φ can be characterized as a signed distance function.

THE LOCAL STATE

In the present model the local state of the solid is described by the infinitesimal deformation measure ε, the damage parameter d and its spatial gradient ∇d; the latter enters only the internal constraint equation [START_REF] Nguyen | Bifurcation and stability of dissipative systems[END_REF].

The state equations stem from a convex free energy density w(ε, d); in particular, the thermodynamic forces that are work-conjugate to the state variables ε, d are the Cauchy stress tensor σ and the damage energy release rate Y :

σ = ∂w ∂ε , Y = - ∂w ∂d . (7) 
For an isotropic damage model the free energy density function typically reads:

w(ε, d) = 1 2 g(d)Eε : ε, ( 8 
)
where E is the elastic moduli tensor and g(d) is the scalar degradation function that transforms the sound material into a damaged one.

The convex constraints

In the present model the damage variable d has to comply with two internal constraints. By its very definition it is subject to the conditions [START_REF] Biot | Mechanics of incremental deformations[END_REF], which can in turn be expressed via a unique convex function g 1 embodying the two inequalities:

g 1 (d) = d(d -1) ≤ 0. (9) 
The second constraint is provided by the condition [START_REF] Nguyen | Bifurcation and stability of dissipative systems[END_REF]. We shall denote g 2 the function expressing the bound on the gradient of damage:

g 2 (d) = ||∇d|| -f (d) ≤ 0. ( 10 
)
The inequality (10) defines a convex set provided that the function

g 2 is convex, i.e. if f (d) is concave, which is equivalent to -f (d) convex. We shall assume in the remainder that f (0) > 0. For any concave function f , if it exists a point d o such that f (d o ) > 0, then the set C = {(d, ∇d)/g 2 (d) ≤ 0}
is nonempty and convex. The proof is straightforward. Let (d, ∇d), (d * , ∇d * ) be two elements of C; their convex combination is by definition an element of C and meets the condition:

||θ∇d + (1 -θ)∇d * || ≤ θ||∇d|| + (1 -θ)||∇d * || ≤ θf (d) + (1 -θ)f (d * ), θ ∈ [0, 1] (11)
whereby for a concave function f one has:

θf (d) + (1 -θ)f (d * ) ≤ f (θd + (1 -θ)d * ) (12) 
Q.E.D. The constraints (9) and (10) are introduced in the formulation via two fields of Lagrange multipliers γ 1 , γ 2 and the relevant Karush-Kuhn-Tucker conditions:

γ i ≥ 0; g i (d) ≤ 0; γ i g i (d) = 0. ( 13 
)
The above relationships put forward the non-dissipative character of the constraints, whereby a potential of the constraints themselves can be defined as:

w γ (d, γ i ) = γ 1 g 1 (d) + γ 2 g 2 (d) (14) 
which turns out to be convex owing to the convexity of the functions g 1 and g 2 .

EQUILIBRIUM

We study the equilibrium problem of a solid whose boundary is partitioned into two parts, that is ∂Ω u , where displacements u = u d are prescribed, and ∂Ω t where the surface tractions are given. The problem variables are the displacement field u, the damage field d and the fields of Lagrange multipliers γ i .

The total potential energy of the system reads:

E(u, d, γ i ) = Ω w dΩ - ∂Ωt t.u dS + Ω w γ dΩ (15) 
The functional (15) is defined over the set of kinematically admissible displacements K:

K = u * |u * (M) = u d (M), M ∈ ∂Ω u . (16) 

Variation wrt u

For a given damage field, an equilibrium state u sol is a minimizer for the potential energy over K:

∂E ∂u • δu = 0, ∀δu ∈ {v|v(M) = 0, M ∈ ∂Ω u } . (17) 
The above condition is equivalent to differential equilibrium and the relevant boundary conditions:

σ = ∂w ∂ε , div σ = 0, in Ω o ; σn = t, on ∂Ω t . (18) 

Variations wrt γ i

Variations of the potential energy with respect to the Lagrange multipliers define a partition of the domain Ω that reflects the state of the internal constraints:

∂E ∂γ 1 δγ 1 = Ω d(d -1)δγ 1 dΩ = 0, (19) 
∂E ∂γ 2 δγ 2 = Ω (||∇d|| -f (d))δγ 2 dΩ = 0. ( 20 
)
For a given damage state d, the domain is decomposed into three parts

Ω = Ω o ∪ Ω c ∪ Ω 1 , that is: • on Ω o and Ω 1 , g 1 = 0 and γ 1 > 0, • on Ω o and Ω 1 , γ 2 = 0 since g 2 ≤ 0, • on Ω c , γ 1 = 0 since g 1 < 0
The domain Ω c is in turn partitioned into two sub-domains:

• Ω - c where g 2 < 0 and γ 2 = 0, • Ω o c where g 2 = 0 and γ 2 ≥ 0.

Variation wrt d

Variation of the potential energy with respect to d and use of the divergence theorem yields:

∂E ∂d δd = Ω ∂w ∂d δd dΩ + Ω γ 1 (2d -1)δd dΩ + Ω γ 2 ( ∇d ||∇d|| • ∇δd -f ′ (d)δd) dΩ = - Ω G δd dΩ + ∂Ω γ 2 ∇d ||∇d|| • n δd dS + S [[γ 2 ∇d ||∇d|| ]] S .n δd dS (21) 
In the above equation one can recognize three contributions, i.e. a volume integral, a surface integral over the external boundary and an integral over internal discontinuity surfaces. The volume integral defines the energy release rate G:

G = Y -γ 1 (2d -1) + γ 2 f ′ (d) + div γ 2 ∇d ||∇d|| (22) 
Whenever γ 2 = 0 the thermodynamic force G is a local quantity. On the contrary, when γ 2 = 0 the G becomes non-local because of the divergence term originating from the constraint (10).

Concerning the possible discontinuity surfaces, if they are non-dissipative one has:

[[γ 2 ∇d ||∇d|| ]] S • n = 0. (23) 
In particular, equation (23) has to be fulfilled over the surface Γ o where d = 0 + and ||∇d|| = f (0 + ) > 0, which in turn implies γ 2 = 0. Along a discontinuity surface for the gradient of d, damage is continuous and g 2 = 0. In this particular case one has:

d + = d -, ||∇d + || -f (d + ) = ||∇d -|| -f (d -) = 0, (24) 
which in turn imply:

0 = n.∇d + + n.∇d -, 0 = (γ + 2 ∇d + -γ - 2 ∇d -).n, 0 < γ + 2 , 0 < γ - 2 , ( 25 
)
whereby γ + 2 = γ - 2 = 0.
Boundary conditions A major difference of the present formulation compared to classical gradient-enhanced models is that on the boundary ∂Ω ∩ ∂Ω - c the relationship g 2 < 0 holds, which in turn implies γ 2 = 0. The net result is that the boundary condition on the normal derivative of damage is generally no longer homogeneous for the present model of damage with bounded variation.

DISSIPATION

Since the constraints (9) et (10) are non-dissipative, the only contribution to the total dissipation of the system stems from the local damage energy release rate Y , that is:

- ∂E ∂d ḋ = Ω G ḋ dΩ = Ω Y ḋ dΩ ≥ 0 (26)
Following [START_REF] Halphen | Sur les matériaux standard généralisés[END_REF] we assume that damage evolution emanates from a pseudo-potential of dissipation, which is a convex and degree-one positively homogenous function of ḋ. Whenever D is a smooth function one arrives at a kinetic equation for d:

G = ∂D ∂ ḋ (27) 
which is equivalent to the classical Biot equation [START_REF] Biot | Mechanics of incremental deformations[END_REF]:

∂E ∂d + ∂D ∂ ḋ = 0 (28) 
For the non-smooth case the dissipation pseudo-potential reads:

D(d * ) = Y c d * , if d * ≥ 0, +∞, otherwise (29) 
and damage evolution is governed by a normality rule expressed as:

G -Y c ≤ 0, ḋ ≥ 0, (G -Y c ) ḋ = 0. (30) 
Analogous to Linear Elastic Fracture Mechanics [START_REF] Nguyen | Bifurcation and stability of dissipative systems[END_REF] a dissipated energy G(d) can be defined whenever the threshold Y c depends from a unique parameter

G(d) = d 0 Y c (α) dα (31) 
In this case the total energy of the system reads:

W(u, d, γ i ) = E(u, d, γ i ) + G(d) (32) 
and normal damage evolution can be recast in the form of a variational inequality:

ḋ ≥ 0, ∂W ∂d (δd -ḋ) ≥ 0, ∀δd ≥ 0. (33) 
The normality law (30) amounts to a partial differential equation that provides γ 2 on the region Ω o c , where γ 1 = 0 since g 1 < 0. In particular, for ḋ > 0 equation (30) yields:

G = Y + γ 2 f ′ (d) + div γ 2 ∇d ||∇d|| = Y c . (34) 
Over the domain Ω o c one has g 2 = 0 whereby the above equation becomes

(Y -Y c )f (d) + div(γ 2 ∇d) = 0. (35) 
Now consider an iso-damage surface and define the function φ(d) such that 

∇d(φ) = f (d) ∇φ, ||∇φ|| = 1 (36) 
The above arguments show that the coupling of a local damage model with the constraint equation (6) allows one to recover the features of the Thick Level Set approach in its original form. However, the present model of damage with bounded variation can be implemented without using level sets since equation ( 35) that provides damage evolution is completely independent from the notion of distance function.

We then obtain K = d a d b with

d a = 1 2 (d m + K)(1 + 1 - 4K (d m + K) 2 ) (48) d b = 1 2 (d m + K)(1 -1 - 4K (d m + K) 2 ) (49) 
The response curves of the traction bar are shown in Figure 2. A value K = 0.1 is not well-suited since the resulting damage distribution broadens too much. For a given K, the value d o for which the constraint g 2 is fulfilled at a point is given by:

d o = 2 √ K -K, (50) 
which implies that K must be lower than 1. The smaller K, the more localized is damage around the position x = 0 during the first phase.

It is worth emphasizing that the solution we presented here is an approximation of the exact solution. Actually, during the phase that precedes the fulfillment of the condition (41) with the equality, the damage evolution is characterized by a loading region [0, x c ] and an unloading region [x c , x M ] over the segment of lengt x M . The function x c (d m ) is first decreasing and then increasing beyond the value x M . This is apparent on the damage response depicted in Figure 3 when the curves d(x) do intersect each other.

The condition ḋ > 0 is fulfilled only when the region where the condition g 2 = 0 is firmly established. The smaller K, the more rapidly the condition g 2 = 0 is satisfied during the loading history. The value of K must be small enough in order to obtain an abscissa x M much smaller than l c so that the linear part of the damage distribution is the dominating one. 

CLOSURE

We presented a new model of damage with bounded variation that fits in the Thick Level Set approach. However, in the present model the introduction of level sets with all consequent difficulties can be abandoned, since the information necessary to track the evolution of interphases where progressive damage occurs is implicitly contained in the Lagrange multipliers fields associated to two constraint equations described via convex functions.
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 1 Figure 1: Domain partition in the TLS approach.
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  Evidently, the function φ is a signed distance from the surface d = 0 + , andd ′ (φ) = f (d). Let M o (α, β) be a point of Γ o ; any point M ∈ Ω o c has coordinates (α, β, z) such that M(α, β, z) = M o (α, β) + z ∇φ M o ∈ Γ o (37)Now consider the integral of (35) over a truncated cone of axis ∇d and delimited by surfaces dS(z = 0) and dS(z = l) = j(z) dS(z = 0). The term j(z) accounts for area change due to geometric curvature when the surfaces are described in a local basis attached to point M o ∈ Γ o . The integral of the divergence term div(γ 2 ∇d) reduces to the only contributions over surfaces ( dS(0), dS(l)) where γ 2 = 0. In this way one obtains the energy release rate Ĝ that is associated to the motion of the transition layer of finite thickness φ(d) = l c originally introduced in the TLS model[START_REF] Moës | A level set based model for damage growth: The thick level set approach[END_REF]: c f (d)j(φ) dφ = Ĝc .
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 2 Figure 2: Response curves Σε for K = 0.01. L = 1 (left), and L = 5 (right).

Figure 3 :

 3 Figure 3: Damage profiles d(x) for K = 0.01 (left) and K = 0.1 (right).

THE TRACTION BAR

We consider a one-dimensional bar of length L subject to an increasing elongation. In order to study the influence of the constraint equations we choose the following form for the free energy density:

where k > 0 is a regularization parameter with dimensions of a force. The constraint function g 2 is taken as:

which characterizes a linear damage distribution.

The study of the traction bar whose free energy density contains a quadratic term in ∇d allows to determine the conditions that the parameter k has to comply with in order to obtain a solution which is coherent with the one of the non-regularized problem.

We obtain two families of solutions. The first one is a homogeneous solution, whereas the second one gives the initiation and growth of a defect. We assume that such a defect nucleates at point x = 0. For the regularized model the solution depends on the value of the parameter k. Actually, the presence of the regularization term changes the definition of the energy release rate (22) as follows

and also the boundary conditions turn out to be modified and now require

over the boundary of Ω c . During damage growth two phases of evolution can be distinguished. The first one during which ||∇d|| < 1/l c et γ 2 = 0, and a second one during which the constraint is satisfied with the equality. One can show that the second phase can take place only if k is sufficiently small. Actually, condition G k = Y c with γ 2 = 0 allows to obtain the damage distribution along the bar d(x) by integrating

The integration constant C is provided by the boundary conditions

Now assume d(0) = d m . We infer that C = Σ 2 /2E over [0, L] and obtain the load Σ as:

Such a solution holds provided that ||∇d|| < 1/l c , which in turn occurs if