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SOME EXPLICIT COMPUTATIONS IN ARAKELOV GEOMETRY OF

ABELIAN VARIETIES

ÉRIC GAUDRON

Abstract. Given a polarized complex abelian variety (A, L), a Gromov lemma makes a compar-
ison between the sup and L2 norms of a global section of L. We give here an explicit bound which
depends on the dimension, degree and injectivity diameter of (A, L). It rests on a more general
estimate for the jet of a global section of L. As an application we deduce some estimates of the
maximal slope of the tangent and cotangent spaces of a polarized abelian variety defined over
a number field. These results are effective versions of previous works by Masser and Wüstholz
on one hand and Bost on the other. They also improve some similar statements established by
Graftieaux in 2000.

1. Introduction

Let (A,L) be a polarized abelian variety over a number field K. Its tangent space at the origin
tA is a finite dimensional K-vector space which can be endowed with a structure of Hermitian
vector bundle over the ring of integers OK : the integral structure is given by the tangent space at
the origin of the Néron model of A over OK and the metrics at infinity are provided by the Riemann
forms of the complex line bundles L� induced by L on each A� = A⇥� SpecC for � : K ,! C. This
feature allows to consider the successive Arakelov slopes of tA in the sense of the 1995 Bourbaki
seminar of Bost [Bo2].

The aim of our article is to provide some sharp and explicit bounds for the slopes of tA, in
terms of the dimension, Faltings height and degree of A relative to L. The estimates obtained in
Sections 4.2 (upper bound for the maximal slope) and 4.3 (lower bound for the minimal slope)
improve on previous results by Graftieaux [Gr] and some of them are even best possible with
respect to L. For example, such results enable to have a basis of tA made up of vectors whose
height is well controlled (using connections between minima and slopes, see [Ga2, § 4]).

The main motivation for this text lies in the progress made during the last twenty years about
the effective aspects of some problems of Diophantine geometry for abelian varieties. Indeed it can
be observed that the emergence of the Faltings height of A in the proofs of the major theorems
of [BG, Ga1, GR1] only rests on three basic tools:

� A matrix lemma which bounds from below the norms of the non-zero periods of A� for
every � : K ,! C,
� a formula for the Arakelov degree of the space of global sections of L equipped with a

suitable Hermitian vector bundle structure over a finite extension of K,
� an explicit lower bound for the minimal slope of tA.

If the origin of the first problem is located in an article of Masser [Mas], it has since been studied
by several authors and an almost optimal solution was found by Autissier in 2013 [Au1]. Regarding
the formula for the Arakelov degree of H0

(A,L), it has been established by Bost in 1996 [Bo1] (see
the end of § 2.3.2). These first two tools allow to build the third one via evaluation at order 1 of
global sections of L as Bost explained in [Bo2, § 5.3.4]. Following this, Graftieaux gave an explicit
estimate for the minimal slope of tA, still used until now. Furthermore, the latest accurate period
theorems obtained by the author and Rémond [GR1] on one hand and the author and Bosser [BG]
on the other hand brought to light the need for sharper statements, in particular from a numerical
point of view. That is why it seemed useful to us to examine again the work of Graftieaux, taking
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2 ÉRIC GAUDRON

into account the technological advances yielded by Autissier’s matrix lemma. Here the use of the
first jet evaluation map is done in a more direct way, without any reference to a so-called Shimura
map, by applying a basic slope inequality. To do this, we have been led to consider the square of
the polarization on A and to evaluate at a well-chosen torsion point of A so that the jet be onto.
On the way, we revisit the so-called Gromov lemma (according to the terminology of Gillet and
Soulé [GS, § 5.2.3]) which makes a comparison between the supremum norm of a section of L� (for
any � : K ,! C) and its Hermitian norm. This type of results turns out to be of great interest in
other settings, such as the theory of linear forms in abelian logarithms [Ga1].

Acknowledgements. I thank Pascal Autissier and Gaël Rémond for their numerous remarks
which allowed me to significantly improve the results of this article.

2. Preliminary results

2.1. Let A be a complex abelian variety of dimension g and L be an ample and symmetric line
bundle over A. Let tA be the tangent space at the origin of A and expA : tA ! A be the exponential
map of A. The period lattice ⌦A = ker expA of A is a free Z-module with rank 2g. An Appell-
Humbert data for L is composed of a complex Hermitian form H : tA ⇥ tA ! C (linear in the
second variable), which is positive definite since L is ample and such that ImH(⌦A,⌦A) ⇢ Z, and
a semicharacter � : ⌦A ! ({z 2 C ; |z| = 1},⇥) that is, for all !, ⇠ 2 ⌦A, we have

�(! + ⇠) = �(!)�(⇠) exp (⇡i ImH(!, ⇠)).

The Hermitian form H, called the Riemann form of L, induces a Hermitian norm on the tangent
space tA: for all z 2 tA, kzkL = H(z, z)

1/2. Define the factor of automorphy aL : ⌦A ⇥ tA ! C of L
by

8! 2 ⌦A, 8z 2 tA, aL(!, z) = �(!) exp

⇣
⇡H(!, z) +

⇡

2
H(!,!)

⌘

and consider a trivialization � : exp
⇤

A L ! OtA compatible with this factor. Thus we get an iso-
morphism s 7! # = �(exp

⇤

A s) which associates to a global section s 2 H
0
(A, L) a holomorphic map

# : tA ! C satisfying #(! + z) = aL(!, z)#(z) for all z 2 tA and ! 2 ⌦A. The map

z 2 tA 7�! |#(z)| exp

⇣
�
⇡

2
kzk

2

L

⌘

is invariant by translation by elements of ⌦A. Hence, given z 2 tA and x = expA(z) 2 A, we may
endow the fiber Lx = x

⇤
L with the (cubist) metric:

8s 2 H
0
(A, L), ks(x)kx⇤L = |#(z)| exp

⇣
�
⇡

2
kzk

2

L

⌘
.

That induces (at least) two norms on H
0
(A, L): the supremum norm k · k1 defined by

8s 2 H
0
(A, L), ksk1 = sup (ks(x)kx⇤L ; x 2 A),

and the Hermitian norm k · k2 defined by

8s 2 H
0
(A, L), ksk2 =

✓Z

A
ks(x)k

2

x⇤L dµ(x)

◆1/2

where µ is the normalized Haar measure on the compact group of complex points of A.

2.2. Jets of sections.

2.2.1. Algebraic definition. Let S be a scheme and A! S be a scheme with base S. Let L be an
invertible sheaf on A. We assume that there exists a closed immersion " : S ! A. Let us denote by
I the sheaf of ideals on A defined by " and by ⌦A/S = I/I

2 the OA-module of relative differentials.
Let ` be a nonnegative integer. When A ! S is smooth along " (I is regular), the inverse image
"
⇤
�
I
`
/I

`+1
�

is isomorphic to the symmetric power S
`
�
"
⇤
⌦A/S

�
. A section s 2 H

0
(A,L) vanishes

along " up to order ` when s 2 H
0
(A, I

`
⌦OA L). In that case, the jet of s of order ` along ",

denoted by jet
`
s("), is the image of s by the composed map

H
0
�
A, I

`
⌦ L

�
�! H

0
�
A, I

`
/I

`+1
⌦ L

�
Projection??y formula

H
0
�
S, S

`
�
"
⇤
⌦A/S

�
⌦ "

⇤
L
�
 � H

0
�
S, "

⇤
�
I
`
/I

`+1
�
⌦ "

⇤
L
�
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2.2.2. Analytic description of the jets. Let us come back to the case of a complex abelian variety:
S = SpecC, A = A and L = L. Let x 2 A(C) and z 2 tA be a logarithm of x. This point can
be viewed as a closed immersion x : SpecC ! A defined by the sheaf of ideals I. For ` 2 N and
s 2 H

0
(A, I

`
⌦OA L), the element jet

`
s(x) is the image of s in the quotient

H
0
�
SpecC, x⇤

�
I
`
/I

`+1
⌦OA L

��
' S

`
(t

v
A)⌦C x

⇤
L.

This construction is compatible with the map s 7! # of § 2.1. If we consider a basis e = (e1, . . . , eg)

of tA, the jet of # of order ` at z takes the form

jet
`
#(z) =

X

i

1

i1! · · · ig!

✓
@

@z1

◆i1

· · ·

✓
@

@zg

◆ig

#(z1e1 + · · ·+ zgeg) · (e
v
1
)
i1 · · · (e

v
g
)
ig

where i = (i1, . . . , ig) 2 Ng is of length |i| = i1 + · · ·+ ig equal to `. Let k · k be a norm on S
`
(t

v
A).

The trivialization of exp⇤A L which induces the isomorphism s 7! # allows to connect the norm of
jet

`
s(x) (with respect to S

`
(t

v
A)⌦ x

⇤
L) to that of jet` #(z) by the formula:

(1) k jet
`
s(x)kS`(tvA)⌦x⇤L = k jet

`
#(z)k · k1kz = k jet

`
#(z)k exp

⇣
�
⇡

2
kzk

2

L

⌘
.

Afterward the tangent space tA will be endowed with a Hermitian inner product. If e is an
orthonormal basis of tA, the chosen norm on S

`
(t

v
A) will be defined by:

8 (xi)|i|=` 2 C(
`+g�1
g�1 )

, k

X

|i|=`

xi(e
v
1
)
i1 · · · (e

v
g
)
igk

2

S`(tvA)
=

X

|i|=`

|xi|
2
·
i1! · · · ig!

`!
.

2.3. Elements of slope theory. We make some very brief reminders about Hermitian vector
bundles over the spectrum of the ring of integers OK of a number field K and their slopes. In a
second time we shall mention some classical statements about several Hermitian vector bundles
attached to a polarized abelian variety. We refer to [Bo2, Appendix A] or to [Ga2] for more details⇤.

2.3.1. A Hermitian vector bundle E over OK is the data of a locally free OK-module E of finite
type with Hermitian norms k · kE,v : E⌦v C! R+ at archimedean places v of K. The OK-module
E brings about norms k · kE,v : E⌦OK Kv ! R+ at ultrametric places v of K, defined by:

8 ⇠ 2 E⌦OK Kv, k⇠kE,v = inf (|x|v ; x 2 Kv, ⇠ 2 x.E).

Here Kv is the completion of K at v equipped with the absolute value | · |v normalized in
such a way that |p|v 2 {1, p, p

�1
} for every prime p. The standard example is E = O

n

K
with

|(x1, . . . , xn)|2,v = (
P

i
|xi|

2

v
)
1/2 (xi 2 Kv) at the archimedean places. In that case one has

|(x1, . . . , xn)|2,v = maxi |xi|v when v is ultrametric. Every Hermitian vector bundle E can be
obtained from this canonical one via an adelic matrix a = (av)v 2 GLn(AK) and after the choice
of a K-basis e = (e1, . . . , en) of E⌦OK K:

8x = (x1, . . . , xn) 2 K
n

v
kx1e1 + · · ·+ xnenkE,v = |avx|2,v.

The datum of E amounts to the data of a K-vector space (still denoted by) E of finite dimension
(namely E⌦OK K) with norms on the topological space E ⌦K Kv satisfying the above equality. A
Hermitian subbundle of E is a subspace of E endowed with the restricted norms of E. The dual Ev

of a Hermitian vector bundle E is comprised of the dual space HomK(E,K) with the dual norms
of k · kE,v’s. If F ⇢ E is a subbundle, the quotient space E/F inherits of (quotient) norms from
E, giving it a Hermitian vector bundle structure over OK . The (normalized Arakelov) degree of a
Hermitian vector bundle E is

degE = �
1

[K : Q]

X

v place of K

[Kv : Qv] log | det av|v

and its slope is µ(E) = (degE)/ dimE. It does not depend on the choice of (a, e) and the degree is
invariant by finite extension of K. When F ⇢ E is a subbundle, we have degE/F = degE�degF .
The canonical polygon PE of E is the piecewise linear function delimiting from above the convex
hull of the set (dimE

0
, degE

0
) where E

0 runs over the non-zero subbundles of E. It satisfies the
noteworthy duality relation: for all 0  x  n = dimE, we have PEv(x) = PE(n � x) � degE.

⇤Following the latter reference, we omit the traditional bar over Hermitian vector bundles and the hat over their
degree and slopes.
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We also have PE⌦L(x) = PE(x) + x degL for any Hermitian line bundle L. The maximal slope

of E is the real number µmax(E) = PE(1), also equal to max (µ(E
0
) ; E

0
⇢ E). These notions are

invariant by scalar extension. A Hermitian vector bundle E such that µmax(E) = µ(E) is called
semistable. A K-linear map ' : E ! F between two Hermitian vector bundles E and F over OK

induces local maps 'v : E ⌦K Kv ! F ⌦K Kv at the places v of K, having operator norms

k'kv = sup

✓
k'v(x)kF,v

kxkE,v

; x 2 (E ⌦K Kv) \ {0}

◆
.

By bringing together these norms, we form the height of ':

h(') =
1

[K : Q]

X

v

[Kv : Qv] log k'kv.

This number allows to compare the canonical polygons of E and F .

Proposition 2.1. Let E and F be some Hermitian vector bundles over OK and ' : E ! F be a

K-linear map. If ' is injective then, for all x 2 [0, dimE], we have PE(x)  PF (x) + xh('). If '

is surjective then, for all y 2 [0, dimF ], we have PF (y)  PE(y + dimker') + (dimF � y)h(')�

degE + degF .

Proof. Since the canonical polygon is linear on [i�1, i], it is enough to prove these properties for x
or y equal to an integer i. According to [Ga2, Theorem 43], the j-th slope µj(E) = PE(j)�PE(j�1)

of E satisfies the inequality µj(E)  µj(F ) + h(') when ' is injective and j 2 {1, . . . , dimE}. We
add them for j ranging from 1 to i to get the first statement. The second one is a consequence:
we apply the first result to the one-to-one dual map '

v
: F

v
! E

v, using the duality formula for
the canonical polygon and noting that 'v has the same height as '. ⇤

2.3.2. Let A be an abelian variety over a number field K of dimension g. For every finite extension
K

0
/K and every embedding � : K 0

,! C, we denote by A� the complex abelian variety deduced
from AK0 = A ⇥K K

0 by scalar extension through �. Over a certain finite extension K
0
/K,

AK0 is semistable. The sheaf of relative differentials !A0/OK0 of the Néron model A
0
! OK0

of AK0 over K
0, endowed with the norms ksk2

�
= 2

�g
i
g
2 R

A�
s ^ s is a Hermitian vector bundle

over OK0 whose degree is the (stable) Faltings height hF (A) of A. Corollary 8.4 of [GR1] states
that hF (A) � �g log(⇡

p
2), named Bost’s inequality afterwards. Furthermore, given an ample

and symmetric line bundle L on A (the pair (A,L) is said to be a polarized abelian variety), we
can consider the Hermitian tangent bundle (tA, k · kL) over OK , also denoted tA when there is no
ambiguity on L, composed of the tangent space at the origin of the Néron model of A over SpecOK

and with the norms k · kL� induced by the Riemann forms of the complex line bundles L� ! A�

for all � : K ,! C. Its degree is linked to the Faltings height of A by the formula

deg(tA, k · kL) = �

✓
hF (A) +

1

2
log h

0
(A,L)

◆

where h
0
(A,L) denotes the dimension of H0

(A,L). In the same vein, the space of global sections
H

0
(A,L) of L can be equipped with a Hermitian vector bundle structure over a suitable finite

extension K
0
/K. The integral model is composed of H0

(A
0
,L

0
) where L

0 is a cubist Hermitian line
bundle over the Néron model A0 of AK0 over K

0. The metrics at the complex embeddings � of K 0

are the norms k · k2 on H
0
(A

0
,L

0
)⌦� C defined at the end of § 2.1 (see [Ga1, § 4.2.2]). Building on

deep results by Moret-Bailly, Bost proved that the Hermitian vector bundle H
0
(A

0
,L

0
) (over OK0)

is semistable with slope equal to �(1/2)hF (A) + (1/4) log(h
0
(A,L)/(2⇡

2
)
g
) (see [Bo1, § 4.3] and

[Bo2, p. 129]).

3. Gromov lemma for the jets

Let us start with a Gromov lemma in its initial acceptance (according to [GS, § 5.2.3]) before
generalizing it to higher order jets.
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3.1. Let (A, L) be a polarized complex abelian variety of dimension g. For s 2 H
0
(A, L), we always

have ksk2  ksk1. A Gromov lemma makes a comparison in the other direction. The following
statement is an unpublished result of Autissier. It involves the injectivity diameter

⇢(A, L) = min (k!kL ; ! 2 ⌦A \ {0})

of (A, L), where k · kL is the Hermitian norm associated to the Riemann form of L.

Proposition 3.1. Assume (A, L) is principally polarized. Then, for all s 2 H
0
(A, L), we have

ksk1  ksk2 ⇥max

✓
1,

1

⇢(A, L)

◆g/2

(1.7g)
g/2

.

The proof is based on some estimates for explicit theta functions.

Proof. Let ⌧ 2 Mg(C) be a Siegel-reduced element of the Siegel upper half plane such that ⌦A

identifies with Zg
+ ⌧Zg. Put Y = Im ⌧ . Then the norm on tA induced by L can be written as

kzkL =
�
t
zY

�1
z
�1/2 and the one dimensional space H

0
(A, L) is generated by the theta function

8 z 2 Cg
, #⌧ (z) = exp

⇣
⇡

2

t
zY

�1
z

⌘ X

n2Zg

exp (i⇡
t
n⌧n+ 2i⇡

t
nz).

It is known that k#⌧k2 = det(2Y )
�1/4 (see, for instance, [GR1, Lemma 8.2 (1)]). Moreover [Au2,

Lemma 8.2] yields k#⌧k1  #iY (0) = #iY �1(0) (detY )
�1/2, from which we deduce

k#⌧k1

k#⌧k2
 (2

g
detY )

1/4
#iY (0) = 2

g/4
(#iY (0)#iY �1(0))

1/2
.

Besides [Au2, Proposition 8.4] applied to Y and Y
�1, with �(Y ) = min

n2Zg\{0}

t
nY n �

p
3/2 and

�(Y
�1

) � ⇢(A, L)
2, gives

#iY (0)#iY �1(0) 

✓
g + 2

2

◆2✓
max

✓
g + 2

⇡
p
3
, 1

◆
max

✓
g + 2

2⇡⇢(A, L)2
, 1

◆◆g/2

.

We combine with the previous estimate to get, for all s 2 H
0
(A, L) = C.#⌧ ,

ksk1  ksk2 ⇥max

✓
1,

1

⇢(A, L)

◆g/2

⇥

✓
g + 2

2

◆✓
2max

✓
g + 2

⇡
p
3
, 1

◆
max

✓
g + 2

2⇡
, 1

◆◆g/4

.

The latter constant is smaller than (1.5g)
g/2 when g � 2. Otherwise, if g = 1, we proceed as above

except that we keep the exact value of #iY (0):
k#⌧k1

k#⌧k2
 (2Y )

1/4
X

n2Z
exp

�
�⇡n

2
Y
�
=: ✓(Y ).

Since Y = ⇢(A, L)
�2 (see [GR1, Remark 3.3]), it is enough to prove that

8Y �

p
3

2
, (2min (1, Y ))

1/4
X

n2Z
exp

�
�⇡n

2
Y
�
 (1.7)

1/2
.

If Y � 1 the left hand side is bounded by ✓(1) 
p
1.7. Otherwise, we observe that ✓ is decreasing

on the interval [
p
3/2, 1] and so bounded by its value at

p
3/2, which satisfies ✓(

p
3/2) 

p
1.7.

Indeed the map Y 7! Y
3/4
✓
0
(Y ), which has a positive derivative on [

p
3/2, 1], is increasing on

this interval. The functional equation ✓(Y ) = ✓(1/Y ) implies ✓0(1) = 0 and so ✓0(Y ) < 0 for all
Y 2 (

p
3/2, 1), yielding the decreasing property of ✓. ⇤

Proposition 3.1 is best possible with respect to ⇢(A, L). Indeed [Bo2, Inequality (C.9)] claims
that k#⌧k1 � 1, that is, ksk1 � ksk2 det(2 Im ⌧)

1/4 for all s 2 H
0
(A, L). When dimA = 1, the

imaginary part of ⌧ is precisely ⇢(A, L)
�2 as stated above. In this case, a global section s of the

g-th external tensor power (B,M) of (A, L) satisfies ksk1 � ksk2
�p

2/⇢(A, L)
�g/2

. The relation
⇢(B,M) = ⇢(A, L) then shows that the exponent g/2 of the injectivity diameter in Proposition 3.1
cannot be improved in general. The same example also indicates that the numerical constant 1.7

is close to the best one, necessarily bounded from below by
p
2 > 1.4.
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3.2. Generalization to jets. The keystone of this article is the following statement.

Theorem 3.2. Let (A, L) be a polarized complex abelian variety of dimension g. Let x 2 A, ` 2 N
and s 2 H

0
(A, L) which vanishes at x up to order `. Then we have

k jet
`
s(x)kS`(tvA)⌦x⇤L  ksk2 ⇥ h

0
(A, L)

1/2
max

✓
1,

1

⇢(A, L)

◆g/2

(5(g + `))
g/2

✓
⇡
`

`!

◆1/2

(the norm on S
`
(t

v
A) is the one induced by k · kL as explained at the end of § 2.2.2).

Note that the dependence in h
0
(A, L) is accurate (at least for ` = 0) since we always have

h
0
(A, L)

1/2
 sup

✓
ksk1

ksk2
; s 2 H

0
(A, L) \ {0}

◆
.

Indeed, for any orthonormal basis s1, . . . , s⌫ of H0
(A, L), consider b(x) =

P
⌫

i=1
ksi(x)k

2

x⇤L for x 2 A,
which does not depend on the choice of the basis. Let x 2 A such that b(x) = sup

y2A b(y) and
choose s1, . . . , s⌫ such that si(x) = 0 for 2  i  ⌫. Then we have

h
0
(A, L) = ⌫ =

Z

A
b(y) dµ(y)  b(x)  ks1k

2

1
=

✓
ks1k1

ks1k2

◆2

.

The proof of Theorem 3.2 is different from that of Proposition 3.1. It is inspired by the analytic
estimates of [Via, § 3.1], partly derived from some lecture notes by Bost and it uses some ideas of
Autissier and Rémond.

3.2.1. Let us begin with some auxiliary results. Given ` 2 N, an element ' of the symmetric
product S`

(t
v
A) is a sum of products of ` linear forms on tA. It defines a polynomial map z 2 tA 7!

'(z) by evaluating at z the linear forms which compose '. Given a real number r > 0, let us define
the sesquilinear form on S

`
(t

v
A) (linear on the right):

8', 2 S
`
(t

v
A) h', i =

Z

B(0,r)

'(t) (t) exp
�
�⇡ktk

2

L

�
dt

where B(0, r) = {u 2 tA ; kukL < r} and dt is the normalized Haar measure of (tA, k · kL).

Lemma 3.3. The product h·, ·i is a Hermitian inner product on S
`
(t

v
A).

The proof is straightforward. The group G of isometries of the Hermitian space (tA, k · kL) acts
on S

`
(t

v
A) by composition on the right: if g 2 G and ' 2 t

v
A then ' � g 2 t

v
A. By [Ig, § I.4], this

action is irreducible. Moreover the norms k ·k (associated to h·, ·i) and k ·kS`(tvA)
are both invariant

under the action of G. From these facts comes the following result.

Lemma 3.4. There exists a constant C > 0, which depends on g, `, r, such that k ·k = Ck ·kS`(tvA)
.

Proof. Let a = inf

⇣
k'k ; ' 2 S

`
(t

v
A) and k'kS`(tvA)

= 1

⌘
. Since the infimum is a minimum by con-

tinuity on a compact space, the set S = {' 2 S
`
(t

v
A) ; k'k = a} is not empty. This set and, a

fortiori, the subspace VectS of S`
(t

v
A) generated by S are G-invariant. The irreducibility property

gives VectS = S
`
(t

v
A). Moreover if ' and  belong to S then h', i = ah', i` where h·, ·i` is

the Hermitian inner product associated to the norm k · kS`(tvA)
. Indeed, for all ⇠ 2 C, we have

k' + ⇠ k � ak' + ⇠ kS`(tvA)
. Squaring and expanding, we get Re ⇠h', i � aRe ⇠h', i` and we

conclude taking ⇠ 2 {±1,±i}. This property entails that the set

V =
�
u 2 S

`
(t

v
A) ; 8' 2 S, h', ui = ah', ui`

 

is a linear subspace of S`
(t

v
A), containing S and so VectS. We deduce V = S

`
(t

v
A) which leads to

h', ui = ah', ui` for all ', u 2 VectS = S
`
(t

v
A). We put C =

p
a to conclude. ⇤

Lemma 3.5. The constant C in the previous lemma is characterized by

C
2
=

`!

⇡`(g � 1 + `)!

Z
⇡r

2

0

x
`+g�1

exp (�x) dx

(here dx is the Lebesgue measure on R).
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Proof. Let (e1, . . . , eg) be an orthonormal basis of (tA, k · kL). The dual basis (e
v
1
, . . . , e

v
g
) yields an

orthogonal basis (e
v
1
)
i1
· · ·
�
e
v
g

�ig , i = (i1, . . . , ig) 2 Ng with |i| = `, of S`
(t

v
A). We have

k (e
v
1
)
i1
· · ·
�
e
v
g

�ig
kS`(tvA)

=

✓
i1! · · · ig!

`!

◆1/2

and, writing t = t1e1 + · · ·+ tgeg with (t1, . . . , tg) 2 Cg, we also have

k (e
v
1
)
i1
· · ·
�
e
v
g

�ig
k
2
=

Z

|t1|
2+···+|tg|

2r2

|t1|
2i1 · · · |tg|

2ig exp
�
�⇡ktk

2

L

�
dt.

Thus we get the formula

C
2
=

`!

i1! · · · ig!

Z

ktkLr

|t1|
2i1 · · · |tg|

2ig exp
�
�⇡ktk

2

L

�
dt

for all (i1, . . . , ig) 2 Ng of length `. Summing over all such i’s and using the multinomial theorem,
we obtain ✓

g � 1 + `

`

◆
C

2
=

Z

B(0,r)

ktk
2`

L exp
�
�⇡ktk

2

L

�
dt.

To get the desired formula, we compute the latter integral with Fubini’s theorem (
R
B(0,r)

=

R
r

0

⇣R
ktkL=x

⌘
dx) using that the volume of the sphere of radius x:

lim
"!0+

vol (B(0, x+ "))� vol (B(0, x))

"
= vol(B(0, 1))⇥ lim

"!0+

(x+ ")
2g
� x

2g

"

equals ⇡
g

g!
⇥ 2gx

2g�1 (vol stands for the Lebesgue measure on (tA, k · kL)). We get

C
2
=

2⇡
g
`!

(g � 1 + `)!

Z
r

0

x
2`+2g�1

exp
�
�⇡x

2
�
dx

and we conclude with the change of variables x 7! y = ⇡x
2. ⇤

3.2.2. Let F be a fundamental domain of tA with respect to the period lattice ⌦A. Given a
positive real number r and z 2 tA, let us define N(u) = Card⌦A\B(z�u, r) for any u 2 tA (where
B(z � u, r) = z � u + B(0, r) is the ball of radius r centered at z � u). This integer only takes a
finite number of values.

Lemma 3.6. For every integrable function f : tA ! R, periodic with respect to ⌦A, we have

Z

B(z,r)

f(u) du =

Z

F

f(u)N(u) du.

Proof. Let 1 denote the characteristic function of B(z, r). By definition we have

N(u) =

X

!2⌦A

1(u+ !).

Since F is a fundamental domain, the translated F + ! for ! 2 ⌦A cover tA and their interiors are
disjoint sets. We deduce

Z

B(z,r)

f(u) du =

X

!2⌦A

Z

F+!

f(u)1(u) du =

Z

F

X

!2⌦A

f(u+ !)1(u+ !) du.

It remains to observe that the latter sum can be written as f(u)N(u) since f(u+!) = f(u) for all
! 2 ⌦A. ⇤

Proposition 3.7. For any z 2 tA, ` 2 N and s 2 H
0
(A, L) which vanishes at x = expA(z) up to

order `, we have

k jet
`
s(x)kS`(tvA)⌦x⇤L  ksk2 ⇥

✓
h
0
(A, L)maxu2F N(u)

C2

◆1/2

where C is the constant of Lemma 3.4.
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Proof. Let µ denote the normalized Haar measure on A. The inverse measure exp
⇤

A µ is a Haar
measure on tA, which, by uniqueness up to a positive scalar, is proportional to the Lebesgue measure
dz associated to k · kL. Thus we have dz = h

0
(A, L) exp

⇤

A µ since
Z

F

dz = vol(F) = covol(⌦A, k · kL) = h
0
(A, L).

Let # : tA ! C be the theta function associated to s (see § 2.1) and define f(u) = |#(u)|
2
e
�⇡kuk

2
L

for all u 2 tA. The definition of the norm k · k2 on H
0
(A, L) gives

ksk
2

2
=

Z

A
ks(x)k

2

x⇤L dµ(x) =

Z

F

f(u) (exp
⇤

A µ) (u) =
1

h0(A, L)

Z

F

f(u) du.

With n = maxu2F N(u), we have n
R
F
f(u) du �

R
F
f(u)N(u) du and Lemma 3.6 yields

ksk
2

2
�

1

nh0(A, L)

Z

B(z,r)

f(u) du =
1

nh0(A, L)

Z

B(0,r)

|#(z + u)|
2
e
�⇡kz+uk

2
L du.

In the latter integral, we write kz+uk
2

L = kzk
2

L+2ReH(z, u)+kuk
2

L (H is the Riemann form of L)
and we expand the holomorphic function ⇥(u) = #(z + u)e

�⇡H(z,u)
=
P

i=(i1,...,ig)2Ng aiu
i1
1
· · ·u

ig
g

in terms of the coordinates u1, . . . , ug of u in an orthonormal basis (e1, . . . , eg) of tA. We get
Z

B(0,r)

|#(z + u)|
2
e
�⇡kz+uk

2
L du = e

�⇡kzk
2
L

Z

B(0,r)

|⇥(u)|
2
e
�⇡kuk

2
L du

and, since # vanishes at z up to order `, we have jet
`
#(z) = jet

`
⇥(0). Using Bessel’s inequality,

we deduce that ksk2
2
⇥ nh0(A, L) exp

�
⇡kzk

2

L

�
is bounded from below by

X

i2Ng

|ai|
2

Z

B(0,r)

|u1|
2i1 · · · |ug|

2ig exp
�
�⇡kuk

2

L

�
du

�

X

|i|=`

|ai|
2
k(e

v
1
)
i1 · · · (e

v
g
)
igk

2

= C
2
X

|i|=`

|ai|
2
i1! · · · ig!

`!
= C

2
k jet

`
⇥(0)k

2

S`(tvA)
= C

2
k jet

`
#(z)k

2

S`(tvA)
.

We conclude with formula (1) that yields the desired upper bound for the norm of jet` s(x). ⇤

3.2.3. Proof of Theorem 3.2. Let F be a fundamental domain of tA and z 2 tA be a logarithm of
the point x considered in Theorem 3.2. Let us choose r > 0 such that ⇡r2 is the median of the
�(`+ g, 1) distribution, that is, such that

Z
⇡r

2

0

x
`+g�1

exp (�x) dx =
(`+ g � 1)!

2
.

In particular the constant C2 of Lemma 3.5 equals `!/(2⇡`
). Besides [Ch, Theorem 1] provides the

bound ⇡r2  `+ g� 1+ log 2. We apply Proposition 3.7 to these data F, z, r. To get Theorem 3.2,
we have to prove that 2maxu2F N(u)  (5(g + `)max (1, 1/⇢(A, L)))

g. This follows from a result
by Malikiosis [Mal, Theorem 1.2], which gives an upper bound of N(u) in terms of the minima
⇢(A, L) = �1(⌦A)  · · ·  �2g(⌦A) of the Euclidean lattice (⌦A, k · kL):

8u 2 F, N(u) = Card⌦A \B(z � u, r) 

2gY

i=1

�
2r

�i(⌦A)
+ 1

⌫

(b·c refers to the integer part). We bound from below �i(⌦A) by ⇢(A, L) for 1  i  g and by 1 for
g + 1  i  2g (thanks to the property 1  �i(⌦A)�2g+1�i(⌦A) [GR2, p. 2072]). We get

max
u2F

N(u) 

✓
2r

⇢(A, L)
+ 1

◆g

b2r + 1c
g
 max

✓
1,

1

⇢(A, L)

◆g

((2r + 1)b2r + 1c)
g
.

With the previous upper bound for r, the conclusion comes from

max
x2N�1

2

x

✓
2
p
⇡

p
x� 1 + log 2 + 1

◆�
2
p
⇡

p
x� 1 + log 2 + 1

⌫
 5
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(the worst case for the size of the constant is g = ` = 1 corresponding to x = 2). ⇤
When ` = 0, we could reduce the constant 5 to 3.9 (leaving 2

1/x instead of the first 2 in the
above maximum) where Proposition 3.1 yields 1.7 (but only when h

0
(A, L) = 1) .

3.2.4. Remark. We could choose a (Hermitian) norm k · ktA on tA different from k · kL provided
there exists a positive real number ⇠ such that k · kL = ⇠k · ktA . In that case, the norm on S

`
(t

v
A)

is that of induced by k · ktA and the norm of the jet jet
`
s(x) is simply multiplied by ⇠`. This

often happens in applications where k · ktA is the norm associated with a polarization L0 on A

while L = L
⌦n

0
(for some positive integer n). Then we have ⇠ =

p
n and the minima of ⌦A satisfy

�i(⌦A, k · kL) =
p
n�i(⌦A, k · kL0). We keep this

p
n in the Malikiosis bound of N(u) which is used

in the proof of Theorem 3.2. Let us introduce further an additional parameter ↵ > 0 to bound
2r

⇢(A, L)
+ 1 

✓
2r
p
n
+ ↵

◆
max

✓
1

↵
,

1

⇢(A, L0)

◆
.

Thus, for every u 2 F, we get

N(u)  max

✓
1

↵
,

1

⇢(A, L0)

◆g ✓✓
2r
p
n
+ ↵

◆�
2r
p
n
+ 1

⌫◆g

.

In this way, a numerically sharper version of Theorem 3.2 is: For all ↵ > 0, x 2 A, ` 2 N,

n 2 N�1 and s 2 H
0
(A, L) which vanishes at x up to order `, the norm of jet

`
s(x) relative to

S
`
((tA, k · kL0)

v
)⌦ x

⇤
L is smaller than

ksk2 ⇥ h
0
(A, L)

1/2
max

✓
1

↵
,

1

⇢(A, L0)

◆g/2

⇥

✓
2(⇡n)

`

`!

◆1/2

⇥

✓✓
2r
p
n
+ ↵

◆�
2r
p
n
+ 1

⌫◆g/2

with r
2
= (`+ g � 1 + log 2)/⇡.

4. Application to Arakelov geometry of abelian varieties

Henceforth, K is an algebraic closure of a number field K and (A,L) is a polarized abelian
variety over K, with dimension g � 1.

4.1. Let H = H
0
(A,L

⌦2
) ⌦K K. For every a 2 A(K), the evaluation map �

(0)

a : H ! a
⇤
L
⌦2

K
,

s 7! s(a), is a non-zero K-linear form since L
⌦2 is generated by global sections [Mu, p. 60].

Let �(1)a : ker �
(0)

a ! t
v
AK
⌦

K
a
⇤
L
⌦2

K
, s 7! jet

1
s(a), be the jet of order 1 at a. By duality, �(1)a is

surjective if and only if the complete linear system H separates tangent vectors at a: 8 t 2 tAK
\{0},

9 s 2 ker �
(0)

a such that jet
1
s(a)(t) 6= 0. In other words, �(1)a is surjective when the differential at

a of the finite morphism � : A
K
! P(H) built from H is injective. Such a a exists by generic

smoothness of �: there exists a non-empty open subset U ⇢ A such that � : U ! �(U) is étale. By
density of torsion points, we can even assume that a is a torsion point of A. Then let us consider
a Moret-Bailly model (A,L2, "a : SpecOK0 ! A) of

⇣
A

K
, L

⌦2

K
, {a}

⌘
over a finite extension K

0
/K,

in the sense of [Bo1, § 4.3.1]. The maps �(0)a and �
(1)

a associated to the polarized abelian variety
(AK0 , L

⌦2

K0 ) and a 2 A(K
0
) extend to homomorphisms of OK0 -modules �0 : H0

(A,L2) ! "
⇤
a
L2 and

�1 : ker �0 ! t
v
A
⌦ "

⇤
a
L2. The norms on L2 equip the modules ker �0 ⇢ H

0
(A,L2) and "

⇤
a
L2 of a

structure of Hermitian vector bundle over OK0 (see § 2.3.2). Although they could endow tA with a
Hermitian vector bundle structure over OK0 , using the Riemann forms of (L2)�’s (� : K 0

,! C), it
seems more convenient to choose the structure given by (tA, k ·kL) extended to K

0. The important
point is that the norms given by (L2)� and L� satisfy the proportionality condition of Remark 3.2.4
(with n = 2). In this context the maps �0 and �1 have some heights which can be evaluated in a
simple way thanks to Theorem 3.2.

Proposition 4.1. For g � 2, we have

h(�0) 
g

4
logmax

✓
1, hF (A) +

1

2
log h

0
(A,L)

◆
+

1

2
log h

0
(A,L) +

3g

4
log 5g

and

h(�1) 
g

4
logmax

✓
1, hF (A) +

1

2
log h

0
(A,L)

◆
+

1

2
log h

0
(A,L) +

3g

4
log 10.2g.
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Moreover we can replace max
�
1, hF (A) + (1/2) log h

0
(A,L)

�
by max (1, hF (A)) in these bounds

provided we change the couple (5, 10.2) of numerical constants by (8.5, 18). Besides, when g � 16,

the couple (5, 10.2) can also be substituted by (2.58, 2.84).

The proof of this statement relies on a so-called matrix lemma, involving the injectivity diameters
⇢(A�, L�) of the complex abelian varieties (A�, L�) (where � is an embedding of K into C), deduced
from the polarized abelian variety (A,L) defined over K by scalar extension via �.

Matrix Lemma. We have

1

[K : Q]

X

� : K,!C

1

⇢(A�, L�)
2

�
2.3 + 5.5g

�
max

✓
1, hF (A) +

1

2
log h

0
(A,L)

◆
.

In addition, the latter maximum can be replaced by 8max (1, hF (A)).

In the main, this result is due to Autissier [Au1]. More precisely this is a consequence of
Corollary 1.4, ibid., where " = 1�6/(2.3⇡) is chosen. Then the general case is deduced from [GR1,
Lemmas 3.4 and 3.5], in the same way as Proposition 3.6, ibid. The variant with 8max (1, hF (A))

arises from the first four lines of [GR1, p. 358] (Zarhin’s trick).

Proof of Proposition 4.1. Given � : K
0
,! C, we apply Theorem 3.2 in the form described in Re-

mark 3.2.4 (to get sharper numerical constants) to the polarized abelian variety (A�, (L2)�) at 0

for ` 2 {0, 1}. We choose L0 = L�, n = 2 and ↵ =

p
e/(2.3 + 5.5g). The definition of L2 yields

h
0
(A�, (L2)�) = 2

g
h
0
(A,L) and we get

k�`k� 
�
2
g
h
0
(A,L)

�1/2
max

✓
1

↵
,

1

⇢(A�, L�)

◆g/2

⇥
�
2
`+1

⇡
`
�1/2 ⇣⇣p

2r + ↵
⌘jp

2r + 1

k⌘g/2

with r
2
= (`+ g� 1+ log 2)/⇡. As for the ultrametric norms of �`, they are smaller than 1 since �`

is a homomorphism of OK0 -modules, modules from which the norms have been defined. Now we
make use of the elementary [BG, Lemma 3.19] to bound from above

1

[K 0 : Q]

X

� : K0,!C
logmax

✓
1

↵
,

1

⇢(A�, L�)

◆


1

2
logmax

 
e

↵2
,

1

[K 0 : Q]

X

� : K0,!C

1

⇢(A�, L�)
2

!
.

The matrix lemma allows to replace the latter quantity by
1

2
log(2.3 + 5.5g) +

1

2
logmax

✓
1, hF (A) +

1

2
log h

0
(A,L)

◆
.

Then we obtain the desired estimate for the height of �` with the constant

c`(g) =
g + `+ 1

2
log 2 +

g

4
log(2.3 + 5.5g) +

`

2
log ⇡ +

g

2
log

$✓
2(`+ g � 1 + log 2)

⇡

◆1/2

+ 1

%

+
g

2
log

 ✓
2(`+ g � 1 + log 2)

⇡

◆1/2

+

✓
e

2.3 + 5.5g

◆1/2
!
.

For the approximated form given in the proposition, we set apart the case g = 2 for which we
numerically compute the values of c0(2) and c1(2) (they determine the constants 5 and 10.2).
Then, for g � 3, we use b⇠c  ⇠ and `� 1  0 in the last two logarithms of c`(g). We obtain a new
simplified constant c

0

`
(g) for which the function g 7! (c

0

`
(g) � (3g/4) log g)/g is clearly decreasing

and we estimate c0
0
(3) and c

0
1
(3) to conclude. The same method applies when g � 16, distinguishing

the cases g = 16 and g � 17. As for the variant with max (1, hF (A)), it is the one we have in the
matrix lemma. We multiply 2.3+5.5g by 8 (twice) in the constant c`(g) and we proceed as above.

⇤
4.2. Maximal slope of the tangent space.

Proposition 4.2. The maximal slope of (tA, k · kL) satisfies

µmax(tA)  hF (A) +
1

2
log h

0
(A,L) +

g

2
logmax

✓
1, hF (A) +

1

2
log h

0
(A,L)

◆
+

3g

2
log 15.4g.

Moreover the same bound holds with max (1, hF (A)) instead of max
�
1, hF (A) + (1/2) log h

0
(A,L)

�

if we change 15.4 by 26.6. When g � 16 we can substitute the numerical constant 15.4 by 5.9.
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Proof. When g = 1 we have µmax(tA) = deg tA = �hF (A) �
1

2
log h

0
(A,L) and the statement

occurs from Bost’s inequality hF (A) � � log(⇡
p
2). Thus, from now on, we may assume g � 2.

Because the map �1 introduced in the previous paragraph is onto by construction, we can apply
Proposition 2.1 with the dual map �v

1
, which is injective, and x = 1:

µmax (tA ⌦ ("
⇤

a
L2)

v
)  µmax ((ker �0)

v
) + h(�1).

The maximal slope involved here on the left decomposes into a sum of the maximal slope of tA
(with the metrics described in the previous paragraph) and deg "

⇤
a
L2. This last degree equals 0

since it is the Néron-Tate height of the torsion point a relative to L
⌦2 [Bo1, Theorem 4.10]. Hence

we have µmax (tA ⌦ ("
⇤
a
L2)

v
) = µmax(tA). To control the other maximal slope, let us now apply the

second part of Proposition 2.1 with the surjective restriction map H
0
(A,L2)

v
! (ker �0)

v, whose
height is nonpositive, and y = 1. This gives

µmax ((ker �0)
v
)  2µmax

�
H

0
(A,L2)

v
�
� degH

0
(A,L2)

v
+ deg(ker �0)

v
.

Since the duality reverses the sign of the degree, the sum of the two last quantities is the degree
of H

0
(A,L2)/ ker �0. This Hermitian line bundle is isomorphic to "

⇤
a
L2 via the map induced by

�0, hence its degree equals deg "
⇤
a
L2 + h(�0) = h(�0) [Ga2, Proposition 42]. The semistability of

H
0
(A,L2) and the formula for its slope given at the end of § 2.3.2 lead to

µmax (tA, k · kL)  hF (A)�
1

2
log h

0
(A,L) + g log ⇡ + h(�0) + h(�1).

We conclude with Proposition 4.1 and g log ⇡ + (3g/4) log(5 ⇥ 10.2)  (3g/2) log 15.4. The other
constants stem from the same inequality where (5, 10.2, 15.4) is replaced by (8.5, 18, 26.6) and,
when g � 16, by (2.58, 2.84, 5.9). ⇤

Taking the g-th external tensor power of an elliptic curve endowed with its principal polarization,
we can prove that (3g/2) log 15.4g which is in the upper bound of µmax(tA) cannot be replaced by a
function smaller than g (using Bost’s inequality). Furthermore, we can deduce from Proposition 4.2
some simpler but weaker estimates, getting rid of the logarithm with the following elementary result.

Lemma 4.3. Let x0 2 R and c > 0. Then, for every x 2 R, we have

logmax (1, x)� cx 

(
�cx0 if x0  x  1,

logmax (1, 1/c)�max (1, c) if x � 1.

Proof. When x0  x  1, we have logmax (1, x) � cx = �cx  �cx0. When x � 1, we observe
that the function x 7! log x� cx has a global maximum at x = max (1, 1/c). ⇤

As a straightforward consequence of this lemma and Proposition 4.2, we deduce:

Corollary 4.4. For all " > 0, the maximal slope µmax(tA) of (tA, k · kL) is bounded by

(1 + ")

✓
hF (A) +

1

2
log h

0
(A,L)

◆
+

3g

2
log 15.4g +

g

2
max

⇣
" log(2⇡

2
), log

g

2"
� 1

⌘
.

For instance, we have

µmax(tA)  1.2hF (A) + log h
0
(A,L) + 2g log 7.7g

and, when g � 16,

µmax(tA)  1.5hF (A) + log h
0
(A,L) + 2g log 3g.

Proof. Apply Lemma 4.3 with x = hF (A)+0.5 log h
0
(A,L), x0 = �g log(⇡

p
2) and c = 2"/g. That

gives an upper bound for logmax (1, hF (A) + (1/2) log h
0
(A,L)) and we conclude with Proposi-

tion 4.2. The next upper bound derives from the choice " = 0.2 (setting apart the trivial case
g = 1) whereas we choose " = 1/2 in the last (with 5.9 instead of 15.4). ⇤

Using the second assertion of Proposition 4.2, we can also prove

µmax(tA)  1.2hF (A) +
1

2
log h

0
(A,L) + 2g log 11.5g.

With Zarhin’s trick, the degree of A can even be removed from these estimates.

Corollary 4.5. We have µmax (tA, k · kL)  12hF (A) + 16g log 24g.
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Proof. The case g = 1 is treated with Bost’s inequality, as at the beginning of the proof of Propo-
sition 4.2. For g � 2, there exists a principal polarization L

0 on Z(A) = A
4
⇥ bA4 ( bA is the dual

abelian variety of A) such that, if ◆ denotes the injective map A ,! Z(A) on the first component,
L = ◆

⇤
L
0 (see [Ré, Lemma 4.6]). In particular we get an isometric injection from (tA, k · kL) to

(tZ(A), k · kL0) and µmax(tA)  µmax(tZ(A)). Since dimZ(A) � 16 it remains now to apply the
last estimate in the previous corollary to (Z(A), L

0
) whose Faltings height and dimension are eight

times those of A in order to conclude. ⇤
This estimate is optimal with respect to h

0
(A,L) in the sense that there exists an abelian variety

A but no unbounded from above function fA : N! R such that (?) µmax(tA)+fA(h
0
(A,L))  0 for

any polarization L on A. Indeed, let us fix an elliptic curve E over K with its canonical polarization
L0. Define the abelian variety A = E ⇥ E endowed with Ln = L

⌦n

0
⇥ L0 where n is any positive

integer. Then h
0
(A,Ln) = n and

µmax(tA) = max

⇣
µmax(tE , k · kL⌦n

0
), µmax (tE , k · kL0)

⌘
= µmax(tE)

since µmax(tE , k · kL⌦n
0

) = deg tE � (log n)/2. Hence, if (?) were true for (A,Ln), the integer n

should be bounded.

4.3. Maximal slope of the cotangent space. In this paragraph we bound from above the
maximal slope of the dual of the Hermitian vector bundle (tA, k · kL). First, let us observe that
this maximal slope equals to PtA(g � 1) � deg tA. The choice of the metrics on tA made in § 4.1
ensures that the canonical polygon of tA is PtA⌦("⇤aL2)

v . Let us apply Proposition 2.1 twice: once
with the injective map �

v
1

and again with the restriction map H
0
(A,L2)

v
! (ker �0)

v (like in the
proof of Proposition 4.2). This gives

PtA⌦("⇤aL2)
v(g � 1)  P(ker �0)

v(g � 1) + (g � 1)h(�1)  PH0(A,L2)
v(g) + h(�0) + (g � 1)h(�1).

The semistability of H0
(A,L2) allows to compute its canonical polygon and we get

µmax(t
v
A
)  �gµ

�
H

0
(A,L2)

�
� deg tA + h(�0) + (g � 1)h(�1).

The formulas given in § 2.3.2 and Proposition 4.1 yield

µmax(t
v
A
) 

⇣
g

2
+ 1

⌘✓
hF (A) +

1

2
log h

0
(A,L)

◆
+

g
2

4
logmax

✓
1, hF (A) +

1

2
log h

0
(A,L)

◆
+ c(g)

where

c(g) =
g
2

2
log ⇡ +

3g

4
(log 5 + (g � 1) log 10.2 + g log g) 

3g
2

4
log 21.9g

(21.9 is an upper bound for 10.2⇥⇡2/3). As in Proposition 4.1, we can improve this estimate with
respect to h

0
(A,L) at the cost of a small loss on the constant:

µmax(t
v
A
) 

⇣
g

2
+ 1

⌘✓
hF (A) +

1

2
log h

0
(A,L)

◆
+

g
2

4
logmax (1, hF (A)) +

3g
2

4
log 38.7g.

Let us also state the more manageable following result.

Proposition 4.6. We have

µmax(t
v
A
)  (0.6g + 1)hF (A) +

1

2

⇣
g

2
+ 1

⌘
log h

0
(A,L) + g

2
log 15.2g.

Proof. When g = 1 we have µmax(t
v
A
) = hF (A) +

1

2
log h

0
(A,L) and the statement comes from

Bost’s inequality. When g � 2, we apply Lemma 4.3 with x = hF (A), x0 = �g log(⇡
p
2) and

c = 2/(5g). We substitute the upper bound of logmax (1, hF (A)) obtained this way in the
previous estimate for µmax(t

v
A
) and we conclude noting that g

2
log 15.2g is an upper bound for

(g
2
/4)max

�
0.2 log 2⇡

2
, log(5g/2e)

�
+ (3g

2
/4) log 38.7g because the maximum is always attained

for the second term (since g � 2) and (5/2e)
1/4
⇥ (38.7)

3/4
 15.2. ⇤

If we proceed in the same way using the bound with the numerical constant 21.9 instead of 38.7,
we get

µmax(t
v
A
)  (0.6g + 1)

✓
hF (A) +

1

2
log h

0
(A,L)

◆
+ g

2
log 10g.
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In terms of Deligne’s normalization h(A) = hF (A) +
g

2
log ⇡ of the Faltings height, we may replace

the constant 10 by 10/⇡
0.3
 7.1 and then compare with [Gr, Proposition 2.14] giving the estimate

µmax(t
v
A
)  (g + 1)

�
h(A) + (1/2) log h

0
(A,L)

�
+ 2g

5
log 2, less accurate when g � 2. Contrary to

the maximal slope of tA, the one of tv
A

cannot be bounded independently from h
0
(A,L) since

hF (A) +
1

2
log h

0
(A,L) = gµ(t

v
A
)  gµmax(t

v
A
).

However the same technics lead to the following statement.

Proposition 4.7. We have

µmax(t
v
A
)  (4g + 1)hF (A) +

1

2
log h

0
(A,L) + 2g

2
logmax (1, hF (A)) + 6g

2
log 98g.

Again this estimate is best possible with respect to h
0
(A,L) by the same argument given for

the optimality of Corollary 4.5.

Proof. As in the proof of Corollary 4.5, let us assume g � 2 and consider a principal polarization
L
0 on Z(A) = A

4
⇥ bA4 such that (tA, k · kL) is seen as a subbundle of (tZ(A), k · kL0). In particular

we have PtA(x)  PtZ(A)
(x) for all 0  x  g. Then µmax(t

v
A
)+deg tA = PtA(g�1)  PtZ(A)

(g�1).
We estimate this last number following the same method as above, paying attention to the fact
that (A,L2, �0, �1) are now built with (Z(A), L

0
) and therefore the dimension and Faltings height

of the abelian variety are multiplied by 8. Then Proposition 4.7 follows with the constant

4g
2
log ⇡ + 2g

2
log 8 + 6g log(2.58⇥ 8g) + 6g(g � 1) log(2.84⇥ 8g).

We conclude with ⇡2/3
⇥ 2⇥ 2.84⇥ 8 < 98.

⇤
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