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Abstract: This paper presents a rigorous definition of the isolability of a defect in a flat system
whose flat outputs are measured by sensors that are subject to faults. Particularly, we show that
the isolation of higher-dimensional defects can be attained under a certain condition pertaining
to the relation between the flat outputs. Accordingly, a detailed characterization of this relation
is presented in a mathematical framework. Finally, the validity of the results is demonstrated
using the three-tank system.
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1. INTRODUCTION

The fault detection and isolation (FDI) problem has been
introduced in automatic control as a paradigm for de-
signing algorithms able to detect the outbreak of faults
and isolate their causes. Various FDI techniques have
been developed and can be found in survey papers (see
e.g. Zhou et al. (2014), Thirumarimurugan et al. (2016)).
The first proposed method is the hardware redundancy in
which multiple sensors and actuators are used to measure
and control a particular variable (Chen et al. (2015)).
The drawbacks of this method are the extra equipment,
maintenance cost and additional space required to ac-
commodate the equipment. Later, this method has been
replaced by the analytical redundancy, which is based on
the notion of generating residual signals. These residues
are defined as the difference between the measured vari-
ables and the estimated ones. In the case of no defect,
the value of the residue is close to zero and it is different
than zero otherwise. There exist several methods to gen-
erate residues, such as the observer-based approach (Tousi
and Khorasani (2011)), the parity-space approach (Diversi
et al. (2002)) or the Kalman-based approach (Izadian and
Khayyer (2010)).

Recently, the flatness property has been introduced into
the repertoire of FDI techniques ((Suryawan et al. (2010)),
(Mart́ınez-Torres et al. (2014))). Here, residues are cal-
culated using the differential flatness property. Roughly
speaking, a system is said to be flat if all the state and
input variables can be expressed as function of a particular
variable, called flat output, and a finite number of its
successive derivatives. The method presented in (Suryawan
et al. (2010)) is dedicated to linear flat systems and it uses

B-splines parametrisation to estimate the time derivatives
of the flat output, which may not be defined because of the
presence of noises. The disadvantage of this method is that
the derivative estimation could take time and might delay
the reconfiguration process. This issue has been overcome
later in (Mart́ınez-Torres et al. (2014)), where a high-gain
observer is used to evaluate the time derivative of noisy
signals and a low-pass filter is synthesized to improve its
performance. In addition, this method can be applied to
both, linear and non-linear flat systems.

In the flatness-based FDI approach, residues betweeen the
measured state and input variables and their expression
using the measured flat output are computed online. Then,
the fault detection algorithm is similar to that of other
approaches: if a residue exceeds its threshold then a fault
is detected. Therefore the problem of the isolability of a
fault is directly related to the dependence of the generated
residues with respect to the state variables (Kóscielny et al.
(2016)). Moreover, if several flat outputs are required,
these flat outputs must be such that, if a fault affects one
flat output, the others are not totally affected (Mart́ınez-
Torres et al. (2014)).

In the present paper, a rigorous definition of the isolability
of defects is presented as well as a characterization of the
relations between the flat outputs used. The latter flat
outputs may be computed by the method of unimodular
completion of polynomial matrices (Franke and Röbenack
(2013)) that, in some particular cases, directly provides
the flat outputs (Fritzsche et al. (2016b)).

The main contributions of this paper are the above men-
tioned rigorous definition of the isolability of defects and



the characterization of the flat outputs to be used in the
defect isolation.

This paper is organised as follows: section 2 introduces
the basic concepts of FDI for non-linear differentially
flat systems and their definitions. After a brief recall in
section 3 of the direct flat output computation method,
section 4 discusses the relations that exist between flat
outputs. Section 5 presents the application of this FDI
approach to the three-tank system. Finally, section 6
concludes the paper.

2. FLATNESS-BASED FDI

2.1 Differentially Flat System

Consider the following non-linear system

ẋ = f(x, u) (1)

where x, the vector of states, evolves in a n-dimensional
manifold X, u ∈ Rm is the vector of inputs, m ≤ n
and rank(∂f∂u ) = m. Let (x, u) , (x, u, u̇, ü, . . .) be a
prolongation of the coordinates (x, u) to the manifold of

jets of infinite order X , X × Rm∞ (Levine, 2009, Chapter
5).

The system (1) is flat at a point (x0, u0) ∈ X if and only
if there exist a vector y = (y1, . . . , ym) ∈ Rm, two integers
r and s and mappings ψ defined on a neighbourhood V of
(x0, u0) in X and φ defined on a neighbourhoodW ⊂ ψ(V)

of y0 , (y0, ẏ0, ÿ0, . . .) , ψ(x0, u0) in Rm∞ such that:

(1) y = ψ(x, u, u̇, . . . , u(s)) ∈ W
(2) y1, . . . , ym and their successive derivatives are linearly

independent in W
(3) (x, u) = ϕ(y)

= (ϕ0(y, ẏ, . . . , y(r), ϕ1(y, ẏ, . . . , y(r+1))) ∈ prX×Rm(V)
where prX×Rm(V) is the projection of V in X × Rm

(4) The differential equation ϕ̇0(y) = f(ϕ0(y), ϕ1(y)) is
identically satisfied in W.

The vector y is called flat output of the system. The map-
pings ψ and ϕ are called isomorphisms of Lie-Bäcklund
and are inverse of one another.

After elimination of the input u in equation (1), the
implicit system associated with the system (1) is given
by:

F (x, ẋ) = 0 (2)

where F is supposed to be meromorphic (Levine (2009))
and rank(∂F∂ẋ ) = n−m. Integral curves of the systems (1)
and (2) coincide on the set X0 defined by

X0 =
{
x ∈ X | d

k

dtk
F (x, ẋ) = 0,∀k ∈ N

}
\

{x ∈ X |6 ∃u ∈ Rm s.t. ẋ− f(x, u) = 0}.

Remark 1. The property of flatness is not defined globally.
The Lie-Bäcklund isomorphisms ψ and φ are only locally
defined. Thus, there might exist points in X0 where no
such isomorphisms exist or, otherwise stated, where the
system is not flat. It has been proven in (Kaminski et al.
(2018)) that the set of intrinsic singularities contains the
set of equilibrium points of the system that are not first
order controllable.

2.2 Fault Detection and Isolation

We recall the residue design method of (Mart́ınez-Torres
et al. (2014)), using the expressions of the state and input
variables in function of the flat output.

Suppose that the system (1) is flat with
y = ψ(x, u, u̇, . . . , u(s)) a flat output, then the full state
and input read:

x = ϕ0(y, ẏ, . . . , y(r)) (2a)

u = ϕ1(y, ẏ, . . . , y(r+1)). (2b)

Definition 1. (Mart́ınez-Torres et al. (2014). The kth-state
(resp. lth-input) residue rxk

(resp. rul
) is defined by the

difference between the state (resp. input) measurement ξk
(resp. νl) and the one calculated by (2a) (resp. (2b)) using
the measured flat output y:

rxk
= ξk − xk, , k = 1, . . . , n

rul
= νl − ul , l = 1, . . . ,m, (3)

with xk = ϕ0,k(y) and ul = ϕ0,l(y).

The components (y, ẏ, ÿ, . . .) of the flat output take their
values from the sensors and actuators. However, due to the
presence of noises on sensors and actuators, the derivatives
of the flat outputs may not be defined. For this purpose, a
high-gain observer is used to estimate these derivatives and
a low-pass filter is synthesized to improve its performance.
Conditions of robustness of this method are detailed in
(Mart́ınez-Torres et al. (2014)).

Also, due to the existence of noises, a threshold is fixed
for each residue. In the case of no defects, the calculated
states xk (resp. inputs ul) and their measurements ξk
(resp. νl) have about the same values and their residues
do not exceed their thresholds. In contrast, if, at least,
one of the calculated residues exceeds its threshold then a
fault is detected on the corresponding sensor or actuator.
However, for an arbitrary flat output, that may depend
on all the system variables, several thresholds may be
exceeded simultaneously and the possibility of isolating
a defect thus highly depends on the choice of flat output.
The definition of the isolability for the structured residual
approach in the framework of general polynomial systems
has been introduced in (Staroswiecki and Comtet-Varga
(2001)). We pose the following rigorous fault isolability
definition in the flatness context:

Definition 2. (Isolability) A fault on the state xi is isolable
if it verifies the following conditions:

(1)
∂rxi

∂xi
6= 0 ;

(2)
∂rxj

∂xi
= 0 ∀ j 6= i and

∂rul

∂xi
= 0 ∀ l ∈ {1, . . . ,m}.

An isolable fault on the input ul is defined in the same
way. This definition of isolability reflects the fact that a
fault on a state (resp. input) is isolable if this state is not
a component of the flat output y.

Hypothesis: From now on, we assume that there is only
one fault at a time affecting the sensors or actuators.



2.3 Application on the Three-Tank System

The three-tank system represents the dynamics of three
cylindrical tanks of cross-sectional area S, connected to
each other by means of cylindrical pipes of section Sn,
and two pumps P1 and P2 that supply tanks T1 and T3.
These three tanks are also connected to a central reservoir
through pipes (see Fig. 1).

The explicit system of equations of the three-tank model
is given by:

Sẋ1 = −Q10(x1)−Q13(x1, x3) + u1 (4)

Sẋ2 = −Q20(x2) +Q32(x2, x3) + u2 (5)

Sẋ3 = Q13(x1, x3)−Q32(x2, x3)−Q30(x3) (6)

where the state variables xi, i = 1, 2, 3 represent the water
level of each tank, Qi0, i = 1, 2, 3 the outflow between each
tank and the central reservoir, Q13 is the outflow between
tank 1 and tank 3 and Q32 the outflow between tank 3
and tank 2, u1 and u2 are the input variables, namely the
incoming flow of each pump.

Fig. 1. Three Tank System, Source: Noura et al. (2009)

Hypothesis: The following configuration is considered to
avoid singularities 1 :

x1 > x3 > x2.

We consider that the valves connecting tanks 1 and 3 with
the central reservoir are closed, i.e. Q10 ≡ 0 and Q30 ≡ 0.
The expressions of Q13, Q32 and Q20 are given by:

Q13(x1, x3) = az1Sn
√

2g(x1 − x3) (7)

Q20(x2) = az2Sn
√

2g(x2) (8)

Q32(x2, x3) = az3Sn
√

2g(x3 − x2) (9)

where azr, r = 1, 2, 3, is the flow coefficient and g the
gravitational force.

This system is flat with y = (x1, x3)T = (y1, y2)T as flat
output. The state and input variables of the system are
then constructed using (2a) and (2b) as follows:

1 According to the Remark 1, the point x ∈ X0 s.t. x1 = x2 = x3 is
an equilibrium point which is not first order controllable, then it is
a point of intrinsic singularity.

x1 = y1

x2 = y2 −
1

2g

(az1Sn√2g(y1 − y2)− Sẏ2
az3Sn

)2
x3 = y2

u1 = Sẏ1 + az1Sn
√

2g(y1 − y2)

u2 = Sẋ2 − az3Sn
√

2g(y2 − x2) + az2Sn
√

2gx2.

Since the flat outputs take their values from the sensors
then the variables x1 and x3 being measured as flat output,
they are equal to the measurements ξ1 and ξ3. Hence
rx1 ≡ 0 and rx3 ≡ 0, so that they can be eliminated from
the vector of residues, that thus reads:(

rx2

ru1

ru2

)
=

(
ξ2
ν1
ν2

)
−

(
x2
u1
u2

)
. (10)

In this system, the state x2 is not a component of the
flat output y, then, according to the Definition 2, only the
residue rx2 is triggered by a fault on the sensor x2. As a
consequence, a fault on the sensor x2 can be detected and
isolated. But it can be easily verified that if a fault affects
one of the components of the flat output y then all the
residues will be affected and the fault cannot be isolated
at this stage.

In (Nagy et al. (2009)), it has been shown that the system
of three-tank is observable with only the state variable x1.
This means that the other state variables x2 and x3 can
be estimated using x1 while given the measurements of u1
and u2. In this case, two additional residues r′x2

= ξ2 − x̂2
and r′x3

= ξ3 − x̂3 are added to (10), where x̂2 and x̂3
are the estimated values of x2 and x3, respectively. If a
fault affects the component of the flat output x3, then
all the residues, except r′x2

which is independent of x3,
will be triggered and, consequently, this fault is detected
and isolated. Finally, if all the above residues exceed their
thresholds then we conclude that a fault appears on the
sensor x1. Table 1 summarizes the residues triggered by
each fault.

Fault rx2 ru1 ru2 r′x2
r′x3

Fx1 1 1 1 1 1
Fx2 1 0 0 1 0
Fx3 1 1 1 0 1
Fu1 0 1 0 1 1
Fu2 0 0 1 1 1

Table 1. Faults signatures

Due to the difficulty of estimating x2 and x3 as functions
of x1, and the need to know the measurements of u1 and
u2, this method can be replaced by calculating another
flat output of the considered flat system. In this case, the
measurements of the inputs are not need to be known.
This approach is available only if these flat outputs verify
the condition of isolability represented above, so that they
are algebraically independent in the sense that if a fault
affects one of them the others will not be totally affected.

In the following, the concept of algebraically independent
flat outputs is defined. Moreover, we show that this fea-
ture is valid for the class of direct flat systems that are
introduced in the next section.



3. DIRECT FLAT SYSTEM

3.1 Unimodular Completion Algorithm

The variation of the implicit system (2) gives the following
tangent system

0 = dF (x, ẋ) = P
( d
dt

)
dx, (11)

with

P
( d
dt

)
=

∂F1

∂x1

+
∂F1

∂ẋ1

d

dt
. . .

∂F1

∂xn

+
∂F1

∂ẋn

d

dt
...

...
∂Fn−m
∂x1

+
∂Fn−m
∂ẋ1

d

dt
. . .

∂Fn−m
∂xn

+
∂Fn−m
∂ẋn

d

dt

 (12)

and dx = (dx1, . . . , dxn).

The matrix P
( d
dt

)
∈ M(n−m)×n

[ d
dt

]
, the ring of poly-

nomial matrices in the operator d
dt with meromorphic

coefficients (Levine (2009)). An invertible matrix U in

Mp×p

[ d
dt

]
whose inverse is also in Mp×p

[ d
dt

]
is called

unimodular. The set of unimodular matrices is denoted by

Up
[ d
dt

]
. The degree in d

dt of a matrix K ∈ Mp×q

[ d
dt

]
,

denoted by deg(K), is defined by:

deg(K) = max{degrow(Ki), i = 1, . . . , p},
where

degrow(Ki) = max{deg(Ki,j), j = 1, . . . , q}.

Definition 3. (Lévine and Nguyen (2003)). The matrix

P
( d
dt

)
is said to be hyper-regular if and only if there exists

a unimodular matrix U ∈ Un
[ d
dt

]
such that

P
( d
dt

)
U =

(
I(n−m) 0(n−m)×m

)
. (13)

The main property of the flatness is given by the following
proposition:
Proposition 1. (Kaminski et al. (2018)). If the system (2) is
flat at a point x0 ∈ X0, then there exists a neighbourhood

V of x0 where P
( d
dt

)
is hyper-regular.

Let Û = U

(
0(n−m)×m

Im

)
and ω = (ω1, . . . , ωm) a vector of

m independent 1-forms defined by

ω = Û†dx, (14)

with

Û† , (0m×(n−m) Im)U−1, (15)

the pseudo-inverse of Û . The vector ω is a flat output of
the variational system (11) or simply a tangent flat output.

Remark 2. The pseudo-inverse Û† is not unique, then the

tangent flat output ω, associated to Û†, is not unique too.

The next definition is borrowed from (Fritzsche et al.
(2016a)) and (Fritzsche et al. (2016b)):

Definition 4. Given a hyper-regular matrix M ∈Mp,q

[ d
dt

]
with p ≤ q, we say that N ∈ M(q−p)×q

[ d
dt

]
is a

unimodular completion of M if and only if(
M
N

)
∈ Uq

[ d
dt

]
. (16)

Proposition 2. The matrix Û† is a unimodular completion

of P
( d
dt

)
.

Proof. Let U ∈ Un[ ddt ] such that

P
( d
dt

)
U =

(
I(n−m) 0(n−m)×m

)
, (17)

then P
( d
dt

)
=
(
In−m 0(n−m)×m

)
U−1 constitutes the

first n−m rows of the matrix U−1, i.e.

U−1 =

(
P
( d
dt

)
W

)
(18)

with W ∈ Mm×n[ ddt ]. Moreover, according to (12), the

matrix Û† constitutes the last m rows of U−1, hence

U−1 =

P( ddt)
Û†

 , (19)

which proves that Û† is a unimodular completion of

P
( d
dt

)
. �

An algorithm of computation of a unimodular completion

of the matrix P
( d
dt

)
is developed in (Fritzsche et al.

(2016a)). The flat output y = (y1, . . . , ym) of the system
(2) is given by

dy = ω (20)

provided that ω is integrable, i.e. dω = 0. The conditions of
integrability are detailed in (Levine (2009), Lévine (2011))
and they require the resolution of PDEs whose complexity
depends on the system itself.

3.2 Direct Flat Representation

Definition 5. (Pomet (1997)). Let (1) be a flat system, it
is called (−1)−flat or x−flat if and only if there is a flat
output y such that y depends only on x, i.e.

y = ψ(x). (21)

Consider a subclass of (−1)−flat systems called direct flat
systems defined as follows:

Definition 6. (Fritzsche et al. (2016b)). We say that a
(−1)−flat system is a direct flat system if there exists a
permutation σ : {1, . . . , n} 7−→ {σ(1), . . . , σ(n)} such that
there exists a flat output given by y = (xσ(1), . . . , xσ(m)).
Such flat output is called direct flat output.

Proposition 3. (Fritzsche et al. (2016b)). Let P
( d
dt

)
de-

fined by (12) be hyper-regular. Assume that there exists
Π, a column permutation matrix such that

P̃
( d
dt

)
, P

( d
dt

)
Π = (A B) (22)



with A ∈ U(n−m)

[ d
dt

]
and B ∈ M(n−m)×m

[ d
dt

]
. Then

denoting by H̃ =
(
0m×(n−m) Im

)
and H = H̃ΠT , which

are constant matrices, H̃ (resp. H) is a unimodular com-

pletion of P̃
( d
dt

)
(resp. P

( d
dt

)
). A tangent flat output ω

is given by ω = Hdx and always satisfies the integrability
condition dω = 0. Hence, a (direct) flat output y of the
non linear system is given by

y = Hx. (23)

Definition 7. P̃
( d
dt

)
, defined in Proposition 3, is called a

direct flat representation, for which ỹ , H̃x is a direct flat
output.

Remark 3. A direct flat representation is indeed not
unique.

4. ALGEBRAICALLY INDEPENDENT FLAT
OUTPUTS

As mentioned in (Torres et al. (2013)), in the aim to
provide a total isolation of defects on a systems sensors
or actuators, we need to increase the number of residues
by calculating several flat outputs. These flat outputs must
be algebraically independent in the sense that a fault that
affect one of them, the others will not be totally affected. In
this section, we present a way to characterize the relation
between different flat outputs.

Proposition 4. Let Ωx be the set of all tangent flat outputs
at x of a flat system. Then, for all ω1 and ω2 ∈ Ωx, there
exists a unimodular matrix K ∈ Um[ ddt ] such that

ω1 = K ω2. (24)

Proof. Since the matrix P ( ddt ) is supposed to be hyper-

regular, there exists a hyper-regular matrix Û such that

ω = Û†dx (25)

and, indeed, according to (14) dx = Ûω.

Let ω1 = Û†1dx and ω2 = Û†2dx be two different tangent
flat outputs at x, then

ω1 = Û†1 Û2 ω2 , K ω2 (26)

with

K = Û†1 Û2. (27)

Let us prove that K is unimodular. Û†1 and Û2 are hyper-
regular by construction, then if ξ is a vector such that

Û†1 Û2ξ = 0 with ξ 6= 0 then ζ = Û2ξ is also 6= 0 and

Û†1ζ = 0 which contradicts the hyper-regularity of Û†1 .
Hence, K is hyper-regular and square, which proves the
unimodularity. �

From here two types of relations between the tangent flat
outputs are introduced:

(1) if deg(K) = 0 then the tangent flat outputs ω1 and
ω2 are said to be algebraically dependent;

(2) if deg(K) ≥ 1 then the tangent flat outputs ω1 and
ω2 are said to be algebraically independent.

It is easy to see that, according to the implicit form (2)
of the system, at least one state variable is an integral of
order larger than or equal to 1 of the other state variables.
As a consequence, we have the following corollary:

Corollary 1. Two different direct tangent flat outputs of a
direct flat system are algebraically independent.

Remark 4. A direct flat output is given by dy = ω,
then consequently, two direct flat outputs are algebraically
independent.

5. APPLICATION ON THE THREE TANK SYSTEM

For the reasons explained in section 2.3, and in order to
detect and isolate faults on sensors and actuators of the
three-tank system, we need to calculate another flat output
that will be algebraically independent of y = (x1, x3)T . In
this section, we show that this system is a directly flat with
two direct flat outputs. After that we will show how these
two flat outputs are useful for the flatness-based FDI.

The implicit equation of this system is calculated as
follows: equation (6) of the explicit system is free of inputs,
so after elimination of equations (4) and (5) and replacing
(7) and (9) in (6), we obtain:

F (x, ẋ) = ẋ3 − az1 S
√

2g(x1 − x3)

+ az3 S
√

2g(x3 − x2) = 0. (28)

with S = Sn/S.

According to (12), the matrix P
( d
dt

)
, associated to (28),

is given by:

P
( d
dt

)
=
(
− az1Sg√

2g(x1 − x3)
− az3Sg√

2g(x3 − x2)

az1Sg√
2g(x1 − x3)

+
az3Sg√

2g(x3 − x2)
+
d

dt

)
. (29)

The matrix P
(
d
dt

)
is of the form P

(
d
dt

)
= (S( ddt ) T ( ddt ))

with S( ddt ) ∈ U1
[ d
dt

]
, then according to the Proposition 3,

the following matrix

H
( d
dt

)
=

(
0 1 0
0 0 1

)
(30)

is a unimodular completion of P
(
d
dt

)
. Hence, a tangent flat

output is given by

ω = H
( d
dt

)
dx =

(
dx2
dx3

)
(31)

and it is integrable, i.e. dω = 0. Then the system (28) is a
direct flat system with

y =

(
x2
x3

)
(32)

a direct flat output. One can also find the flat output
y = (x1, x3)T using the direct flat representation.

In the following, we denote by y1 = (x1, x3)T and ω1 =
(dx1, dx3)T the corresponding tangent flat output, y2 =
(x2, x3)T and ω2 = (dx2, dx3)T . In fact, the direct flat
outputs y1 and y2 are algebraically independent: let

K =

(
γ η + κ

d

dt
0 1

)
(33)



be a unimodular matrix with

γ = −
(az1
az3

)2
− az1
a2z3

∆

η = 1 +
(az1
az3

)2
+
az1
a2z3

∆

κ =
ẋ3

a2z1S2g
+

az3
a2z1S

√
2g(x3 − x2) (34)

∆ =
g

S
ẋ3√

2g(x3 − x2)

and deg(K) = 1. With respect to the implicit form (28),
one can easily verify that

ω1 = K ω2, (35)

which proves the algebraic independence.

According to the Definition 2 of the isolability, the state
x1 is not a component of the flat output y2 = (x2, x3)T ,
then a fault on the sensor x1 can be detected and isolated.
Finally, by associating the two flat outputs y1 and y2, if a
fault is detected but can not be isolated on x1 and x2, then
x3 is inevitably faulty, which allows the complete isolation
of defects.

6. CONCLUSION

The current paper introduced a novel and rigorous defini-
tion of the isolability of faults affecting a system’s sensors
and actuators, using the flatness-based FDI approach.
The described condition of isolability provided an efficient
way to select a handful of flat outputs useful for fault
isolation from an infinite number of possible flat outputs.
Our results were tested and validated using the three-
tank system. Future work needs to focus on providing
new definitions of residue signals in order to overcome the
reliance on a high-gain observer when estimating the time
derivatives of flat outputs.
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Franke, M. and Röbenack, K. (2013). On the computation
of flat outputs for nonlinear control systems. In 2013
European Control Conference (ECC), 167–172. IEEE.

Fritzsche, K., Franke, M., Knoll, C., and Röbenack,
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(2016b). Unimodular completion and direct flat repre-
sentation in the context of differential flatness. PAMM,
16(1), 807–808.

Izadian, A. and Khayyer, P. (2010). Application of kalman
filters in model-based fault diagnosis of a dc-dc boost
converter. In IECON 2010-36th Annual Conference on
IEEE Industrial Electronics Society, 369–372. IEEE.
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