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This paper presents a rigorous definition of the isolability of a defect in a flat system whose flat outputs are measured by sensors that are subject to faults. Particularly, we show that the isolation of higher-dimensional defects can be attained under a certain condition pertaining to the relation between the flat outputs. Accordingly, a detailed characterization of this relation is presented in a mathematical framework. Finally, the validity of the results is demonstrated using the three-tank system.
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INTRODUCTION

The fault detection and isolation (FDI) problem has been introduced in automatic control as a paradigm for designing algorithms able to detect the outbreak of faults and isolate their causes. Various FDI techniques have been developed and can be found in survey papers (see e.g. [START_REF] Zhou | Overview of fault detection and identification for non-linear dynamic systems[END_REF], [START_REF] Thirumarimurugan | Comparison of fault detection and isolation methods: A review[END_REF]).

The first proposed method is the hardware redundancy in which multiple sensors and actuators are used to measure and control a particular variable [START_REF] Chen | A hybrid data-driven modeling method on sensor condition monitoring and fault diagnosis for power plants[END_REF]). The drawbacks of this method are the extra equipment, maintenance cost and additional space required to accommodate the equipment. Later, this method has been replaced by the analytical redundancy, which is based on the notion of generating residual signals. These residues are defined as the difference between the measured variables and the estimated ones. In the case of no defect, the value of the residue is close to zero and it is different than zero otherwise. There exist several methods to generate residues, such as the observer-based approach [START_REF] Tousi | Robust observerbased fault diagnosis for an unmanned aerial vehicle[END_REF]), the parity-space approach [START_REF] Diversi | Robust residual generation for dynamic processes using decoupling technique[END_REF]) or the Kalman-based approach [START_REF] Izadian | Application of kalman filters in model-based fault diagnosis of a dc-dc boost converter[END_REF]).

Recently, the flatness property has been introduced into the repertoire of FDI techniques ( [START_REF] Suryawan | Fault detection, isolation, and recovery using spline tools and differential flatness with application to a magnetic levitation system[END_REF]), [START_REF] Martínez-Torres | Flatnessbased fault tolerant control[END_REF])). Here, residues are calculated using the differential flatness property. Roughly speaking, a system is said to be flat if all the state and input variables can be expressed as function of a particular variable, called flat output, and a finite number of its successive derivatives. The method presented in [START_REF] Suryawan | Fault detection, isolation, and recovery using spline tools and differential flatness with application to a magnetic levitation system[END_REF]) is dedicated to linear flat systems and it uses B-splines parametrisation to estimate the time derivatives of the flat output, which may not be defined because of the presence of noises. The disadvantage of this method is that the derivative estimation could take time and might delay the reconfiguration process. This issue has been overcome later in (Martínez- [START_REF] Martínez-Torres | Flatnessbased fault tolerant control[END_REF]), where a high-gain observer is used to evaluate the time derivative of noisy signals and a low-pass filter is synthesized to improve its performance. In addition, this method can be applied to both, linear and non-linear flat systems.

In the flatness-based FDI approach, residues betweeen the measured state and input variables and their expression using the measured flat output are computed online. Then, the fault detection algorithm is similar to that of other approaches: if a residue exceeds its threshold then a fault is detected. Therefore the problem of the isolability of a fault is directly related to the dependence of the generated residues with respect to the state variables [START_REF] Kóscielny | Fault isolability with different forms of the faults-symptoms relation[END_REF]). Moreover, if several flat outputs are required, these flat outputs must be such that, if a fault affects one flat output, the others are not totally affected (Martínez- [START_REF] Martínez-Torres | Flatnessbased fault tolerant control[END_REF]).

In the present paper, a rigorous definition of the isolability of defects is presented as well as a characterization of the relations between the flat outputs used. The latter flat outputs may be computed by the method of unimodular completion of polynomial matrices [START_REF] Franke | On the computation of flat outputs for nonlinear control systems[END_REF]) that, in some particular cases, directly provides the flat outputs [START_REF] Fritzsche | Unimodular completion and direct flat representation in the context of differential flatness[END_REF]).

The main contributions of this paper are the above mentioned rigorous definition of the isolability of defects and the characterization of the flat outputs to be used in the defect isolation.

This paper is organised as follows: section 2 introduces the basic concepts of FDI for non-linear differentially flat systems and their definitions. After a brief recall in section 3 of the direct flat output computation method, section 4 discusses the relations that exist between flat outputs. Section 5 presents the application of this FDI approach to the three-tank system. Finally, section 6 concludes the paper.

FLATNESS-BASED FDI

Differentially Flat System

Consider the following non-linear system ẋ = f (x, u)

(1) where x, the vector of states, evolves in a n-dimensional manifold X, u ∈ R m is the vector of inputs, m ≤ n and rank( ∂f ∂u ) = m. Let (x, u) (x, u, u, ü, . . .) be a prolongation of the coordinates (x, u) to the manifold of jets of infinite order X X × R m ∞ (Levine, 2009, Chapter 5).

The system (1) is flat at a point (x 0 , u 0 ) ∈ X if and only if there exist a vector y = (y 1 , . . . , y m ) ∈ R m , two integers r and s and mappings ψ defined on a neighbourhood V of (x 0 , u 0 ) in X and φ defined on a neighbourhood W ⊂ ψ(V) of y 0 (y 0 , ẏ0 , ÿ0 , . . .) ψ(x 0 , u 0 ) in R m ∞ such that: (1) y = ψ(x, u, u, . . . , u (s) ) ∈ W (2) y 1 , . . . , y m and their successive derivatives are linearly independent in W (3) (x, u) = ϕ(y) = (ϕ 0 (y, ẏ, . . . , y (r) , ϕ 1 (y, ẏ, . . . , y (r+1) )) ∈ pr X×R m (V) where pr X×R m (V) is the projection of V in X × R m (4) The differential equation φ0 (y) = f (ϕ 0 (y), ϕ 1 (y)) is identically satisfied in W.

The vector y is called flat output of the system. The mappings ψ and ϕ are called isomorphisms of Lie-Bäcklund and are inverse of one another.

After elimination of the input u in equation (1), the implicit system associated with the system (1) is given by: F (x, ẋ) = 0 (2) where F is supposed to be meromorphic [START_REF] Levine | Analysis and control of nonlinear systems: A flatness-based approach[END_REF]) and rank( ∂F ∂ ẋ ) = n -m. Integral curves of the systems (1) and (2) coincide on the set X 0 defined by

X 0 = x ∈ X | d k dt k F (x, ẋ) = 0, ∀k ∈ N \ {x ∈ X | ∃ u ∈ R m s.t. ẋ -f (x, u) = 0}.
Remark 1. The property of flatness is not defined globally. The Lie-Bäcklund isomorphisms ψ and φ are only locally defined. Thus, there might exist points in X 0 where no such isomorphisms exist or, otherwise stated, where the system is not flat. It has been proven in [START_REF] Kaminski | Intrinsic and apparent singularities in differentially flat systems, and application to global motion planning[END_REF]) that the set of intrinsic singularities contains the set of equilibrium points of the system that are not first order controllable.

Fault Detection and Isolation

We recall the residue design method of (Martínez-Torres et al. ( 2014)), using the expressions of the state and input variables in function of the flat output. Suppose that the system (1) is flat with y = ψ(x, u, u, . . . , u (s) ) a flat output, then the full state and input read:

x = ϕ 0 (y, ẏ, . . . , y (r) ) (2a) u = ϕ 1 (y, ẏ, . . . , y (r+1) ). ( 2b 
)
Definition 1. (Martínez- [START_REF] Martínez-Torres | Flatnessbased fault tolerant control[END_REF]. The k th -state (resp. l th -input) residue r x k (resp. r u l ) is defined by the difference between the state (resp. input) measurement ξ k (resp. ν l ) and the one calculated by (2a) (resp. (2b)) using the measured flat output y:

r x k = ξ k -x k , , k = 1, . . . , n r u l = ν l -u l , l = 1, . . . , m, (3) 
with x k = ϕ 0,k (y) and u l = ϕ 0,l (y).

The components (y, ẏ, ÿ, . . .) of the flat output take their values from the sensors and actuators. However, due to the presence of noises on sensors and actuators, the derivatives of the flat outputs may not be defined. For this purpose, a high-gain observer is used to estimate these derivatives and a low-pass filter is synthesized to improve its performance.

Conditions of robustness of this method are detailed in (Martínez- [START_REF] Martínez-Torres | Flatnessbased fault tolerant control[END_REF]).

Also, due to the existence of noises, a threshold is fixed for each residue. In the case of no defects, the calculated states x k (resp. inputs u l ) and their measurements ξ k (resp. ν l ) have about the same values and their residues do not exceed their thresholds. In contrast, if, at least, one of the calculated residues exceeds its threshold then a fault is detected on the corresponding sensor or actuator. However, for an arbitrary flat output, that may depend on all the system variables, several thresholds may be exceeded simultaneously and the possibility of isolating a defect thus highly depends on the choice of flat output. The definition of the isolability for the structured residual approach in the framework of general polynomial systems has been introduced in [START_REF] Staroswiecki | Analytical redundancy relations for fault detection and isolation in algebraic dynamic systems[END_REF]). We pose the following rigorous fault isolability definition in the flatness context:

Definition 2. (Isolability) A fault on the state x i is isolable if it verifies the following conditions:

(1)

∂r xi ∂x i = 0 ;
(2)

∂r xj ∂x i = 0 ∀ j = i and ∂r u l ∂x i = 0 ∀ l ∈ {1, . . . , m}.
An isolable fault on the input u l is defined in the same way. This definition of isolability reflects the fact that a fault on a state (resp. input) is isolable if this state is not a component of the flat output y.

Hypothesis: From now on, we assume that there is only one fault at a time affecting the sensors or actuators.

Application on the Three-Tank System

The three-tank system represents the dynamics of three cylindrical tanks of cross-sectional area S, connected to each other by means of cylindrical pipes of section S n , and two pumps P 1 and P 2 that supply tanks T 1 and T 3 . These three tanks are also connected to a central reservoir through pipes (see Fig. 1).

The explicit system of equations of the three-tank model is given by:

S ẋ1 = -Q 10 (x 1 ) -Q 13 (x 1 , x 3 ) + u 1 (4) S ẋ2 = -Q 20 (x 2 ) + Q 32 (x 2 , x 3 ) + u 2 (5) S ẋ3 = Q 13 (x 1 , x 3 ) -Q 32 (x 2 , x 3 ) -Q 30 (x 3 ) (6)
where the state variables x i , i = 1, 2, 3 represent the water level of each tank, Q i0 , i = 1, 2, 3 the outflow between each tank and the central reservoir, Q 13 is the outflow between tank 1 and tank 3 and Q 32 the outflow between tank 3 and tank 2, u 1 and u 2 are the input variables, namely the incoming flow of each pump. Hypothesis: The following configuration is considered to avoid singularities1 :

x 1 > x 3 > x 2 .
We consider that the valves connecting tanks 1 and 3 with the central reservoir are closed, i.e. Q 10 ≡ 0 and Q 30 ≡ 0.

The expressions of Q 13 , Q 32 and Q 20 are given by:

Q 13 (x 1 , x 3 ) = a z1 S n 2g(x 1 -x 3 ) (7) Q 20 (x 2 ) = a z2 S n 2g(x 2 ) (8) Q 32 (x 2 , x 3 ) = a z3 S n 2g(x 3 -x 2 ) (9)
where a zr , r = 1, 2, 3, is the flow coefficient and g the gravitational force.

This system is flat with y = (x 1 , x 3 ) T = (y 1 , y 2 ) T as flat output. The state and input variables of the system are then constructed using (2a) and (2b) as follows:

x 1 = y 1 x 2 = y 2 - 1 2g a z1 S n 2g(y 1 -y 2 ) -S ẏ2 a z3 S n 2 x 3 = y 2 u 1 = S ẏ1 + a z1 S n 2g(y 1 -y 2 ) u 2 = S ẋ2 -a z3 S n 2g(y 2 -x 2 ) + a z2 S n 2gx 2 .
Since the flat outputs take their values from the sensors then the variables x 1 and x 3 being measured as flat output, they are equal to the measurements ξ 1 and ξ 3 . Hence r x1 ≡ 0 and r x3 ≡ 0, so that they can be eliminated from the vector of residues, that thus reads:

r x2 r u1 r u2 = ξ 2 ν 1 ν 2 - x 2 u 1 u 2 . ( 10 
)
In this system, the state x 2 is not a component of the flat output y, then, according to the Definition 2, only the residue r x2 is triggered by a fault on the sensor x 2 . As a consequence, a fault on the sensor x 2 can be detected and isolated. But it can be easily verified that if a fault affects one of the components of the flat output y then all the residues will be affected and the fault cannot be isolated at this stage.

In [START_REF] Nagy | State estimation of the three-tank system using a multiple model[END_REF], it has been shown that the system of three-tank is observable with only the state variable x 1 . This means that the other state variables x 2 and x 3 can be estimated using x 1 while given the measurements of u 1 and u 2 . In this case, two additional residues r x2 = ξ 2 -x 2 and r x3 = ξ 3 -x 3 are added to (10), where x 2 and x 3 are the estimated values of x 2 and x 3 , respectively. If a fault affects the component of the flat output x 3 , then all the residues, except r x2 which is independent of x 3 , will be triggered and, consequently, this fault is detected and isolated. Finally, if all the above residues exceed their thresholds then we conclude that a fault appears on the sensor x 1 . Table 1 summarizes the residues triggered by each fault.

Fault rx 2 ru 1 ru 2 r x 2 r x 3 Fx 1 1 1 1 1 1 Fx 2 1 0 0 1 0 Fx 3 1 1 1 0 1 Fu 1 0 1 0 1 1 Fu 2 0 0 1 1 1 Table 1. Faults signatures
Due to the difficulty of estimating x 2 and x 3 as functions of x 1 , and the need to know the measurements of u 1 and u 2 , this method can be replaced by calculating another flat output of the considered flat system. In this case, the measurements of the inputs are not need to be known. This approach is available only if these flat outputs verify the condition of isolability represented above, so that they are algebraically independent in the sense that if a fault affects one of them the others will not be totally affected.

In the following, the concept of algebraically independent flat outputs is defined. Moreover, we show that this feature is valid for the class of direct flat systems that are introduced in the next section.

DIRECT FLAT SYSTEM

Unimodular Completion Algorithm

The variation of the implicit system (2) gives the following tangent system

0 = dF (x, ẋ) = P d dt dx, (11) 
with 

P d dt =       ∂F 1 ∂ x1 + ∂F 1 ∂ ẋ1 d dt . . . ∂F 1 ∂ xn + ∂F 1 ∂ ẋn d dt . . . . . . ∂F n-m ∂ x1 + ∂F n-m ∂ ẋ1 d dt . . . ∂F n-m ∂ xn + ∂F n-m ∂ ẋn d dt       ( 
P d dt U = I (n-m) 0 (n-m)×m . ( 13 
)
The main property of the flatness is given by the following proposition: Proposition 1. [START_REF] Kaminski | Intrinsic and apparent singularities in differentially flat systems, and application to global motion planning[END_REF]). If the system ( 2) is flat at a point x 0 ∈ X 0 , then there exists a neighbourhood

V of x 0 where P d dt is hyper-regular. Let U = U 0 (n-m)×m I m
and ω = (ω 1 , . . . , ω m ) a vector of m independent 1-forms defined by

ω = U † dx, (14) with U † (0 m×(n-m) I m )U -1 , ( 15 
)
the pseudo-inverse of U . The vector ω is a flat output of the variational system (11) or simply a tangent flat output.

Remark 2. The pseudo-inverse U † is not unique, then the tangent flat output ω, associated to U † , is not unique too.

The next definition is borrowed from (Fritzsche et al. (2016a)) and [START_REF] Fritzsche | Unimodular completion and direct flat representation in the context of differential flatness[END_REF]):

Definition 4. Given a hyper-regular matrix M ∈ M p,q d dt with p ≤ q, we say that N ∈ M (q-p)×q d dt is a unimodular completion of M if and only if

M N ∈ U q d dt . (16) 
Proposition 2. The matrix U † is a unimodular completion of P d dt .

Proof.

Let U ∈ U n [ d dt ] such that P d dt U = I (n-m) 0 (n-m)×m , (17) then 
P d dt = I n-m 0 (n-m)×m U -1 constitutes the first n -m rows of the matrix U -1 , i.e. U -1 = P d dt W (18) 
with

W ∈ M m×n [ d dt ]
. Moreover, according to (12), the matrix U † constitutes the last m rows of U -1 , hence

U -1 =   P d dt U †   , (19) 
which proves that U † is a unimodular completion of

P d dt .
An algorithm of computation of a unimodular completion of the matrix P d dt is developed in (Fritzsche et al. (2016a)). The flat output y = (y 1 , . . . , y m ) of the system (2) is given by dy = ω (20) provided that ω is integrable, i.e. dω = 0. The conditions of integrability are detailed in [START_REF] Levine | Analysis and control of nonlinear systems: A flatness-based approach[END_REF], [START_REF] Lévine | On necessary and sufficient conditions for differential flatness[END_REF]) and they require the resolution of PDEs whose complexity depends on the system itself.

Direct Flat Representation

Definition 5. [START_REF] Pomet | On dynamic feedback linearization of four-dimensional affine control systems with two inputs[END_REF]). Let (1) be a flat system, it is called (-1)-flat or x-flat if and only if there is a flat output y such that y depends only on x, i.e. y = ψ(x).

Consider a subclass of (-1)-flat systems called direct flat systems defined as follows:

Definition 6. [START_REF] Fritzsche | Unimodular completion and direct flat representation in the context of differential flatness[END_REF]). We say that a (-1)-flat system is a direct flat system if there exists a permutation σ : {1, . . . , n} -→ {σ(1), . . . , σ(n)} such that there exists a flat output given by y = (x σ(1) , . . . , x σ(m) ). Such flat output is called direct flat output.

Proposition 3. [START_REF] Fritzsche | Unimodular completion and direct flat representation in the context of differential flatness[END_REF]). Let P d dt defined by (12) be hyper-regular. Assume that there exists Π, a column permutation matrix such that Remark 3. A direct flat representation is indeed not unique.

P d dt P d dt Π = (A B) (22) 

ALGEBRAICALLY INDEPENDENT FLAT OUTPUTS

As mentioned in [START_REF] Torres | Fault detection and isolation on a three tank system using differential flatness[END_REF]), in the aim to provide a total isolation of defects on a systems sensors or actuators, we need to increase the number of residues by calculating several flat outputs. These flat outputs must be algebraically independent in the sense that a fault that affect one of them, the others will not be totally affected. In this section, we present a way to characterize the relation between different flat outputs.

Proposition 4. Let Ω x be the set of all tangent flat outputs at x of a flat system. Then, for all ω 1 and ω 2 ∈ Ω x , there exists a unimodular matrix

K ∈ U m [ d dt ] such that ω 1 = K ω 2 . ( 24 
)
Proof. Since the matrix P ( d dt ) is supposed to be hyperregular, there exists a hyper-regular matrix U such that

ω = U † dx (25)
and, indeed, according to (14) dx = U ω.

Let ω 1 = U † 1 dx and ω 2 = U † 2 dx be two different tangent flat outputs at x, then

ω 1 = U † 1 U 2 ω 2 K ω 2 (26) with K = U † 1 U 2 . ( 27 
)
Let us prove that K is unimodular. U † 1 and U 2 are hyperregular by construction, then if ξ is a vector such that U † 1 U 2 ξ = 0 with ξ = 0 then ζ = U 2 ξ is also = 0 and U † 1 ζ = 0 which contradicts the hyper-regularity of U † 1 . Hence, K is hyper-regular and square, which proves the unimodularity.

From here two types of relations between the tangent flat outputs are introduced:

(1) if deg(K) = 0 then the tangent flat outputs ω 1 and ω 2 are said to be algebraically dependent; (2) if deg(K) ≥ 1 then the tangent flat outputs ω 1 and ω 2 are said to be algebraically independent.

It is easy to see that, according to the implicit form (2) of the system, at least one state variable is an integral of order larger than or equal to 1 of the other state variables.

As a consequence, we have the following corollary:

Corollary 1. Two different direct tangent flat outputs of a direct flat system are algebraically independent.

Remark 4. A direct flat output is given by dy = ω, then consequently, two direct flat outputs are algebraically independent.

APPLICATION ON THE THREE TANK SYSTEM

For the reasons explained in section 2.3, and in order to detect and isolate faults on sensors and actuators of the three-tank system, we need to calculate another flat output that will be algebraically independent of y = (x 1 , x 3 ) T . In this section, we show that this system is a directly flat with two direct flat outputs. After that we will show how these two flat outputs are useful for the flatness-based FDI.

The implicit equation of this system is calculated as follows: equation ( 6) of the explicit system is free of inputs, so after elimination of equations ( 4) and ( 5) and replacing ( 7) and ( 9) in ( 6), we obtain:

F (x, ẋ) = ẋ3 -a z1 S 2g(x 1 -x 3 ) + a z3 S 2g(x 3 -x 2 ) = 0. (28) with S = S n /S.
According to (12), the matrix P d dt , associated to (28), is given by:

P d dt = - a z1 Sg 2g(x 1 -x 3 ) - a z3 Sg 2g(x 3 -x 2 ) a z1 Sg 2g(x 1 -x 3 ) + a z3 Sg 2g(x 3 -x 2 ) + d dt . (29) 
The matrix P and it is integrable, i.e. dω = 0. Then the system (28) is a direct flat system with y = x 2 x 3 (32) a direct flat output. One can also find the flat output y = (x 1 , x 3 ) T using the direct flat representation.

In the following, we denote by y 1 = (x 1 , x 3 ) T and ω 1 = (dx 1 , dx 3 ) T the corresponding tangent flat output, y 2 = (x 2 , x 3 ) T and ω 2 = (dx 2 , dx 3 ) T . In fact, the direct flat outputs y 1 and y 2 are algebraically independent: let According to the Definition 2 of the isolability, the state x 1 is not a component of the flat output y 2 = (x 2 , x 3 ) T , then a fault on the sensor x 1 can be detected and isolated. Finally, by associating the two flat outputs y 1 and y 2 , if a fault is detected but can not be isolated on x 1 and x 2 , then x 3 is inevitably faulty, which allows the complete isolation of defects.

K = γ η + κ

CONCLUSION

The current paper introduced a novel and rigorous definition of the isolability of faults affecting a system's sensors and actuators, using the flatness-based FDI approach. The described condition of isolability provided an efficient way to select a handful of flat outputs useful for fault isolation from an infinite number of possible flat outputs. Our results were tested and validated using the threetank system. Future work needs to focus on providing new definitions of residue signals in order to overcome the reliance on a high-gain observer when estimating the time derivatives of flat outputs.

Fig. 1 .

 1 Fig. 1. Three Tank System, Source: Noura et al. (2009)

  by H = 0 m×(n-m) I m and H = HΠ T , which are constant matrices, H (resp. H) is a unimodular comtangent flat output ω is given by ω = Hdx and always satisfies the integrability condition dω = 0. Hence, a (direct) flat output y of the non linear system is given by y = Hx. Proposition 3, is called a direct flat representation, for which y Hx is a direct flat output.

  3 -x 2 ) and deg(K) = 1. With respect to the implicit form (28), one can easily verify thatω 1 = K ω 2 ,(35)which proves the algebraic independence.

  12)and dx = (dx 1 , . . . , dx n ).

	The matrix P nomial matrices in the operator d d dt ∈ M (n-m)×n d dt dt with meromorphic , the ring of poly-coefficients (Levine (2009)). An invertible matrix U in
	M p×p unimodular. The set of unimodular matrices is denoted by d dt whose inverse is also in M p×p d is called dt
	U p	d dt	. The degree in d dt of a matrix K ∈ M p×q	d dt	,
	Definition 3. (Lévine and Nguyen (2003)). The matrix	
	P a unimodular matrix U ∈ U n d is said to be hyper-regular if and only if there exists dt d dt such that

denoted by deg(K), is defined by: deg(K) = max{deg row (K i ), i = 1, . . . , p}, where deg row (K i ) = max{deg(K i,j ), j = 1, . . . , q}.

According to the Remark 1, the point x ∈ X 0 s.t. x 1 = x

= x

is an equilibrium point which is not first order controllable, then it is a point of intrinsic singularity.