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Iterated foldings of discrete spaces and their limits: candidates for the role of Brownian map in higher dimensions

In this last decade, an important stochastic model emerged: the Brownian map. It is the limit of various models of random combinatorial maps after rescaling: it is a random metric space with Hausdorff dimension 4, almost surely homeomorphic to the 2-sphere, and possesses some deep connections with Liouville quantum gravity in 2D. In this paper, we present a sequence of random objects that we call Dth-random feuilletages (denoted by r[D]), indexed by a parameter D ≥ 0 and which are candidate to play the role of the Brownian map in dimension D. The construction relies on some objects that we name iterated Brownian snakes, which are branching analogues of iterated Brownian motions, and which are moreover limits of iterated discrete snakes. In the planar D = 2 case, the family of discrete snakes considered coincides with some family of (random) labeled trees known to encode planar quadrangulations.

Iterating snakes provides a sequence of random trees (t (j) , j ≥ 1). The Dth-random feuilletage r[D] is built using (t (1) 

is the Brownian map, and somehow, r[D] is obtained by quotienting t (D) by r[D -1].

A discrete counterpart to r[D] is introduced and called the Dth random discrete feuilletage with n + D nodes (R n [D]). The proof of the convergence of R n [D] to r[D] after appropriate rescaling in some functional space is provided (however, the convergence obtained is too weak to imply the Gromov-Hausdorff convergence). An upper bound on the diameter of R n [D] is n 1/2 D . Some elements allowing to conjecture that the Hausdorff dimension of r[D] is 2 D are given.

1 Introduction

Presentation of the main objects

The question at the origin of this paper is the following: are there any random continuous objects likely to play the role of the "Brownian map" in higher dimensions?

The question is probably ill posed since it may not be so clear what the dimension of the Brownian map is: on the one hand it is indeed a.s. homeomorphic to the 2-sphere (Le Gall & Paulin [START_REF] Gall | Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere[END_REF]), and on the other hand, by Le Gall [START_REF] Gall | The topological structure of scaling limits of large planar maps[END_REF]Thm. 6.1], it has Hausdorff dimension 4... and due to its huge fluctuations, it is likely not possible 1 to embed it isometrically in (R D , . 2 ) for any finite D.

Fixing the topological dimension as the base of our considerations, we are not aware of any family of combinatorial objects that would be the right candidates to play the role, in dimension D > 2, of the combinatorial maps which provide, in the D = 2 case, the Brownian map as a scaling limit. To our knowledge, the previous attempts, in a theoretical-physics context, either led to Aldous' continuous random tree, to the Brownian map 2 , or to a crumpled phase with "infinite Hausdorff dimension" 3 [START_REF] Ambjørn | Three-dimensional simplicial quantum gravity[END_REF][START_REF] Thorleifsson | Lattice gravity and random surfaces[END_REF][START_REF] Gurau | Melons are branched polymers[END_REF]. We propose the construction, for every integer D ≥ 1, of a continuous random object which we call the Dth random feuilletage (r[D]). By construction, r[D] will appear as the limit (for a topology discussed further) of a discrete analogue, which we call Dth random discrete feuilletage R n [D], when a size parameter n goes to +∞. The latter can be viewed as obtained by D -2 series of foldings of a random discrete surface. The sequence (r[D], D ≥ 1) is encoded and built thanks to another new sequence of objects (bs[D], D ≥ 1): the Dth Brownian snake bs[D] ismutatis mutandis -a branching analogue of the Dth iterated Brownian motion. The first Brownian snake, bs [START_REF] Aldous | The continuum random tree. II. an overview[END_REF], is the usual Brownian snake with lifetime process the normalized Brownian excursion e. The Dth Brownian snake appears as the limit of a discrete counterpart after some appropriate normalizations, which we call Dth random discrete snake

BS n [D] (and bs n [D] for the normalized version).

By construction, r[0] can be thought to be a deterministic cycle, r [START_REF] Aldous | The continuum random tree. II. an overview[END_REF] and r [START_REF] Ambjørn | Quantum geometry: A statistical field theory approach[END_REF] will respectively be seen to coincide with Aldous' continuum random tree and with the Brownian map, and for D ≥ 3, we think that r[D] is a candidate to play the role of the Brownian map "in dimension D". Remark 1.1. We do not claim that the topological dimension of the object r[D] we define in the paper (the Dth random feuilletages) should be precisely D for any D. For D = 3 however, it could be argued that nodal surfaces whose number of nodes goes to infinity can be related to three dimensional objects. But indeed, we hope that the topological dimension of r[D] is a.s. well defined, and is an increasing function of D.

What are these objects? The complete and rigorous construction will take pages, but let us try to provide some insights on this construction. First, some words about the french word "feuilletage":

It is the french word for "foliation", which is used in differential geometry to denote some equivalence relation on manifolds: depending on the context, the equivalence classes (the leaves) correspond to parts of the initial manifold; they are themselves equivalent to some "regular" spaces.

In the "art français de la patisserie" (french art of pastry cooking), le feuilletage or la pâte feuilletée is the name for the puff pastry dough, which is the main ingredient of many sweet or salted pastries, as mille-feuille, galette des rois, bouchée à la reine, pâté lorrain, ... and even croissants (with some adjustments). The dough is obtained by placing some butter (6 mm thick say) on half a simple dough composed by flour, water and salt, shaped in a rectangular form (20 cm ×40 cm, thick 5 mm say). Then, the dough is folded to cover the butter, and flattened into its initial shape R. It is then folded again, flattened, folded, flattened... Each time, the number of layers of butter is multiplied by 2. The pastry chef stops his/her work when the number of layers 2 n is large enough: 128 for example. After cooking, if this difficult recipe is well done, the layers are separated: we get the "feuilletage". The construction we will propose is similar to this feuilletage, of course, up to the ingredients and to the precise gestures of the cook... thus our choice of naming.

In the following paragraphs, we often omit some precisions, such as how the different objects involved are rooted for instance. The precise definitions of the various objects will be given in Sec. 2 for the continuous objects, and Sec. 3 and 6 for the discrete objects.

We start by discussing the content of Fig. 1, in which a well known and simple bijection is sketched: a planar tree having n edges and then 2n corners (say, rooted at a corner 0) can be encoded by a non-crossing partition 4 on {0, • • • , 2n -1}. The integers correspond to the corners of the tree when one turns around starting at 0, and then the partition is a way to present together the different corners of each node. As 0 0 0 0 1 9 Figure 1: A planar tree with 6 nodes and then 10 corners, seen as a folded circle. The corresponding parts of the non-crossing partitions are {0}, {1, 3, 5, 9}, {2}, {6, 8}, {7}. may be seen in Fig. 1, this bijection can be used to present a tree as a circle folded multiple times: these foldings are encoded by the non-crossing partition on a finite subset of the (continuous) circle (or on the discrete circle with 2n points). Through this bijection, trees and non-crossing partitions are essentially the same combinatorial objects. For the sake of studying asymptotics of trees, one usually prefers to use contour processes instead of non-crossing partitions (Fig. 2), since it allows gaining access to the toolbox of usual linear stochastic processes. It is now folklore that the contour process can be glued from below to recover the tree (Fig. 2), so that the two points of view of Fig. 1 and Fig. 2 are equivalent.

Let us now focus on Fig. 3, which is the analogue of Fig. 1, when the initial object is a tree instead of a circle. In this case, a tree is folded multiple times according to a non-crossing partition on its corners (for a corner numeration obtained by turning around it). Again, it is now classical that such a construction Figure 3: A planar tree equipped with a non-crossing partition on (some corners) of its vertices. The identification of the corners of the tree belonging to the same part allows constructing a map. can be done on the plane by avoiding edge-crossings: the resulting object is a planar map (see Fig. 3). The converse is also true: it is possible to unplug the edges of any planar map in any order, until there are no more cycles, while preserving the connectedness. The resulting map is a tree, and keeping track of the ancient connections can be done thanks to a non-crossing partition on the corners of that tree. Hence, proper foldings of a tree, that is, two series of foldings of a circle, allow constructing a map. This powerful point of view is at the origin of the first definition of the Brownian map [START_REF] Marckert | Limit of normalized quadrangulations: the Brownian map[END_REF]: the non-crossing partition encodes a tree T [START_REF] Aldous | The continuum random tree. II. an overview[END_REF] n (right of Fig. 4), and together with the initial tree T

(2) n , we have two objects that in turn can be encoded by linear processes. In Fig. 4, the black tree is T [START_REF] Aldous | The continuum random tree. II. an overview[END_REF] n , the blue tree T [START_REF] Ambjørn | Quantum geometry: A statistical field theory approach[END_REF] n : the nodes of T [START_REF] Ambjørn | Quantum geometry: A statistical field theory approach[END_REF] n are "glued" in the corners of T faces, it is possible to construct the random tree T [START_REF] Aldous | The continuum random tree. II. an overview[END_REF] n (the non-crossing partition) as well as the random tree T

(2) n (containing the edges of the map) using a bijection which allows controlling the distributions of (T

(1) n , T (2) n ): T (1)
n is uniform in the set of rooted planar trees with n edges 5 , T

n has 2n edges; the standard diameter of T [START_REF] Aldous | The continuum random tree. II. an overview[END_REF] n is √ n and that of T

n is n 1/4 (see [START_REF] Marckert | Limit of normalized quadrangulations: the Brownian map[END_REF] for the representation of quadrangulations with (T

(1) n , T (2) 
n ), construction relying on the Cori-Vauquelin-Schaeffer [START_REF] Cori | Planar maps are well labeled trees[END_REF][START_REF] Schaeffer | Conjugaison d'arbres et cartes combinatoires aléatoires[END_REF] 

correspondence).

encode all the vertices of the tree). For more details, see the end of Sec. 6.1. 5 More precisely, this is the case when starting from a uniform rooted pointed quadrangulation with n faces.

We presented a tree and a map respectively as foldings of a circle and foldings of a tree: this will lead, up to some details (roots, sizes, degree of faces, etc), to the two first discrete random feuilletages R n [START_REF] Aldous | The continuum random tree. II. an overview[END_REF] and R n [START_REF] Ambjørn | Quantum geometry: A statistical field theory approach[END_REF]. Moreover, R n [0] can be considered to be the initial circle Z/2nZ. To build the sequence (R n [D], D ≥ 3), we will fold again and again: the Dth object will be constructed by a series of foldings of the (D -1)th one, using an exterior source of randomness which will be a random non-crossing partition of the (nodes) corners of the (D -1)th object. In fact, we will rather use the (D -1)th feuilletage to fold a tree, even if at the level of this preliminary presentation, these two ways of doing appear similar.

In order to iterate the construction, a single possibility appears to resist all the requirements. Let us get a glimpse of a 3-discrete feuilletage R n [START_REF] Ambjørn | Dynamically triangulating Lorentzian quantum gravity[END_REF] (a deterministic combinatorial object in the support of R n [START_REF] Ambjørn | Dynamically triangulating Lorentzian quantum gravity[END_REF]): it is obtained by a series of foldings of a planar quadrangulation, using an additional "noncrossing" partition on its vertices. More precisely, the idea is to take three trees (T

(1) n , T (2) 
n , T

n ), with respectively n, 2n and 4n edges. The tree T

(3) n will contain all the edges of R n [START_REF] Ambjørn | Dynamically triangulating Lorentzian quantum gravity[END_REF], T

(2) n will encode a non-crossing partition on T n , so that identifying the nodes of T

(2)

n (using T (1)
n ) provides an important number of additional identifications: the number of nodes in R n [START_REF] Ambjørn | Dynamically triangulating Lorentzian quantum gravity[END_REF] roughly coincides with those of T . This construction gives us access to the toolbox of stochastic processes, required for considering the asymptotics of these objects. Of course, in view of Fig. 5, the obtained structure is not planar, because the foldings of Q n . On the second picture, an additional non-crossing partition is added on the nodes (corners) of T [START_REF] Aldous | The continuum random tree. II. an overview[END_REF] n . For our construction, the "green partition" will be encoded by the tree T [START_REF] Aldous | The continuum random tree. II. an overview[END_REF] n , the pink one, corresponding to the black tree, will be the tree T

(2) n , and the blue tree, the one whose edges remain finally, is the tree

T (3) n .
create a linear number of additional node identifications.

To produce the subsequent R n [D] for D ≥ 3, we will just take a sequence of trees (T

n , T

n , . . . , T n . An issue in the construction sketched above, is to define a distribution on the set of objects under investigation for which the main characteristics of interest are tractable. We propose a construction for which the natural scalings 6 of the random trees 6 The asymptotic dependence of their diameters in the number of edges.

T (1) n , T (2) n , . . . , T (D) n are respectively n 1/2 , n 1/4 , • • • , n 1/2 D .
We think that this iterative construction of trees is interesting on its own: it is somewhat similar to the construction of the iterated Brownian motions.

Take a uniform rooted planar tree T

n with n edges, and use this tree as the underlying tree of a branching random walk with increments uniform in {0, 1, -1}. That is, conditionally on T (1) n = T some fixed planar tree, equip each node u of T (different from the root) with a random variable X u uniform in {0, 1, -1}. A labeling of each node u is then obtained by summing the variables on the path from the root to u. On each branch, the labeling forms a random walk which starts at the label 0 of the root (see Fig. 6). To construct a second tree T

A A A A B B B B C C C C D D D D E E E F F F G G G H H H I I I J J J J 0 0 1 -1 -1 -2 a
n from this labeling (see [START_REF] Cori | Planar maps are well labeled trees[END_REF][START_REF] Schaeffer | Conjugaison d'arbres et cartes combinatoires aléatoires[END_REF][START_REF] Marckert | Limit of normalized quadrangulations: the Brownian map[END_REF]), walk around the tree as done in Fig. 6, and record the successive labels encountered (one per corner); we get the so-called label process

L (1)
n (second picture in Fig. 6). Register a = min argmin L [START_REF] Aldous | The continuum random tree. II. an overview[END_REF] n , the first time the label process reaches its minimum (dotted lines on the second picture). Now, on the third picture of Fig. 6, a new process starting at 0 is obtained by adding the point (1, 1), and then, by appending the increments after a of

L (1)
n , and then those before a (this is the so-called conjugation of paths). The process obtained this way is positive on 1, n and has increments +1, -1, 0: it is the height process of a random tree T

(2) n (the height process of a tree t is the sequence the depth of the nodes in t, when the nodes of t are taken according to the lexicographical order; it encodes bijectively the tree, see last line of Fig. 6) . Every realization

T (2) n of T (2)
n is a planar tree in its own right: it can and will be used as the underlying tree of a branching random walk with the same increment distribution. The label process of this branching random walk L

(2) n , can in turn be used, after conjugation, as the height process of the third tree T n , which will be used as the underlying tree of a new branching random walk... These iterations allow building successively,

T (1) n , L (1) n , T (2) n , L (2) n , T (3) n , L (3) 
n , . . . For such a tree T (2) n constructed "on" a tree T n (see Fig. 6), there is an obvious way to identify the nodes of T (in Fig. 6, the nodes of each one of the following sets {A, C, G}, {B}, {D, F }, {E}, {H, J}, {I} will be identified). Hence, when a sequence of trees (T (1) n , . . . , T (D) n ) has been defined as above, it is possible to identify the nodes of T (j) n using the corners of T (j-1) n (which then defines a non-crossing partition of the corners of T (j) n ), as wanted. The joint distribution of the involved processes can be described, and the joint asymptotic distributions characterized. In fact, the construction is even simpler in the continuous setting, because many combinatorial details disappear in the limit. In a few words: start from t (1) , Aldous' continuum random tree. This tree is then used as the underlying tree of a spatial7 Brownian branching process, which amounts to equipping t (1) with a compatible spatial Brownian motion indexed by the branches of t (1) . In the literature, the tree t (1) equipped with this Brownian labeling is called Brownian snake with lifetime process the normalized Brownian excursion e. The process e is the contour process of the underlying tree t (1) , and the label process (

x , 0 ≤ x ≤ 1) in this setting is the process that gives the values of the spatial Brownian motion in accordance with the Brownian excursion. To iterate the construction, it suffices to conjugate the label process in order to get a non-negative process, h (2) , which can be used as the height process of a continuum random tree t (2) , which in turn, can be used as the underlying tree of a Brownian snake with label process (2) , and so on. Iteratively, we construct t (1) , (1) , h (2) , t (2) , (2) , h (3) , t (3) , .... We believe that these iterated Brownian snakes are interesting on their own. Once these objects are defined, it is possible to use them to define iterated continuous random feuilletages: for instance r [START_REF] Ambjørn | Dynamically triangulating Lorentzian quantum gravity[END_REF] is defined as the random tree t (3) , whose corners are identified using t (2) , whose corners are in turn identified using t (1) , in the same way as we proceeded in the discrete setting (see Fig. 7).

Contents of the paper

Convention. All the objects we will introduce in the paper will be rooted, unless specified otherwise (as for instance in Sec. 4).

The last two sections of the introduction are dedicated to a discussion on the context in which our approach takes place, as well as the motivations from theoretical physics.

In Sec. 2, after providing some notions about real trees (Sec. 2.1) and snakes (Sec. 2.2), we describe directly in the continuum the iterative construction of the Dth Brownian snake bs[D] and the Dth random tree t (D) (Sec. 2.3), and then of the Dth random feuilletage r[D] (Sec. 2.4).

We start Sec. 3 by defining planar trees and their encodings using height and contour processes (Sec. While the objects introduced in the previous section are rooted, Sec. 4 is dedicated to the definition of pointed trees (Sec. 4.2), snakes (Sec. 4.2) and feuilletages (Sec. 4.3). In this last section, we show the convergence in law of the pointed iterated random discrete feuilletages to the pointed iterated continuous random feuilletage for a topology characterizing the convergence of the encoding trees (which does not imply the convergence for the Gromov-Hausdorff distance).

The proofs of the results in the previous sections are gathered in Section 5. While we rather use the encodings of trees by processes in the previous sections, in Sec. 6 we review in the combinatorial map picture the objects introduced previously. We define a class of combinatorial objects that generalize combinatorial maps using nested non-crossing partitions and that contains the iterated discrete feuilletages.

Some references and comments on the approach

The point of view we develop here could appear somewhat artificial, but it is actually very similar to the first works on the Brownian map [START_REF] Chassaing | Random planar lattices and integrated superBrownian excursion[END_REF][START_REF] Marckert | Limit of normalized quadrangulations: the Brownian map[END_REF]. Planar quadrangulations and other similar simple families of maps were the only objects whose combinatorics was well understood at this time, particularly thanks to the existence of a bijection (CVS) between the set of planar quadrangulations with n faces and some sets of labelled trees (Cori & Vauquelin [20], Schaeffer [START_REF] Schaeffer | Conjugaison d'arbres et cartes combinatoires aléatoires[END_REF]). Building on this, Chassaing & Schaeffer [START_REF] Chassaing | Random planar lattices and integrated superBrownian excursion[END_REF] made the first connection between the scaling limit of uniform planar quadrangulations and the Brownian snake with lifetime process the normalized excursion, from what they obtained the right scale n 1/4 for the diameter of uniform planar quadrangulations with n faces. The second author and Mokkadem introduced in [START_REF] Marckert | Limit of normalized quadrangulations: the Brownian map[END_REF] the Brownian map as the rescaled limit of random quadrangulations with n faces (under a distribution close to the uniform distribution). The question of the convergence to the Brownian map for a nice topology implying the metric convergence (as the Gromov-Hausdorff topology) was known by the authors, but out of reach at this time. Another topology was used, a topology absolutely faithful to the CVS bijection: building on the latter, [START_REF] Marckert | Limit of normalized quadrangulations: the Brownian map[END_REF] proved that the set of quadrangulations with n faces is in bijection with a set of pairs of trees (T

(1) n , T (2) 
n ) as presented above. The pair of random trees (T

(1) n , T (2) 
n ) associated with uniform planar quadrangulations with n faces converges in distribution after normalization to a limiting pair of continuous random trees (t (1) , t (2) ). The Brownian map is defined in [START_REF] Marckert | Limit of normalized quadrangulations: the Brownian map[END_REF] to be t (2) quotiented by the non-crossing partition defined by t (1) in a way analogous to what is done in the discrete case. This approach provides a direct construction of the Brownian map equipped with a natural distance.

In [START_REF] Duplantier | Liouville quantum gravity as a mating of trees[END_REF], Duplantier, Miller and Sheffield (DMS) investigate random surfaces obtained from the mating of two continuum random trees T e and T ẽ encoded by two independent normalized Brownian excursions e and ẽ (see Sec. 3). They then identify in these trees the nodes with corner t, for all t ∈ [0, 1]. If (E 0 , d 0 ) and (E 1 , d 1 ) are two metric spaces, and ∼ R is an equivalence relation on E 0 ∪ E 1 , then the quotient space E = (E 0 ∪ E 1 )/ ∼ R is a topological space. One can try to define a distance d on E by: for x, y ∈ E,

d(x, y) = inf k inf x 1 ,...,x 2k inf (ε j , 1≤j≤k)∈{0,1} k k j=1 d ε j (x 2j-1 , x 2j ),
where x 1 ∼ R x, x 2k ∼ R y, and, for any j, x 2j ∼ R x 2j+1 , and x 2j-1 and x 2j are both elements on the same set E ε j . In other words, geodesic paths in E are "limits" of connected paths in E formed by alternating sections totally included in E 0 or in E 1 . It turns out that this way of defining a distance on E fails in general because it may happen that d(u, v) = 0 ⇒ u = v (as detailed in footnote 12). In the case of the mating of trees, which is known to be homeomorphic to the 2-sphere, DMS do not consider the metric induced by this construction, but consider the topological properties of this space, together with a special space-filling path coming from the construction; they call this space the peanosphere. They study some stochastic processes defined on this rich structure, and make many connections, among others with the Brownian map, Gaussian free field, and Liouville quantum gravity in 2D.

Hence, the Brownian map has been defined before the proof of the convergence of its inner metric (Le Gall [START_REF] Gall | Uniqueness and universality of the Brownian map[END_REF] and Miermont [START_REF] Miermont | The Brownian map is the scaling limit of uniform random plane quadrangulations[END_REF]), before the proof of its property to be homeomorphic to the 2-sphere (Le Gall and Paulin [START_REF] Gall | Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere[END_REF], Miermont [START_REF] Miermont | On the sphericity of scaling limits of random planar quadrangulations[END_REF]), and also before the proof of its connection with Liouville quantum gravity. To define the Brownian map before these considerations was probably a necessary step in this research field since knowing the limit even for a "bad topology" is always an advantage. In the same way the peanosphere is constructed by taking "a formal topological" limit of some discrete analogue constructed using binary trees with n leaves, somehow independently of standard considerations concerning invariance principles since no proof of convergence is given: only "the limit" is considered.

What we propose here is to proceed as in the first construction of the Brownian map: we present a combinatorial model and its limit (the Dth random feuilletage). The first properties we are able to prove provide some first clues that this construction could indeed be analogous to the Brownian map. We hope that it could also lead to the construction of some peanospheres in higher dimensions.

Motivation from theoretical physics.

From a theoretical-physics perspective, the definition of an analogue of the Brownian map in higher dimensions is sought in the context of discrete approaches to quantum gravity, which aim at describing space-time, on which general relativity is formulated, at a microscopic "quantum" level. Such theories (see e.g. [START_REF] Ambjørn | Three-dimensional simplicial quantum gravity[END_REF][START_REF] David | Simplicial quantum gravity and random lattices[END_REF][START_REF] Ambjørn | Quantum geometry: A statistical field theory approach[END_REF][START_REF] Gurau | Invitation to random tensors[END_REF][START_REF] Gurau | Random Tensors[END_REF]) attempt to describe quantum gravity as a continuum limit of a statistical system of random discrete space-times, namely some family of D-dimensional triangulations (or other cell pseudocomplexes), together with a probability of occurrence provided by Einstein's general relativity, or more precisely by discretizing à la Regge the Einstein-Hilbert action, which is the field-theoretical formulation of general relativity. These "Boltzmann" weights depend exponentially on the discrete curvature 8 (see e.g. [START_REF] Ambjørn | Quantum geometry: A statistical field theory approach[END_REF][START_REF] Lionni | Colored discrete spaces: higher dimensional combinatorial maps and quantum gravity[END_REF]).

Such theories are seen in analogy with the description of gas thermodynamics in statistical physics: the simplices are viewed as "particles of space-time" and the D-dimensional triangulations as accessible states for the statistical system, each with a given Boltzmann weight, obtained by discretizing the Einstein-Hilbert action. It is however the continuum/scaling limit that would be physically interpreted as a quantum theory of gravity, if it had consistent properties. From the scaling limit of these random discrete space-times, one then needs to recover general relativity as an effective theory by taking a suitable "coarsegraining" limit 9 .

In dimension D = 2, the link between combinatorial maps, matrix models, and later the Brownian map on one hand, and quantum gravity in dimension D = 2 on the other, has been investigated since the 80's [START_REF] Di Francesco | 2D gravity and random matrices[END_REF][START_REF] Knizhnik | Fractal structure of 2d-quantum gravity[END_REF][START_REF] David | Conformal field theories coupled to 2-d gravity in the conformal gauge[END_REF][START_REF] Distler | Conformal field theory and 2D quantum gravity[END_REF][START_REF] Duplantier | Liouville quantum gravity and KPZ[END_REF]. It was then proven in 2016 [START_REF] Miller | Liouville quantum gravity and the Brownian map I: The QLE(8/3,0) metric[END_REF][START_REF] Miller | Liouville quantum gravity and the Brownian map III: the conformal structure is determined[END_REF][START_REF] Miller | Liouville quantum gravity and the Brownian map II: geodesics and continuity of the embedding[END_REF] that the Brownian map is indeed equivalent to Liouville quantum gravity [START_REF] David | Liouville quantum gravity on the Riemann sphere[END_REF], a theory of random continuum surfaces introduced by Polyakov in the context of string theory [START_REF] Polyakov | Quantum geometry of bosonic strings[END_REF].

For D > 2, the only phases found asymptotically are the following 10 :

• A tree-phase (called branched-polymer phase in physics), in which a narrow subset of very highly curved D-spheres is selected, whose scaling limit is Aldous' continuum random tree (CRT) [START_REF] Ambjørn | Three-dimensional simplicial quantum gravity[END_REF][START_REF] Thorleifsson | Lattice gravity and random surfaces[END_REF][START_REF] Gurau | Melons are branched polymers[END_REF]].

• A phase in which very singular D-dimensional triangulations dominate asymptotically, whose diameter are bounded or small [START_REF] Ambjørn | Three-dimensional simplicial quantum gravity[END_REF][START_REF] Thorleifsson | Lattice gravity and random surfaces[END_REF]. This regime is called the crumpled phase in the physics literature, and it is expected that no scaling limit can be defined. This includes the uniform distribution for D-dimensional triangulations of the same size that are manifolds (colored, [START_REF] Carrance | Uniform random colored complexes[END_REF]), or spheres [START_REF] Ambjørn | Three-dimensional simplicial quantum gravity[END_REF][START_REF] Thorleifsson | Lattice gravity and random surfaces[END_REF].

• There are ways to restrict the set of colored D-dimensional triangulations that should lead to the Brownian map as a scaling limit (see the footnote 2).

In a well-defined continuum limit, one would like to recover something which resembles a random emergent continuum "D-dimensional" space-time (as discussed previously, this is a very vague statement, however for many reasons, we should rule out the phases above in physics considerations in D > 2). The important question would then be how to find out whether it leads to general relativity in a certain 8 A "canonical" discrete curvature [START_REF] Regge | General relativity without coordinates[END_REF] is defined on a D-dimensional triangulation by assuming that all edges have the same length. Then, the discrete curvature locally depends only on the number of D-simplices around each (D -2)-simplex. 9 If these random discrete space-times converge towards a certain continuum limit (scaling limit), finding out if general relativity is recovered as an effective theory in a certain "non-quantum" limit could involve defining suitable observables on the scaling limit, that would converge to their classical (i.e. non-quantum) values throughout a coarse-graining process, or knowing how to describe this continuum limit in a field theoretic way, and then renormalizing this theory to translate it to our scales. But there are no known spaces so far to serve as toy-models for addressing this question. 10 All results discussed here are in the Euclidean case, in which time is not considered. Introducing "time" can be done by requiring some additional causality condition on the D-dimensional triangulations [START_REF] Ambjørn | Dynamically triangulating Lorentzian quantum gravity[END_REF][START_REF] Loll | Quantum Gravity from Causal Dynamical Triangulations: A Review[END_REF]. Numerical simulations seem to indicate that the continuum limit in dimension 4 has promising properties, however no exact result exists so far.

"coarse-grained" limit (see the footnote 9), however until now, there are no known examples of continuum random spaces that could serve this purpose. At this level, regardless of the precise notion of dimension for scaling limits of random graphs, even the construction of scaling limits of random graphs that are neither trees, nor surfaces of any genus, would be an important step forward, by providing toy-models to address this question. Having made this point, we would like to emphasize the following:

-Is is not clear to us why choosing the Boltzmann weights at the discrete level should favor or not the obtention of general relativity after both the continuum limit and the coarse graining limit are taken.

It seems also justified to study random cell-complexes with other probability distributions.

-Pushing this reasoning further, the continuum limit is what matters (the convergence to the Brownian map in dimension 2), so any sequence of random graphs converging to a suitable limit is a fortiori justified.

-The importance of the sphericity requirement for the scaling limit is not clear from the quantum gravity perspective. It could for instance be easier to produce random continuum spaces that are singular or do not have a well-defined topological dimension but still provide smooth manifolds after coarse-graining, and it seems like there is no reason to exclude random spaces obtained from limits of more general random graphs, at least to define a coarse-graining procedure and study its impact on the topology.

The facts listed above provide a strong motivation for trying to build interesting random continuum spaces as limits of more general sequences of random graphs, which is the aim of the present paper: Our approach is to construct scaling limits of random graphs, in a way which allows keeping track of the distances, to ensure a good control on the fractal (Hausdorff) dimension. The Dth Brownian object is obtained from the (D -1)th by identifying many points, as explained in the introduction (see also Sec. 7.1). While this approach, based on the repeated use of the Cori-Vauquelin-Schaeffer bijection, renders the question of the topology of the scaling limit less intuitive than when considering scaling limits of discrete topological spaces, it is quite clear that the random feuilletages are neither random trees, nor random surfaces of any genus. Therefore, if the continuum random feuilletages are indeed non-trivial, they would provide the first examples of random continuum spaces that could be used to study what it means to "coarse-grain" a continuum Brownian space and what consequences it would impose for this space to require that the "non-quantum" limit of this coarse-graining process is general relativity (footnote 9).

It is worth adding here that the critical exponent we find for the Dth random discrete feuilletages, associated with their asymptotic enumeration, is

γ D = 3/2 -D. (1.1)
It generalizes the well-known universality class exponents γ 1 = 1/2 for random trees, and γ 2 = -1/2 for random planar maps. It is important in physics, where it is sometimes called string susceptibility.

Iterated Brownian snakes and iterated random feuilletages

All the random variables are assumed to be defined on a common probability space (Ω, A, P).

Notations : We will denote by a, b the set [a, b] ∩ Z equipped with its natural order. For an ordered finite set I, the notation X(I) stands for the sequence (X(i), i ∈ I) taken under the index order; hence, X( 0, 5 ) = (X 0 , X 1 , • • • , X 5 ). Finally, we will denote by (x n ) the infinite sequence (x 1 , x 2 , • • • ). By convention x + y mod p stands for (x + y) mod p.

For a function g : R → R (or defined on an interval [a, b] ⊂ R only), we denote by

g (x, y) = min{g(u), u ∈ [min{x, y}, max{x, y}]}
the minimum of g on the interval with extremities x and y.

Continuous trees

Start by a digression concerning the so-called "iterated Brownian motion": take a sequence of independent two-sided Brownian motions (B i , i ≥ 0), meaning that for any i, (B i (s), s ≥ 0) and (B i (-s), s ≥ 0) are two standard linear Brownian motions starting at 0. The Dth Brownian motion (see e.g. Burdzy [START_REF] Burdzy | Some path properties of iterated Brownian motion[END_REF]) is the one dimensional process defined by

I (D) (t) = B D (B D-1 (• • • (B 1 (t)) • • • )), t ∈ R. (2.1)
The construction we propose for the Dth Brownian snake bs[D] can be viewed as a kind of tree-like counterpart to I (D) : as explained in Section 1.1, we will produce a sequence of labeled trees t (i) , (i) , building t (i+1) thanks to (i) , "a Brownian labeling of t (i) ". Up to some changes of roots, constructing t (D) will require D -1 iterated Brownian labelings. The construction is tuned in such a way that the pair (t (1) , t (2) ) corresponds exactly to the random trees encoding the Brownian map.

Representation of (real) trees using continuous functions. We refer to Le Gall & Duquesne [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF], Miermont [START_REF] Miermont | The Brownian map is the scaling limit of uniform random plane quadrangulations[END_REF], Le Gall [START_REF] Gall | Uniqueness and universality of the Brownian map[END_REF][START_REF] Gall | Brownian geometry[END_REF] or Miermont & Le Gall [START_REF] Gall | Probability and Statistical Physics in Two and More Dimensions[END_REF], for information on real and continous trees. Compact R-trees are compact metric spaces (T, d) such that for every a, b in T , there exists a unique injective function

f a,b : [0, d(a, b)] → T , for which f a,b (0) = a and f a,b (d(a, b)) = b.
In the sequel, we present some continuous trees encoded by functions; these objects are rooted-ordered real trees (see Duquesne [START_REF] Duquesne | The coding of compact real trees by real valued functions[END_REF] and references therein for a complete discussion on the relation between compact real trees and trees encoded by real valued fonctions).

Consider

C[0, 1], the set of continuous functions f : [0, 1] → R. Let C + [0, 1] = {f ∈ C[0, 1] , f ([0, 1]) ⊂ R + , f (0) = f (1) = 0}. (2.2) Associate with each function g in C + [0, 1], an equivalence relation in [0, 1] by x ∼ g y ⇐⇒ g(x) = g(y) = g (x, y).
The quotient space T g = [0, 1]/ ∼ g is connected and possesses no cycle: it is a tree, and its elements are called nodes or vertices (see Fig. 8). The canonical surjection c g from [0, 1] into T g is denoted It is the continuous analogue of the depth first traversal c T for discrete trees defined below (3.3). Seing

c g : [0, 1] -→ T g x -→ c g (x) = ẋ := {y ∈ [0, 1] , x ∼ g y} . s t 0 1 f (s) f (t) f (s, t) c 1 c 2 c 3
x ∈ [0, 1] as the corner of a node, c g (x) is precisely that node (and a node corresponds to a set of corners). The tree T g can be turned into a totally ordered set, by setting

ẋ < ẏ iff inf ẋ < inf ẏ,
that is, the order of two nodes is inherited from the order of their first corners. The class 0 is the root of T g . Let x and y be elements of ẋ and ẏ. The node ż ∈ T g defined by z ∈ [x, y] and g(z) = g (x, y) does not depend on the chosen representatives x and y: ż is called the highest common ancestor of ẋ and ẏ.

From there, we can define the notions of ancestor, descendent, subtree, branch, as in the discrete case (Sec. 3.1). A node ẋ is said to be an internal node if inf ẋ < sup ẋ, and it is said to be a leaf if inf ẋ = sup ẋ (the leaf set includes positions of local maxima).The distance between ẋ and ẏ is defined as

d Tg ( ẋ, ẏ) := D g (x, y), (2.3) 
where

D g : [0, 1] 2 -→ R + (s, t) -→ D g (s, t) := g(s) + g(t) -2g (s, t) . (2.4)
It is an exercice to check that D Tg is well defined and indeed a distance. The function g is called the contour process of T g in accordance to the discrete case (see later Def. 3.4) since

d Tg ( 0, ẋ) = D g (0, x) = g(x), for any x ∈ [0, 1] (2.5)
Trees as measured spaces. Consider µ ∈ M[0, 1], the set of probability measures on [0, 1], g ∈ C + [0, 1] and T g the associated tree. The pair (T g , µ) is called a measured tree. Since c g : [0, 1] → T g maps each corner x on the associated vertex c g (x) ∈ T g , the measure µ is a measure on the corner sets, and its push-forward measure by c g is a measure on T g . There are two main reasons to enrich trees with measures, both being linked with discrete trees: In the discrete case, up to a time normalisation, for many models of random trees, the number of nodes visited in the contour process between time a and b is (approx.) a proportion ba of the nodes (and also a proportion ba of the corners). The measure component allows accounting for this and then expressing that, at the limit, the same property holds for the continuum random tree T g (the "limiting measure" being the Lebesgue measure).

The second reason is the need to distinguish between discrete and continuous trees! If g ≡ 0, the set [0, 1]/ ∼ g has the cardinality of R, regardless of whether T g "is used to model" a discrete tree or not. When one embeds the set of discrete trees in the set of continuous trees using contour processes, their discrete nature is lost. Corner measures allow recovering corner positions, and then allow one to cover discrete and continuous objects by a single notion, which is compulsory to prove convergence results.

Let K = {T g := (T g , d Tg , µ g ) , g ∈ C + [0, 1], µ ∈ M[0, 1]
} be the set of such rooted trees, considered as metric spaces, and equipped with a corner measure (in the following, we use the same notation for a real tree and the corresponding measured metric space). The set of trees K is a metric space: we transport the metric and the topology from (C[0, 1], . ∞ ) × (M[0, 1], d P ) (where d P is the Prokhorov distance) onto K, by setting the following distance on K: for g and

f in C + [0, 1], d K (T g , T f ) = g -f ∞ + d P (µ f , µ g ).
This makes of the set of trees K a Polish space. Note 1. Formally, the measure µ f is seen as a measure on the corners of the trees; if one prefers, one can put a measure on the push forward measure on the set of nodes (but this somehow brings some additional abstraction, which seems not useful in the present work). Definition 2.1. We call Aldous' CRT, the tree T e = (e, d e , λ) where λ is the Lebesgue measure on [0, 1] (and where e is a Brownian excursion). 11 We end this introduction to continuous trees by defining the change of root: Definition 2.2. For g ∈ C + [0, 1] and x ∈ [0, 1], the tree T g rerooted at its corner x is the tree T h for

h(s) := D g (x + s mod 1, x), for s ∈ [0, 1], µ h (.) = µ g (x + . mod 1)
.

This definition fits perfectly with (2.5), since the distance to the corner x in T g is indeed the function "distance to the root" in T h .

Remark 2.3 (Important).

All along the paper we will encounter many continuous trees T g = (g, d g , µ g ) for which the corner measure will always be the Lebesgue measure on [0,1]. For a discrete normalized discrete trees with N edges, the corner measure will always be the uniform corner measure

λ N = 1/(2N ) 2N -1 k=0 δ k/(2N ) on [0, 1]. When N → +∞, λ N → λ (2.6)
11 The normalized Brownian excursion can be obtained by rescaling the excursion of the Brownian motion which straddles 1. From here, it can be seen that the trajectory of the Brownian excursion inherits from the Brownian motion of many features. For example, it has a countable number of local minima or maxima Chap. III,3.26]). Besides, the Brownian motion has the strong Markov property, and the property that the set Z = {t : Bt = 0} is a.s. a closed set without isolated point (see [64, Chap. III Prop 3.12]), allows seeing that a.s., 0 (or any other point x ∈ [0, 1]) is not a local maximum or minimum: for any x ∈ [0, 1], one has a.s. inf ẋ = sup ẋ, even if a.s. x is not a local maximum. Hence, in Te the set of leaves has a.s. Lebesgue measure 1, and Te is a.s. a binary tree.

for the classical weak convergence in M[0, 1], so that this additional "measure component" does not modify the proof of convergence for trees, for snakes, and after that for feuilletages. Nevertheless, the presence of the measures allows defining properly the feuilletages, whose definition, in the discrete case, must take into account the actual nodes locations.

To avoid heavy notations, we will however often drop the measure component, but will recall its presence when it is crucial. In the proofs, the presence of measures will be simply completely dropped, since (2.6) alone allows taking care of the convergence of the measure components.

Brownian snake

The Brownian snake is a classical object (see e.g. [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF], Le Gall [START_REF] Gall | Random trees and applications[END_REF] for continuous snakes, and Marckert & Mokkadem [START_REF] Marckert | States spaces of the snake and its tour-convergence of the discrete snake[END_REF], Janson & Marckert [START_REF] Janson | Convergence of discrete snakes[END_REF] for discrete snakes and their convergence.

Consider the following set (of "bridges")

C 0 [0, 1] = {g ∈ C[0, 1] , g(0) = g(1) = 0}. (2.7) Definition 2.4. Let g ∈ C + [0, 1
] and T g be the associated tree. A labeling of the rooted tree T g is a map

∈ C 0 [0, 1] which satisfies s ∼ g t ⇒ (s) = (t).
In other words, the labels of the corners of a node coincide. A pair (g, ), where is a labeling of T g , is called tour of a continuous snake. We denote by

----→ Snakes = (g, ) ∈ C + [0, 1] × C 0 [0, 1] , is a labeling of T g (2.8)
the space of tours of continuous snakes, equipped with the uniform convergence topology.

Remark 2.5. As detailed previously, a corner measure is sometimes considered, so that the elements of ----→ Snakes will sometimes be viewed as 3-tuples (g, , µ) instead (here µ ∈ M([0, 1]), equipped with the distance

D((g, , µ), (g , , µ )) = g -g ∞ + -∞ + d P (µ, µ ).
To avoid too much heaviness, we remove this third component as long as it is not explicitly needed.

Remark 2.6. In the literature, given (g, ) in ----→ Snakes, the snake with tour (g, ) is the family of trajectories (w x , x ∈ [0, 1]), where the lifetime of w x is g(x), and w x (h) = (z) for 0 ≤ h ≤ g(x), where z is one of the corners of the ancestors of ẋ at height h. The natural maps that associate tours of snakes and snakes are homeomorphic under natural topologies (see Marckert & Mokkadem [START_REF] Marckert | States spaces of the snake and its tour-convergence of the discrete snake[END_REF]), making possible to transfer all convergence results obtained on tours of snakes to snakes. In the following, we will only deal with tours of snakes and we will often call them simply snakes, by abuse of language. Definition 2.7. Consider X a random process taking its values in C + [0, 1]; we call tour of the Brownian snake with lifetime process X, the pair (X, ) where, conditionally on X = g ∈ C + [0, 1], the process ( (s), s ∈ [0, 1]) is a centered Gaussian process with covariance function cov( (x), (y)) = g (x, y).

(2.9)

Hence the pair (X, ) is a.s. the tour of a snake, since for 0

≤ x ≤ x ≤ 1, g(x) = g(x ) = g (x, x ) ⇒ cov (x) -(x ), (x) -(x ) = 0 ⇒ (x) = (x ).
However, the a.s. continuity of is not granted: it depends on the regularity of X (all considerations on the Hölder coefficients in the paper are developed for this reason),

The tour of the rooted standard Brownian snake with lifetime process g corresponds to the labeling of a continuum random tree with contour process g, by a Brownian motion starting at its root with the property that a node at height h is labeled by a Brownian motion at time h, and for u and v two nodes of the tree T g , the Brownian trajectories (B s , 0 ≤ s ≤ g u ) and (B s , 0 ≤ s ≤ g v ) coincide on [0, g (u, v)], and

B s -B g (u,v) , g (u, v) ≤ s ≤ g u and B s -B g (u,v) , g (u, v) ≤ s ≤ g v are independent.
The Brownian snake with lifetime process the normalized Brownian excursion is the process which corresponds to the case X = e, that is, when the underlying tree is Aldous' CRT T e (see e.g. [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF][START_REF] Marckert | States spaces of the snake and its tour-convergence of the discrete snake[END_REF][START_REF] Janson | Convergence of discrete snakes[END_REF]).

Iteration of snakes

To iterate the construction, we will associate a tree to the label process of a snake with contour process (g, ). To this end assume for a moment that is continuous, and is an element of C 0 [0, 1].

If g ≡ 0 the tree T g contains a non-trivial branch b, so that is a.s. not in C + [0, 1] (since its range contains the Brownian motion on b), and therefore is not the contour process of a tree. Pushed by combinatorial and technical considerations, we proceed as follows. For a function

f in C 0 [0, 1], define m(f ) := inf{f (x) , x ∈ [0, 1]}, a(f ) := min argmin f = min{x , f (x) = m(f )}.
(2.10)

The value a(f ) is the first hitting time of the minimum m(f ) for the function f (left of Fig. 9). Leading idea: The so-called conjugation of paths (see Fig. 9), is the map

0 0 1 1 m(f ) a 1 -a
Conj : C 0 [0, 1] -→ C + [0, 1] f -→ x → f [(a(f ) + x) mod 1] -m(f ) . ( 2 

.11)

A quite famous result is that if b is a standard Brownian bridge, then Conj(b)

(d) = e (Vervaat [67]). For f ∈ C 0 [0, 1], since Conj(f ) ∈ C + [0, 1], Conj(f ) is naturally the contour process of a tree.
Remark 2.8. Let µ be the corner measure of a tree T f and let g = Conj(f ). The push-forward measure of µ by Conj is µ satisfies µ (•) = µ(a(f ) + • mod 1). The measure µ is the "same corner measure" as µ in the sense that it puts the same weight to the corners that are in correspondence on T g and T f .

Starting from any function f in C 0 [0, 1], one can consider the tree with contour Conj(f ), and use it as the underlying tree of a branching Brownian motion.

Regarding the assumption that a label process ∈ C 0 [0, 1], since g(0) = g(1) = g (0, 1) = 0, then a.s. (0) = (1) = 0. As for the continuity of , the a.s. existence (or not) of a continuous version for , depends on the regularity of g. This is one of the (relative) difficulties of this construction. Definition 2.9. The space of rooted continuous D-snakes is defined to be ----→

Snakes D := ----→ Snakes D , equipped
with the uniform topology. When we specify the corner measures, a rooted D-snake has the following form:

f (i) , (i) , µ (i) , 1 ≤ i ≤ D .
Iterated rooted Brownian snakes Definition 2.10. For any positive integer D, we call Dth Brownian snake the process bs[D] := h (1) , (1) , . . . , h (D) , (D) (2.12)

taking its values in the space ----→ Snakes D , where:

(i) the first tree is the continuum random tree:

h (1) (d) = e,
(ii) for any j, conditionally on h (1) , (1) , . . . , h (j-1) , (j-1) , h (j) , the process (j) is the label process of the rooted Brownian snake with lifetime process h (j) (as defined in Def. 2.7), (iii) for j ≥ 2, the contour of the jth random tree t (j) := T h (j) is

h (j) = Conj( (j-1)
).

(2.13)

For any j, the corner measure on t (j) is λ, the Lebesgue measure on [0, 1].

Hence, the standard Brownian snake with lifetime process the normalized Brownian excursion coincides with bs [START_REF] Aldous | The continuum random tree. II. an overview[END_REF] (see e.g. [START_REF] Gall | Random trees and applications[END_REF][START_REF] Marckert | States spaces of the snake and its tour-convergence of the discrete snake[END_REF][START_REF] Janson | Convergence of discrete snakes[END_REF]). Definition 2.10 really defines an existing object only if the (j) 's are all a.s. continuous: this property is needed to define the continuous contour of the tree t (j+1) using (j) . The following will be proven in Sec. 5.2: Theorem 2.11. For any j ≥ 1, (j) is a.s. continuous process and then for any D ≥ 1, the process bs[D] is well defined.

Remark 2.12.

There is no natural process bs[0], since the Brownian bridge is not the label process of any tree. It is somehow the label process of the circle R/Z.

The fact that (j) reaches its minimum only once a.s. for j ≥ 2 (on a leaf of h (j) ) is unclear, but we conjecture that it is true; this property holds for (1) 

(Le Gall & Weill [33, Prop. 2.5]).
Constructing a version of bs[D] conditioned by the non-negativity of all the (i) , which is a singular conditioning, and which has been done by Le Gall & Weill [START_REF] Gall | Conditioned Brownian trees[END_REF] in the case of the Brownian snake bs [START_REF] Aldous | The continuum random tree. II. an overview[END_REF], does not seem to be an easy task. This positive processes could be used to define more easily some feuilletages (as done below) without having to deal with what we call below "tree synchronisations".

The iterated random feuilletages r[D]

r[2] is the Brownian map

Let bs [START_REF] Aldous | The continuum random tree. II. an overview[END_REF] = (h (1) , (1) ) be the standard Brownian snake; let again h (2) = Conj( (1) ). Consider the tree

t (2) = T h (2)
, and set a (1) = min argmin (1) .

By definition (2.11) of the map Conj, since h (2) (•) = (1) (a (1) + • mod 1)-min (1) , the corner x-a (1) mod 1 of t (2) corresponds to the corner x in the tree t (1) .

Definition 2.13. Let bs [START_REF] Ambjørn | Quantum geometry: A statistical field theory approach[END_REF] = h (1) , (1) , h (2) , (2) be the 2nd Brownian snake. The Brownian map r [START_REF] Ambjørn | Quantum geometry: A statistical field theory approach[END_REF] is the topological space defined as [0, 1]/ ∼ 2 , where ∼ 2 is the coarsest equivalence relation that extends the two following equivalence relations:

x ∼ h (1) y, x -a (1) mod 1 ∼ h (2) y -a (1) mod 1.
These two relations are equivalent to

D h (1) (x, y) = 0, D h (2) x -a (1) mod 1, y -a (1) mod 1 = 0.
Let us discuss further the appearance of a (1) in the considerations and the implications for iterations.

Trees synchronization and r[D]

The worst hassle in the construction of the Dth Brownian snake is the use of Conj, which brings some extra random shifts at each iteration: these shifts are inherited by the D random rooted feuilletages (in the D = 2 case, these considerations are present in relation with the rooted pointed Brownian map). Later on, the non-continuity of these synchronizations will lead to the definition of pointed counterparts to the rooted snakes and to the random feuilletages.

Take a Dth Brownian snake bs[D] (with the same notation as in Def. 2.10). Set

a (m) = min argmin (m) , for m ∈ 1, D , (2.14) 
so that again,

h (m+1) (.) = Conj( (m) ) = (m) (a (m) + .) mod 1 -min (m)
, and for any m,

t (m) = T h (m) .
In order to trace back all the shifts coming from the successive change of roots, we set

A (m) = a (1) + • • • + a (m-1) , for m ≥ 1. (2.15)
For example, the corner x -A (3) mod 1 of the tree t (3) corresponds to the corner x -A (2) mod 1 of t (2) , which in turn corresponds to the corner x of t (1) .

Definition 2.14. Let bs[D] = h (1) , (1) , • • • , h (D) , (D) be the Dth Brownian snake. We call Dth random feuilletage r[D] the topological space

r[D] := [0, 1]/ ∼ D , (2.16) 
where ∼ D is the coarsest equivalence relation on [0, 1] refining all the following equivalence relations

∼ [m] for 1 ≤ m ≤ D, defined for x, y ∈ [0, 1] by x ∼ [m] y ⇔ D h (m) x -A (m) mod 1, y -A (m) mod 1 = 0.
(2.17)

Hence, x ∼ D y if and only if there exists a finite sequence of identification points ((

x m , j m ), 1 ≤ m ≤ N ) ∈ ([0, 1] × 1, D ) N such that, for x 0 := x, x N +1 := y, x m ∼ [jm] x m+1 for 0 ≤ m ≤ N.
(2.18)

Remark 2.15. Formula (2.17) defines the feuilletage. In the discrete case we will transform (2.17) so that only corners corresponding to "discrete nodes" are identified. This will amounts to restricting (2.17) to the support of the corner measure into play. This way of doing applies to continuous snakes too.

Some potential metrics on r[D]

Here are two (potential) metrics on r[D] compatible with its topology:

d (1) r[D] (x, y) = inf r≥1 inf 1≤m 1 ,••• ,mr≤D inf 0≤x 0 ,••• ,xr≤1 r j=0 D h (m j ) x j -A (m j ) mod 1, x j+1 -A (m j ) mod 1 (2.19)
where x 0 ∼ D x, x m+1 ∼ D y, and

d (2) r[D] (x, y) = inf m inf 0≤x 0 ,••• ,x 2m+1 ≤1 m i=0 D h (D) x 2i -A (D) mod 1, x 2i+1 -A (D) mod 1 (2.20)
where

x 2i+1 ∼ D x 2i+2 , x 0 ∼ D x, x 2m+1 ∼ D y.
Identifications can be viewed as distance-free jumps in the space r[D]: they combine identifications coming possibly from several different trees t (jm) .

The metric d

r[D] is more symmetric: a traveller who wants to go from x to y has to walk on one of the trees t (j) for 1 ≤ j ≤ D; when it does so, the distance is given by the metric on this tree. If he is at a given moment at a ∈ [0, 1], he can jump at b ∈ [0, 1] if a ∼ D b without paying anything, or in other words, if a and b are two corners of the same node in one of the trees t (j) for 1 ≤ j ≤ D. He can change tree whenever he wants to go on his travel, and the final distance for a path is the minimum on all possible trips of the sums of all the distances made on each of these trees.

For the metric d r [D] is that it is non-increasing in D, since when one passes from D to D+1, the set on which the minimum is taken is larger for the inclusion order. "Geometrically", new identifications are provided by the (D + 1)th tree. Moreover, with each subset of indices {i 1 , • • • , i m } included in 1, D one can associate the space;

r[i 1 , • • • , i m ] := ((. . . ([0, 1]/ ∼ [i 1 ] )/ . . .)/ ∼ [im] )
with the analogue of distance d (1) given by taking the infimum in (2.19) only on these indices.

For D = 1, r [START_REF] Aldous | The continuum random tree. II. an overview[END_REF] coincides topologically with Aldous' continuum random tree, and the metrics d

(1) r [START_REF] Aldous | The continuum random tree. II. an overview[END_REF] and d

(2)

r [START_REF] Aldous | The continuum random tree. II. an overview[END_REF] are equal and coincide with the standard metric on this space.

For D = 2, r [START_REF] Ambjørn | Quantum geometry: A statistical field theory approach[END_REF] coincides topologically with the Brownian map and d

r [START_REF] Ambjørn | Quantum geometry: A statistical field theory approach[END_REF] corresponds to the standard metric on this space.

But we must say that we do not know the answers to the following questions: 12 of Miermont [START_REF] Miermont | The Brownian map is the scaling limit of uniform random plane quadrangulations[END_REF] and Le Gall [START_REF] Gall | Uniqueness and universality of the Brownian map[END_REF].

Open question 2. For D > 2, is it true that d (j) r[D] (x, y) = 0 ⇒ x ∼ D y for the distance j = 1 or 2? It is true for D = 2 as a consequence
As a consequence of Theorem 5.7, which allows seeing that h (D) is a.s. Hölderian with exponent 1/2 Dε, for any ε > 0, it may be shown that the tree (t (D) , D h (D) ) has Hausdorff dimension smaller than 2 D . For D ∈ {1, 2}, these upper bounds fit with the right values [START_REF] Gall | The topological structure of scaling limits of large planar maps[END_REF][START_REF] Duquesne | The Hausdorff measure of stable trees[END_REF]. These bounds are also the Hausdorff dimensions of r[D], d Remark 2.16. About the redundancy of the iterated Brownian snake: from f to Conj(f ), a change of origin has been done. If one has only Conj(f ) in hand, the "shift" a(f ) cannot be recovered. It turns out that for our applications to r, the shift is needed to "synchronize" the identifications provided by the different trees. Working directly and only with f -which is possible since f determines Conj(f ) -is a bit annoying because it demands reintroducing Conj(f ) everywhere, since the iteration we propose relies on the tree encoded by Conj(f ).

Remark 2.17. When dealing with asymptotic discrete snakes, we will observe that the change of origin is not continuous, that is 13 . As a consequence, even if the sequence (f n ) converges in C[0, 1], the sequence of trees (Conj(f n )) may not converge in the set of rooted trees, K. This issue explains the complications that will appear progressively in the sequel. The strategy we have adopted 12 When one quotients a topological space as we did when we introduced ∼D, it may happen that the "projected distance" is not a distance: for example, let E = [0, 1] equipped with the usual distance |.|, and quotiented by the equivalence relation x ∼ y iff x = y or x, y ∈ Q (identify rational numbers). Clearly, the quotient space E is not reduced to a single point, but d (x, y) = 0 for all x, y ∈ E under "the inherited distance d ". Hence, d is not a distance, since d (x, y) = 0 ⇒ x = y. If one further quotients E by x ∼ y when d (x, y) = 0, then the space E becomes trivial, reduced to a single point. 13 To avoid this problem, it would suffice to prove that a.s., # argmin( (j) ) = 1, for the iterated process (j) .

f n -f ∞ → 0 ⇒ a(f n ) → a(f )
to treat them is to use the redundancy provided by the presence of h j+1 = Conj(f j ) together with f j in the iterated Brownian snake. The discontinuity of the map a(•) will result in the loss of the identity of the root corner in the iterated trees while the root vertex will still be well known: pointing a tree amounts to considering as equivalent two trees rooted at different corners of the same root vertex. Pointing is compatible with the snake construction in which the root vertex is labeled 0, whatever the considered root corner. We will therefore progressively turn our intention to pointed snakes, pointed feuilletages, and finally, state our main theorems for theses objects.

3 Iterated snakes and feuilletages: combinatorial objects

Notation : The ith increment of any sequence (x i , i ≥ 0) is denoted ∆x i = x i -x i-1 .
Convention : We make a great use of continuous processes X obtained by linear interpolation of some random sequence of the form (X k , k ∈ 0, n ) or of the form (X k/n , k ∈ 0, n ). We will keep the same notation X for the continuous and discrete version, but we will name "process" the interpolated version, and "sequence" the discrete one (without additional warning).

The main aim of this section is to present the discrete iterated snakes and discrete iterated feuilletages.

Planar trees and their encodings

Rooted planar trees. A rooted planar tree T is a finite subset of U , containing ∅, stable by prefix (if uv ∈ T for u, v ∈ U , then u ∈ T ), and such that if ui ∈ U for u ∈ U and i ∈ N , then uj ∈ T for 1 ≤ j ≤ i.

For N = {1, 2, • • • }, consider U = {∅} ∪ k≥1 N k the set
An example is shown on the left of Fig. 10. The elements of T are called nodes or vertices. For u ∈ T and j ∈ N , if uj ∈ T , then uj is called a child of u, and u is the parent of uj. The number of children of u is c u (T ) = #{j ∈ N , uj ∈ T }. The prefixes of u are called the ancestors of u. The size of a tree T , denoted by |T | is its cardinality (its number of nodes). We also set

T = |T | -1,
the number of edges of T . Denote by T the set of trees, and by T n the subset of those with n edges:

T n = {T ∈ T , T = n}.
It may be proved by induction that the cardinality #T n = C n = 2n n /(n + 1) of T n is the nth Catalan number.

Height sequence. The lexicographical order on U induces an ordering on any tree, and allows to represent trees as sequences.

Definition 3.2. The height sequence of T is the sequence H T 0, T of the successive heights of the nodes of T sorted in lex. order u 0 = ∅, u 1 , . . . , u T : Here is a classical result (see e.g. [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF][START_REF] Marckert | The depth first processes of Galton-Watson trees converge to the same Brownian excursion[END_REF]):

H T (k) = |u k |, for 0 ≤ k ≤ T . ( 3 
Lemma 3.3. For any n, the map which to a tree associates its height sequence,

Φ T →H n : T n -→ H n T -→ H T ,
is a bijection, where

H n = {H( 0, n ), H 0 = 0, ∆H i ≤ 1 and H i > 0 for i ≥ 1}.
An example of a tree and corresponding height sequence is shown in Fig. 10. The reverse bijection 20 ; the sequence of successive final heights of increasing steps in the contour process is exactly the height process.

H T T C T Φ H→T n Φ H→C n N = 10 N = 10
Φ H→T n : H n → T n allows constructing a tree from its height sequence:

Φ H→T n = Φ T →H n -1 . (3.
2)

It will play an important role (see Fig. 11): take any sequence H( 0, n ) in H n , and draw the points

z k = (k, H k ) for k ∈ 0, n in the plane: for any 1 ≤ k ≤ n, draw the segments [z k , z ρ(k) ] with ρ(k) = max{j < k, H j = H k -1}.
An example is given in Fig. 11 for the map Φ H→T n .

Contour sequence. The depth first traversal of T is a function c T : 0, 2 T → T, defined as follows: first c T (0) = ∅. Assume that the image of 0, j has been defined for some 0 ≤ j < 2 T , two cases arise:

-if c T (j) has some non-visited children, that is some children not in c T ( 0, j ), then c T (j + 1) is the smallest of these children for the lex. order, -if all the children of c T (j) have been visited, then c T (j + 1) is the parent of c T (j).

Definition 3.4. The contour sequence C T ( 0, 2 T ) of T is is the successive heights of the nodes of T when turning around clockwise (see Fig. 10 (iii)):

C T (k) = |c T (k)|, for k ∈ 0, 2 T . (3.3) 
For any k ∈ 0, 2 T -1 , the pair (c T (k), c T (k + 1)) is an edge of T . If T is drawn in the plane, it is suitable to consider that c T is a walk around the tree, and that for any 0

≤ k ≤ 2 T , c T k -1 mod 2 T , c T (k), c T (k + 1 mod 2 T ) (3.4)
is the kth corner of the tree. We will call this corner c T (k) for simplicity.

The following result is a classical result in combinatorics (see e.g. [START_REF] Marckert | The depth first processes of Galton-Watson trees converge to the same Brownian excursion[END_REF]).

Lemma 3.5. For any n ≥ 1, the map which to a tree associates its contour sequence,

Φ T →C n : T n -→ Dyck 2n T -→ C T , (3.5) 
is a bijection, where Dyck 2n is the set of Dyck paths with 2n steps:

Dyck 2n = {S( 0, 2n ), S 0 = S 2n = 0, ∆S i ∈ {-1, 1} and S i ≥ 0, ∀i ∈ 1, 2n }. (3.6) 
The distance between two nodes c T (k) and c T (k ) in the tree can be expressed in terms of C T :

d T c T (k), c T (k ) = C T (k) + C T (k ) -2C T (k, k ). (3.7)
As represented in Fig. 11, there is a direct way to pass from the contour to its height process.

Lemma 3.6. The map

Φ H→C n : H n -→ Dyck 2n H 0, n -→ C 0, 2n
, which sends a height process H 0, n (of a tree T ) to the corresponding contour process (the one of the tree T ) is a bijection.

Proof. The bijection is simple: both processes start at 0, and the contour process ends at 0. The successive values in H 1, n correspond to the first visit times of the nodes according to the lexicographical order. These heights are then the successive heights of the contour process C 0, 2n at the times t i such that C t i = C t i -1 + 1, since the contour process increases every time a new node is visited.

Discrete snakes and iteration of discrete snakes

Discrete snakes.

Labelings and snakes are defined as in the continuous case.

Definition 3.7. Let T be a planar tree, and c T = (c T (k), 0 ≤ k ≤ 2 T ) be its contour sequence. A labeling of T is a sequence

T = ( T (k), 0 ≤ k ≤ 2 T ) such that c T (k) = c T (k ) ⇒ T (k) = T (k ), for all k, k ∈ 0, 2 T .
The tour of the corresponding discrete snake is defined as (C T , L T ), where

C T (k) = |c T (k)|, 0 ≤ k ≤ 2 T , L T (k) = (c T (k)), 0 ≤ k ≤ 2 T , meaning that L T (k) = (c T (k))
is the label of the kth node visited by the depth first traversal.

Let µ be a probability distribution on R, and let T be a given planar tree. The standard branching random walk with underlying tree T and µ-distributed spatial increments is defined as follows: consider (Y u , u ∈ T \ {∅}) a family of i.i.d. random variables with common distribution µ and set Y ∅ = 0. Now, consider the "spatial" labeling = ( (u), u ∈ T ) of T defined by

(u) = v u Y v , for any u ∈ T, (3.8) 
where the sum is taken on the set of ancestors v of u. Hence, (∅) = 0, and along each branch of T the labels evolve as a random walk with increment distribution µ. This definition extends to random trees, by sampling first the underlying tree T at random, and by constructing the branching random walk using spatial increments independent of T .

In the sequel, we will consider only branching random walks with increment distribution

ν := 1 3 (δ 1 + δ 0 + δ -1 ) , (3.9) 
so that the child of a vertex with label l has label l -1, l, or l + 1 with equal probability. For each branching random walk with underlying tree T and spatial increments ν-distributed, consider the spatial labeling = ( (u), u ∈ T ). If T has n edges, the label process L T of a labeled tree (T, ) is an element of L 2n where, L N = {L( 0, N ), L 0 = L N = 0 and ∆L j ∈ {-1, 0, 1} for any j}, for any N ≥ 0. The (tour) of the random discrete snake with n edges, is (C T , L T ) for T taken uniformly in T n .

Discrete conjugation map. We here define a map Φ L→H N similar to the conjugation map (2.11) in the discrete setting: it sends L N onto H N . An example is shown in Fig. 12. Definition 3.8. For each N ≥ 0, the discrete conjugation map Φ L→H N is the map

Φ L→H N : L N -→ H N L( 0, N ) -→ H( 0, N ) := Φ L→H N (L( 0, N )) (3.10)
where H is defined by H(0) = 0 and

H(j) = 1 + L A + j -1 mod N -L(A), for j ∈ 1, N , (3.11) 
where A = min argmin L( 0, N ) (since L(0) = L(N ), necessarily 0 ≤ A < N ).

In the discrete case, height and contour processes are different objects, and cannot be obtained by a simple conjugation of Lukasiewicz walks (which are random walks with increments in N∪{-1} conditioned to end at -1), since the height process ends at a positive position, and contour processes of discrete trees have only steps ±1 (see e.g. [START_REF] Marckert | The depth first processes of Galton-Watson trees converge to the same Brownian excursion[END_REF], in which Lukasiewicz walks are called depth first queue processes).

When A+j -1 passes from N -1 to N , A+j -1 mod N passes from N -1 to 0. Since L(N ) = L(0) = 0, there is no bad border effect on the increments (∆H j , 1 ≤ j ≤ N ), which all belong to {+1, -1, 0}.

Height processes are not exactly elements of the set C 0 [0, N ] (of continuous functions on [0, N ] starting and ending at 0), so that the nature of Φ L→H N is a bit different from that of Conj. The composition Φ H→C N • Φ L→H N will be used and is closer in nature to the conjugation map (see e.g. in Prop.5.5). ), which is itself the Brownian excursion up to a change of time. The second one converges to the density of ISE, the integrated super Brownian excursion (see [START_REF] Marckert | States spaces of the snake and its tour-convergence of the discrete snake[END_REF][START_REF] Janson | Convergence of discrete snakes[END_REF] and Chassaing & Louchard [START_REF] Chassaing | Random planar lattices and integrated superBrownian excursion[END_REF] for the same result for random rooted quadrangulations with n faces): it is known to be differentiable (Bousquet-Mélou & Janson [START_REF] Bousquet-Mélou | The density of the ISE and local limit laws for embedded trees[END_REF]), but is expected not to possess a second derivative. It appears on this simulation that the following profile is even smoother but it is still random, as can be observed on different simulations; this randomness can be proved for any κ, by just considering that the range of the κth profile (of the tree T κ n ) corresponds to the range of the process L 

β (j) n = (2/3)α (j) n , α (j+1) n = β (j) n , which gives α (j) n = (2n) 1/2 j (2/3) 1-1/2 j-1 , β (j) n = (2n) 1/2 j+1 (2/3) 1-1/2 j .
We then fix c (j)

n (t) = C (j) n (2 j nt) / α (j) n , (j) 
n (t) = L (j) n (2 j nt) / β (j) n .

(3.14)

The main important feature, is the order n 1/2 j of (the normalization of) C 

n is AS n,j = k / (2N (j) n ), 0 ≤ k ≤ 2N (j) n
. The natural corner measure λ

(j)
n on the normalized tree (denoted by t

(j) n ) encoded by c (j) n is λ (j) n = 1 2N (j) n x∈AS n,j δ x , (3.16) 
which is the uniform measure on the (normalized) corner set of the jth tree. The measured version of the normalized Dth random discrete snake is bs n [D] := c

(i) n , (i) n , λ (j) n 
, 1 ≤ j ≤ n .

Feuilletages as measured spaces

We now give the definition of a feuilletage associated to a D-snake. This generalizes Def. 2.14 for measured (non-necessarily random) objects. Definition 3.10. The D-feuilletage associated to a D-snake E D = f (j) , w (j) , µ (j) , 1 ≤ j ≤ D is the space denoted by Feuilletage (E D ) = [0, 1]/ ∼ D , where ∼ D is the coarsest equivalence relation on [0, 1] refining all the following equivalence relations ∼ [m] for 1 ≤ m ≤ D, defined for x, y ∈ [0, 1] by

x ∼ [m] y ⇔ D f (m) x -A (m) mod 1, y -A (m) mod 1 = 0 for x, y ∈ Support(µ (m) ) , (3.17) 
where A (m) = min argmin w (1) 1) , in other words, only the points of [0, 1] encoding some corners for f (m) will be identified under condition (3.17).

+ • • • + min argmin w (m-
Remark 3.11. The Dth random feuilletage as defined in Def. 2.14) satisfies the identity

r[D] (d) = Feuilletage [h (i) , (i) , λ], 1 ≤ i ≤ D .
(3.18)

Discrete iterated feuilletages (before normalization)

The construction of the Dth discrete feuilletage uses the Dth discrete snake. It can be viewed as a procedure "for gluing" the N (j-1) n corners of the (j -1)th tree, one node per corner, except for the root which is not glued. The nodes of the jth tree glued in different corners of the same node of the (j -1)th tree are identified. This point of view is detailed in Sec. 6. In the sequel, for BS n [D] the Dth random discrete snake, we will set a (j) n := min argmin L (j) n , for any 1 ≤ j ≤ D. n has been defined) to the index a

(j) n + c -1 of H (j+1) n
, in other words, the (a

(j) n + c -1 mod N (j+1) n )th node of the tree T (j+1) n encoded by H (j+1) n
. Hence, in the tree T (j+1) n , the cth node, for c ≥ 1 corresponds to the corner a

(j) n + c -1 mod N (j+1) n of L (j)
n . Again, when we deal with iterated identifications as we will do, it is easier to use as reference, the index set of the initial tree T n defined in Definition 3.12 must be submitted to a rescaling of order 1/n 1/2 j to converge, so that the scaling depends strongly on j. A priori, this fact makes unnatural the distance d (1) for which walking on t (j) has a cost "independent from j", when these trees appear as limits of the T (j) n after much different normalizations. The distance d (2) does not have this flaw, since all trees T (j) n for j < D are used to make identifications, to somehow create shortcuts: their inner distances are not really used. Remark 3.15. It is possible to equip the space of feuilletages with the induced distance between the measured snakes encoding them, or with the (Prohorov)-Gromov-Hausdorff distance between isometry classes of compact metric spaces, and try to prove that, for one of these metrics, r n [D]

(d) --→ n r[D]
, which is reasonable guess for both topologies. However we are not able to prove it for the moment. We will prove the convergence for a pointed version instead, for a metric defined between corresponding pointed snakes.

Pointed variants

The previous constructions, discrete or continuous have the disadvantage of relying on Conj and its discrete analogue Φ H→C • Φ L→H , which is not continuous, as said previously. The discontinuity of Conj comes from the following situation: consider

f ∈ C 0 [0, 1] such that 0 < a = min argmin f < b = max argmin f < 1.
It is easy to construct a sequence of functions (f n ) in C 0 [0, 1] such that f n -f ∞ → 0, but min argmin f n → b, or or even, that does not have a nor b as an accumulation point if # argmin f > 2. This implies that

[ f n -f ∞ → 0] ⇒ [(f n , Conj(f n )) → (f, Conj(f ))].
Even if it is known that (f n , Conj(f n )) converges uniformly to (f, g), we cannot deduce that g = Conj(f ). The minimal property which would remove this problem would be the (unavailable) proof of the a.s. uniqueness of argmin (j) for all j's.

The strategy we adopt instead is to use the fact that Conj(f n ) and f n seen as 1-periodic functions are equal up to a change of origin: instead of (C[0, 1], . ∞ ), we will use a topology which allows us to identify functions that are equal up to the change of origin. The chance is that this topology coincides with the right topology on pointed trees, that is, which makes equivalent two rooted trees, rooted at corners of the same root vertex. This permits to still get an intuitive understanding of the phenomenon into play.

Pointed real trees

By definition, a tree T g = [0, 1]/ ∼ g is rooted at a corner. The different corners of the root are g -1 (0) \ {1}. We call pointed tree an equivalence class of trees rooted at the different corners of the same root vertex. For any a ∈ [0, 1], formally define the a-shift Ψ a as the following map defined on C 0 [0, 1]:

Ψ a : C 0 [0, 1] -→ C 0 [0, 1] g -→ x → Ψ a (g)(x) = g(x + a mod 1) -g(a), (4.1) 
which is a conjugation map, meaning the exchange of "two sections" of the graph of g, but starting from a given corner a instead of min argmin g. Of course, for any f ∈ C 0 [0, 1],

Conj(f ) = Ψ min argmin(f ) (f ). (4.2)
Introduce the following equivalence relation on C 0 [0, 1]: we say that f ∼ Ψ g if there exists a ∈ [0, 1] such that g = Ψ a (f ). Denote the quotient space by

QC 0 [0, 1] = C 0 [0, 1]/∼ Ψ , (4.3) 
and denote by f the class of a function f . Remark 4.1. A measure component can be added:

Ψ a then acts on C 0 [0, 1] × M([0, 1]) with values in C 0 [0, 1] × M([0, 1]), with (a slight abuse of langage): Ψ a (f, µ) = (f , µ ) for f = Ψ a (f ) as defined above and µ (•) = µ(• + a mod 1).
The following proposition is proven in Sec. 5.3.

Proposition 4.2. The map

D Ψ : QC 0 [0, 1] 2 → R + defined by D Ψ (g 1 , g 2 ) = inf a g 1 -Ψ a (g 2 ) ∞ (4.4)
is a distance on QC 0 [0, 1] and equipped with this distance, QC 0 [0, 1] is a Polish space (for the measured extension, add the Prohorov distance between the measure components).

Again, as for the case of pointed trees (Def. 4.3), if (4.8) holds, then a ∈ argmin(f 2 ) = f -1 2 (0) (notice that w 2 (a) = 0 as a is a corner of the root, so that Ψ a (w 2 )(x) = w 2 (x + a mod 1)). "To be the same pointed snake" is an equivalence relation ∼ • . The state space of pointed snakes is

Snakes • = ----→ Snakes/ ∼ • . (4.9)
Denote by π • the canonical projection from ----→ Snakes to Snakes • . A distance on Snakes • is given by the following extension of D Ψ (we keep the same notation):

D Ψ ((f 1 , w 1 ), (f 2 , w 2 )) = inf a ( Ψ a (f 1 ) -f 2 ∞ + Ψ a (w 1 ) -w 2 ∞ ) .
(4.10)

We call D-pointed snake an element of Snakes •,D := (Snakes • ) D . We equip this set with the distance

D Ψ,D ([f j , w j ], 1 ≤ j ≤ D), ([f j , w j ], 1 ≤ j ≤ D) = D j=1 D Ψ (f j , w j ) , f j , w j . (4.11) Definition 4.8. An element [(f i , w i ), 1 ≤ i ≤ D] of ----→ Snakes D is said to be consistent if f i+1 ∼ Ψ w i for every 1 ≤ i ≤ D -1.
Again this extends to measured pointed snakes: two measured (rooted) snakes (f, w, µ) and (f , w , µ ) are said to be in the same measured pointed snake class, if for some a ∈ argmin f , f (a + x mod 1), w(a + x mod 1), µ(a + . mod 1) = f (x), w (x), µ , for all x ∈ [0, 1].

(4.12)

We extend the projection π • to measured (rooted) snakes. The set of measured pointed snakes obtained in such a way can be equipped with a metric which extends D Ψ,D by adding the Prokhorov distance between the corner measures of the trees.

Branching random walks and pointed snakes Consider a branching random walk with underlying tree a rooted tree T (recall Section 3.2), defined using some spatial increments placed on the vertices of T different from the root. A change of root corner preserving the spatial increments amounts to shifting the encoding processes of this labeled tree as follows. Let (C T , L T ) be the tour of a discrete snake with underlying rooted tree T , where 

C T = (|c t (k)|, 0 ≤ k ≤ 2 T )
C T (a) (k) = C T (a + k mod 2 T ), L T (a) (k) = L T (a + k mod 2 T ) for 0 ≤ k ≤ 2 T . (4.13)
The set of discrete snakes (C T (a) , L T (a) ), a ∈ R forms a discrete (non-normalized) pointed snake.

Remark 4.9. The normalized processes c

(j) n , (j) 
n were defined in (3.14). h where bs[D] = h (j) , (j) , 1 ≤ j ≤ D is a Dth Brownian snake. For the measured version, the measure of each tree is λ.

The Dth (normalized) random pointed discrete snake is bs

• n [D] := π • c (j) n , (j) n , 1 ≤ j ≤ D . (4.15)
For the measured version, the (root-invariant) measure of the jth tree is λ

(j)
n as defined in (3.16).

Also, we only define pointed random discrete objects for the normalized versions, so that we will drop the "normalized" in the name of the objects to avoid lengthy names.

Dth random pointed discrete snake and convergence Theorem 4.11. The sequence of (normalized) Dth random pointed discrete snake converges in distribution towards the Dth pointed Brownian snake:

bs • n [D] (d) --→ n bs • [D] in Snakes •,D , D Ψ,D .
The result extends to the measured version.

This will be proven in Sec. 5.5.

Remark 4.12. Theorem 4.11 may seem somewhat weaker than it is: recall Section 2.4.2 about the synchronization of trees. Since the contour h (1) of the rooted tree t (1) is a Brownian excursion, and thus a.s. reaches 0 only at 0 and 1, the pointed tree class of t (1) possesses a unique rooted tree. Again, using Section 2.4.2, a.s. there is a single well-defined way to synchronize the trees t (1) , • • • , t (D) since none of the h (j) are periodic (see the argument of the third point of Theorem 5.7). However, the synchronization does not apply to the discrete snakes bs

• n [D], at least not directly, because c (j) 
n is not obtained from has to be n 1/2 D , since normalized by this quantity, it converges (as a pointed tree) to a non-trivial limit.

We are not able to write an analogue of Theorem 4.11 for rooted iterated snakes as said several times, because of the non-continuity of Conj: pointed iterated snakes are simpler and it is the case even for bs • [2], which appears in relation with the rooted-pointed quadrangulations.

Convergence of random pointed iterated discrete feuilletages

We introduce the notions of iterated random feuilletages, rooted and pointed, discrete and continuous. All these objects are encoded by iterated snakes (rooted and pointed), in which some corner measures encode the positions of the nodes. In this subsection, we define a topology for which the convergence of discrete pointed snakes extends to the convergence of pointed discrete random feuilletages. famous "moment condition" which is a bit more restrictive: additionally to the tightness of (X n (0)), the existence of positive constants α, β, γ such that

sup n≥N E(|X n (x) -X n (y)| α ) ≤ γ|x -y| β , for any x, y ∈ [0, 1] (5.2) 
ensures that for any c ∈ (0, β/α), any limit of any converging subsequence of the sequence (X n ) is a.s. Hölder continuous with exponent c (Kallemberg [39, Cor.14.9]).

Height and contour processes are asymptotically indistinguishable

The next theorem is folklore (see [START_REF] Marckert | The depth first processes of Galton-Watson trees converge to the same Brownian excursion[END_REF] for the case of critical Galton-Watson trees). For the sake of completeness we provide a proof in the degree of generality needed here.

Theorem 5.3. Let (r(n)) be a sequence in (0, +∞), such that r(n) → +∞ and r(n) = o(n). For any n, let µ n be a distribution on T n , the set of trees with n edges. Denote by h n and c n the normalized height and contour processes of T n picked according to µ n , and defined by

h n (x) := H Tn (nx)/r(n), for x ∈ [0, 1], c n (x) := C Tn (2nx)/r(n), for x ∈ [0, 1].
(5.3) 

If h n (d) --→ n h in (C[0, 1], . ∞ ), then (h n , c n ) (d) --→ n (h, h) in C[0, 1] 2 (in
(see [START_REF] Marckert | The depth first processes of Galton-Watson trees converge to the same Brownian excursion[END_REF]Lemma 2]), and for any p, and any k ∈ m T (p), m T (p + 1) -1 ,

H T (p + 1) -1 ≤ C T (k) ≤ H T (p), (5.5) 
by [START_REF] Marckert | The depth first processes of Galton-Watson trees converge to the same Brownian excursion[END_REF]Lemma 3] (this can be proved by a simple induction again). Hence, for any k,

2k -max H T ≤ m T (k) ≤ 2k, ∀k ∈ 0, T , m T (k) ≤ 2k ≤ m T (k) + max H T ≤ m T (min{k + max H T , T }), (5.6) 
since m T (k + 1) ≥ m T (k) + 1. Now, defining ∆ T := max p |H T (p) -H T (p + 1)| + 1, from (5.6) and (5.5),

sup p∈ 0, T {|C T (m T (p)) -C T (2p)|} ≤ ∆ T + w max H T (H T ), (5.7) 
where w δ (f ) = max{|f (x)f (y)|, |x -y| ≤ δ} is the modulus of continuity of f . Indeed, C T (m T (p)) = H T (p) and C T (2p) coincide, up to an additive term bounded by ∆ T , with H T (j) for j such that m T (j) ≤ 2p ≤ m T (j + 1) -1 (by (5.5)). Therefore, by (5.6), 2jmax

H T ≤ 2p ≤ 2(j + 1) -1, so that j ∈ (2p -1)/2, p + max H T /2 = p, p + max H T /2 .
Let us now prove that under the hypotheses of the theorem, for a random tree T n taken under µ n ,

sup p |C Tn (2p) -H Tn (p)| / r(n) (d) --→ n 0. (5.8) 
Taking into account the convergence h n

(d) --→ n h, this implies that c n -h n ∞ (d)
--→ n 0, and the continuity of c n allows concluding. By (5.7), it suffices to prove that ∆ Tn /r(n)

--→ n 0, and w max H Tn (H Tn )/r(n)

(d) --→ n 0.
By (5.5), since h n

--→ n h, for any ε , ε > 0, there exists δ > 0 such that

lim n P w δ (h n ) > ε ≤ ε . (5.9) 
In particular, for any ε > 0, lim n P ∆ Tn ≥ εr(n) → 0.

For some M > 0, consider the event E n,M = {max H Tn ≤ M r(n)}. Since the normalized height process converges in (C[0, 1], . ∞ ), then r(n) -1 max H Tn is tight, so that for any ε > 0, there exists M such that P(E n,M ) ≥ 1ε for n large enough. Hence, for some a > 0, write

P w max H Tn (H Tn )/r(n) ≥ a ≤ ε + P w max H Tn (H Tn )/r(n) ≥ a, E n,M ≤ ε + P w M r(n) (H Tn )/r(n) ≥ a . Since w M r(n) (H Tn )/r(n) = w M r(n)/n (h n ) and r(n) = o(n)
by hypothesis (we have M r(n)/n → 0), and by (5.9), P(w max H Tn (H Tn )/r(n) ≥ a) → 0 for any a > 0.

Proof of Theorem 2.11

By Kolmogorov's continuity criterion the Brownian motion, is q-Hölder for any q ∈ (0, 1/2), because

E (|B t -B s | γ ) ≤ c γ |t -s| γ/2
, where c γ = E(|B 1 | γ ) < +∞. The Brownian excursion e is also q-Hölder for any q ∈ (0, 1/2), since (e t , 0 ≤ t ≤ 1)

(d) = |B d+(g-d)t | / √ d -g, 0 ≤ t ≤ 1 , where g = sup{t < 1, B t = 0} and d = inf{t > 1, B t = 0}. Since √ d -g is a.
s. finite, the Brownian excursion is q-Hölder. Now, assume by induction that we have proven that h (j) is q-Hölder for any q ∈ [0, 1/2 j ) and more precisely that we proved that for any q ∈ [0, 1/2 j ), for any ε > 0, there exists M such that P Hol q (h (j) ) ≥ M ≤ ε.

(5.10)

To prove that this property is also true for j + 1, consider the event E j,q,M = {Hol q (h (j) ) ≤ M }.

Since (j) (x) -(j) (y) (d) 
= N (0, D h j (x, y)), for any a ≥ 1, any x, y ∈ [0, 1],

E (j) (x) -(j) (y) a | E j,q,M = E(|N 1 | a )E D h j (x, y) a/2 | E j,q,M (5.11 
)

≤ E(|N 1 | a )2 a/2 M a/2 (x -y) qa/2
(5.12)

≤ C(xy) qa/2 (5.13) because D h j (x, y) ≤ 2M |x-y| q on E j,q,M , as for any u in [s, t], |h j (s)-h j (u)|+|h j (t)-h j (u)| ≤ 2M (t-s) q . Hence, conditionally on E j,q,M , (j) satisfies Kolmogorov's criterion, and it is then q/2-Hölder. It follows readily that for M large enough, P Hol q/2 ( (j) ) ≥ M ≤ ε. Now, if a function f is q-Hölder, so does Conj(f ), from what we conclude.

Proof of Proposition 4.2

First, D Ψ is a distance on QC 0 [0, 1]: since D Ψ is symmetric, in fact the main point is that in (4.4), the inf can be replaced by a min. For this, take a sequence a n such that g 1 -Ψ an (g 2 ) ∞ → inf a g 1 -Ψ a (g 2 ) ∞ . Extract from this sequence a converging subsequence (this is possible since (a n ) lives in the compact set [0, 1]); let b be the limit of this subsequence (a n k , k ≥ 0). Since equicontinuity and pointwise convergence imply uniform convergence (on a compact set),

Ψ an k (g 2 ) -Ψ b (g 2 ) ∞ → 0 (since the functions in {Ψ a (g 2 ), a ∈ [0, 1]} are equicontinuous). Therefore, D Ψ (g 1 , g 2 ) = lim k g 1 -Ψ an k (g 2 ) ∞ = g 1 -Ψ b (g 2 ) ∞
. This shows that the infimum is reached and can be replaced by a min. From here, we see that if D Ψ (f , g) = 0, then there exists b ∈ [0, 1] such that f = Ψ b (g), so that f = g in QC 0 [0, 1]. Using this property, the triangular inequality for D Ψ follows: take b 1 , b 2 such that [START_REF] Aldous | The continuum random tree. II. an overview[END_REF], and an element f n in f n for each n. We claim that the sequence (Ψ bn (f n )) contains a converging subsequence in C[0, 1]. By the Arzela-Ascoli theorem it suffices to check that this sequence is bounded and uniformly continuous. First, the sequence (

D Ψ (f 1 , f 2 ) + D Ψ (f 2 , f 3 ) = f 1 -Ψ b 1 (f 2 ) ∞ + f 2 -Ψ b 2 (f 3 ) ∞ = f 1 -Ψ b 1 (f 2 ) ∞ + Ψ b 1 (f 2 ) -Ψ b 2 +b 1 (f 3 ) ∞ ≥ f 1 -Ψ b 2 +b 1 (f 3 ) ∞ ≥ min c f 1 -Ψ c (f 3 ) ∞ = D Ψ (f 1 , f 3 ), from what we conclude. Now, QC 0 [0, 1] is Polish: just use the fact that the canonical projection from C[0, 1] to QC 0 [0, 1] is 1-Lipschitz: D Ψ (f , g) ≤ f -g ∞ , so that the image of a countable dense subset of C[0, 1] is countable and dense in QC 0 [0, 1]. Now take a Cauchy sequence (f n ) in QC 0 [0, 1]. Take any sequence (b n ) in [0,
Ψ bn (f n ) ∞ ) is bounded (because Range(f n ) := max f n -min f n is a class invariant: if along a subsequence, Range(f n ) → +∞, then (f n ) cannot be Cauchy, since D Ψ (f, g) ≥ |Range(f ) -Range(g)|).
In the same way, the following "circular" class invariant continuity modulus of f , defined by w δ (f ) := max{|f (x)f (y)|, d R/Z (x, y) ≤ δ}, considering in this formula f as 1-periodic over R, can be compared to the standard modulus of continuity:

w δ (f ) ≤ w δ (f ) ≤ 2w δ (f ). (5.14) Assume that (f n ) is Cauchy in QC 0 [0, 1]: there exists an array (b n,m , n, m ≥ 0) such that f n - Ψ bn,m (f m ) ∞ → 0, for n, m ≥ N and N → +∞.
Let ε > 0 be fixed, and N be large enough (and fixed) such that sup n,m≥N

f n -Ψ bn,m (f m ) ∞ ≤ ε (5.15)
and let also δ > 0 be small enough such that w δ (f N ) ≤ ε. By (5.15), w δ Ψ bn,m (f m ) < 2ε, and then w δ (f m ) ≤ 4ε for all m ≥ N . Hence the sequence (f m ) is bounded and equicontinuous, so that it is relatively compact (by the Arzela-Ascoli theorem). Hence, there exists a converging subsequence (f n k ) in C[0, 1]. Let f be the limit of this sequence. From here, it is easy to conclude that f n → f in QC[0, 1]: by the triangular inequality,

D Ψ (f n , f ) ≤ D Ψ (f n , f n k ) + D Ψ (f n k , f
), and then taken the converging subsequence for (f n k ), we get that f n k converges to f in QC 0 [0, 1] and then (f n ) converges to f too. 

= y, are defined, and so that y n (as.)

---→ n y. By Arzela-Ascoli, a subset K of C[0, 1] is relatively compact iff sup g∈K g ∞ < +∞, and if for any δ > 0, sup g∈K w δ (g) < +∞. Since for any g ∈ C[0, 1] + , g(0) = g(1) = 0, then for any a ∈ [0, 1], w δ (Ψ a (g)) ≤ 2w δ (g). It follows that if K is a subset of C[0, 1] + relatively compact in C[0, 1], then K := a∈[0,1] Ψ a (K) is also relatively compact. From the tightness of (y n , n ≥ 0), we can therefore deduce the tightness of (Conj(y n ), n ≥ 0). Consider the sets A = argmin y and a n = min argmin y n . First, y ny ∞ → 0 ⇒ min y n → min y, and this entails that d(a n , A) → 0. Indeed, if for a subsequence d(a nm , A) → 0, then, by compactness a subsequence a nm (of this subsequence) would converge in [0, 1] to a point x /

∈ A and at this point ---→ n 0, from (4.2), we conclude. (iii) This is a consequence of (i): since the sequence (Conj(y n ), n ≥ 1) is tight in C[0, 1], from each subsequence (Conj(y nm ), m ≥ 1) of this sequence, one can extract a weakly converging subsequence (Conj(y nm k ), k ≥ 1), and still by (i) the accumulation point in QC 0 [0, 1] is y. Using the Skhorohod embedding, we can find a probability space on which the copies of these random variables converge (iv) This is a consequence of (iii), since the class of Conj(y n ) (resp. Conj(y)) in QC 0 [0, 1] is the same as that of y n (resp. y).

y x ≤

Proof of Theorem 4.11

The proof is done by induction. Before writing the proof, we need to state several propositions. The convergence for the case D = 1, is a consequence of a result already known: Proposition 5.4. [Marckert & Mokkadem [53], Janson & Marckert [START_REF] Janson | Convergence of discrete snakes[END_REF]] Let ν be a centered distribution having moments of order 4 + ε for some ε > 0, and variance σ 2 > 0. Consider (T n , L Tn ) a branching random walk, constructed on a random tree T n picked uniformly in T n . The following convergence in distribution holds in C([0, 1], R 2 ) equipped with the topology of uniform convergence:

C Tn (2nx) √ 2n , L Tn (2nx) n 1/4 2 1/4 σ x∈[0,1]
→ (e, r), (5.16) where e is the normalized Brownian excursion and, conditionally on e, r is distributed as a centered Gaussian process with covariance function cov(r x , r y ) = e (x, y).

The convergence of the first marginal in Proposition 5.4 is equivalent to the convergence of uniform planar trees to Aldous' continuum random tree.This theorem can be found in Aldous [START_REF] Aldous | The continuum random tree. II. an overview[END_REF][START_REF] Marckert | The depth first processes of Galton-Watson trees converge to the same Brownian excursion[END_REF].

For the second marginal convergence, the main ingredient is the central limit theorem: for 2nx ∈ N, conditionally on C 2nx , R 2nx is a sum of C 2nx centered i.i.d. r.v. with variance σ 2 ; hence

R 2nx σ √ C 2nx = R 2nx σ(2n) 1/4 (2n) 1/4 √ C 2nx
is close to a normal random variable N (0, 1). One perceives, according to the convergence (2n

) 1/4 √ C 2nx (d) 
--→ n 1/ √ e x , the one-dimensional convergence of the second marginal, as stated in (5.16). (The finite dimensional convergence can be proved using this argument, but the tightness needs additional work). Now, in order to complete the induction we need the three following propositions.

Proposition 5.5. Let (r(n)) be a sequence such that r(n) → +∞ and r(n) = o(n). Assume that (L n , n ≥ 0) is a sequence of processes such that for every n, L n = L n ([0, n]) takes its values in L n , and such that the normalized and interpolated process n := Ln(nt)

r(n) , 0 ≤ t ≤ 1 satisfies n (d) --→ n in C[0, 1],
where a.s., has no period (meaning

(a + x mod 1) = (x) for all x ∈ [0, 1], implies a ∈ Z). For      C n := Φ H→C n (Φ L→H n (L n )) c n (t) = C n (2nt)/r(n), t ∈ [0, 1] c n = Conj( n )
we have c nc n ∞ → 0 in probability, as n → +∞.

This proposition does not imply the convergence of c n or c n ; again, the convergence of ( n ) does not imply that of (Conj( n )).

Proof. Write H

n = Φ L→H n (L n ), h n (•) = H n (n•)/r(n) and C n = Φ H→C n (H n ). From Proposition 4.6, the sequence (Conj( n )) is tight in C[0, 1]
. Consider a converging subsequence (Conj( n k )), and let us observe that Conj( n k ) and (h n k ) are asymptotically indistinguishable, in the sense that

c n k -h n k ∞ = Conj( n k ) -h n k ∞ → 0 in probability when k → +∞.
The reason is that Conj( n )h n ∞ ≤ 2/r(n) since there is at most one abscissa discrepancy of one (normalized) step between the two constructions, and since in the definition of Φ L→H n (Defi. 3.8) there is an additional +1 (which after normalization becomes 1/r(n)). Now, Theorem 5.3 allows us to write h n kc n k → 0 (in proba.) and then to conclude. Theorem 5.7. Let (r(n)) be a sequence such that r(n) → +∞. For any n, let µ n be a distribution on T n . Consider a branching random walk with underlying tree T n , a random tree with law µ n , and spatial increment ν (see (3.9)). Denote by L n the associated corner label process. Let (c n , n ) be the normalized versions of the contour and label processes defined by

c n (x) = C Tn (2nx) / r(n), for x ∈ [0, 1] n (x) = L n (2nx) / 2r(n)/3, for x ∈ [0, 1].
(5.17)

If c n (d) --→ n c in (C[0, 1],
. ∞ ) and if the sequence (c n ) is q-Hölder tight for some q ∈ (0, 1), then: the pair (c n , n ) converges in distribution to (c, ) in (C[0, 1] 2 , . ∞ ), where conditionally on c, is a centered Gaussian process with covariance matrix cov( (x), (y)) = c (x, y);

(5.18)

the sequence ( n ) is q -Hölder tight, for any q ∈ (0, q/2).

If c ≡ 0 a.s, then a.s. has no period (in the sense of Proposition 5.5).

Proof.

Since c n (d) 
--→ n c, by Skhorohod representation theorem, there is a probability space on which some copies cn

(d) = c n , c (d) 
= c are defined, such that cn (as.)

---→ n c. Let us work on this space. Now, by the standard central limit theorem, one proves easily the convergence of the finite dimensional distributions of the sequence of processes n to those of the Gaussian process with covariance matrix specified in (5.18).

To prove the property about the tightness, consider the following set F M,q = {f ∈ C + [0, 1], Hol q (f ) ≤ M } for some M > 0, and q ∈ (0, 1). Then, as already explained below (5.13), for f ∈ F M,q , the distance D f defined in (2.4) satisfies D f (s, t) ≤ 2M |t -s| q , for any (s, t) ∈ [0, 1] 2 .

(5. [START_REF] Chassaing | Random planar lattices and integrated superBrownian excursion[END_REF] Let us assume that (c n ) is q-Hölder tight, i.e. for any ε > 0, there exists M > 0, N ≥ 1, such that, for any n ≥ N , P(c n ∈ F M,q ) ≥ 1ε. Conditionally on c n ∈ F M,q , for x and y such that x ≤ y and 2nx and 2ny are integers, n (x)n (y) is a sum of D C Tn (2nx, 2ny) i.i.d. r.v. (X j , j ≥ 1) with distribution ν, divided by 2r(n)/3. Since ν is centered and has all its moments, the Marcinkiewicz-Zygmund inequality gives

E(|X 1 + • • • + X p | s ) ≤ m(s)p s/2 , (5.20) 
where m(s) is a constant (independent from p). Therefore, conditionally on C Tn , for x, y such that 2nx and 2ny are integers14 

E L n 2nx) -L n (2ny r(n) s C Tn ≤ m(s) D C Tn 2nx, 2ny r(n) s/2 = m(s) D cn x, y s/2 ,
by the normalization (5.17). Using the fact that (c n ) is q-Hölder tight and (5.19), this gives

E 2/3 ( n (x) -n (y)) s C Tn , F M,q ≤ m (s, M ) |x -y| sq/2 , with m (s, M ) = m(s)(2M ) s/2
. The standard moment criterium (5.2) allows us to conclude.

Use again the probability space of the first point, on which some copies cn Conditionally on c = c, the tree T c possesses a non-trivial branch, so that a.s. is not identically zero (its range contains that of the Brownian motion living on any non-trivial branch of T c ). Now, under this condition, if is periodic, its period must be rational: otherwise, since 0 = 0, would be identically 0 which is excluded.

Since Q is countable, it suffices then to show that for a rational number q ∈ (0, 1), with probability 1, q is not a period of . We start to show that there exists x ∈ [0, 1] so that D c (x, x + q) = 0. Indeed, D c (x, x + q) = 0 implies that x and x + q are corners of the same node in T c ; since nodes are non-crossing, D c (x, x+q) = 0 for every x, implies that [0, 1] is the set of corners of a unique node, so that c is identically 0, which is excluded. Now, take x such that D c (x, x + q) = 0: for this x, since is the label process of c, (x) -(x + q) ∼ N (0, D c (x, x + q)), and then, a.s. (x) = (x + q) and then q is not a period of .

We go on with a kind of converse of Proposition 4.6:

Lemma 5.8. Let c, c 1 , c 2 , • • • be a deterministic sequence in QC 0 [0, 1] such that c n → c in (QC 0 [0, 1], D Ψ ).
Consider for each n an element c n taken in c n , and such that Proof. This property is folklore: it can be transferred from the classical simple random walk (with increment +1 or -1) which owns the same property (with the same rescaling), fact that follows a simple application of the moment condition. To transfer this property from the random walk to the Dyck paths there is a two steps argument ([38, Proof of Lemma 1]).

c n ∈ C + [0, 1]. The sequence (c n ) is relatively compact in C[0, 1 
-There is a 1 to 2n + 1 map which sends Dyck paths (at which an additional step -1 is appended) to bridges of size 2n + 1, which are paths with steps +1 and -1 with length 2n + 1 ending at -1: the 2n + 1 bridges associated to a (single) Dyck path are obtained by conjugations at one of the 2n + 1 abscissa from 0 to 2n. These maps multiply q-Hölder exponents by at most 2, so that, it suffices to transfer the tightness property from random walks to bridges.

First, the fact that (c (j) n ) is q-Hölder tight for any q ∈ (0, 1/2 j ) is a consequence of the preservation of this property by conjugation, and is then inherited from this property of ( (j-1) n ). To discuss the convergence of the label process of the normalized branching random walk having c (j) n as an underlying tree, let us come back to the world of rooted trees: by Lemma 5.8, choose an element c n ∈ C + [0, 1] ∩ c (j) n (for example take c n = c (j) n ) for each n, build a rooted tree with this contour, and on this tree a branching random walk as explained in (3.2). After that, build the corresponding normalized tour of snake (c n , n ) associated to this rooted tree with the normalization specified in Theorem 4.11 (recall Section 4.2 for the effect of choosing c n or another tree in the tree class of c (j) n ). From Lemma 5.8, (c n ) has all its accumulation points in PointedTreeClass c (j) . Take a converging subsequence (c n k ) in (C[0, 1], . ∞ ), and let c ∈ C + [0, 1] be its limit. By Theorem 5.7, we get (c

n k , n k ) (d) --→ n (c , )
, where is a Gaussian process with covariance matrix cov( (x), (y)) = c (x, y). We get also by this same theorem, that ( n ) is q-Hölder tight for any q ∈ (0, 1/2 j+1 ) (for a bound on the q-Hölder exponent independent from the subsequence, since the q-Hölder exponents of the different elements c n ∈ c (j) n have their ratio bounded by 2). Hence, taking into account that π • (c , ) is a random variable in Snakes • having a distribution which does not depend on the element c ∈ c (j) n , we conclude.

Combinatorial aspects of maps and iterated discrete feuilletages

The aim of this section is to emphasize certain combinatorial aspects of the construction: we review our construction in the combinatorial map picture, putting the accent on the combinatorial encodings of the objects involved, before giving the asymptotic enumeration of discrete feuilletages in Sec. 6.5, and a combinatorial encoding of the discrete feuilletages in Sec. 6.6.

Generalities and different encodings of combinatorial maps

Some references on maps include [START_REF] Mohar | Graphs on Surfaces[END_REF][START_REF] Lando | Graphs on Surfaces and Their Applications[END_REF][START_REF] Goulden | Combinatorial Enumeration[END_REF][START_REF] Gall | Probability and Statistical Physics in Two and More Dimensions[END_REF]. There are several equivalent definitions of combinatorial maps, suitable for different purposes and considerations: combinatorial, topological, or to produce asymptotic results and limit objects. Let us first provide two of them without entering into much details:

• A map is a connected graph drawn on a surface, such that the edges do not cross and the connected components of the complement of the graph on the surface are homeomorphic to disks.

• It can be seen as the result of gluing together a collection of polygons by pairing the edges on their boundaries, to form an orientable surface.

The map is then seen up to continuous deformation of the drawing on the surface (Fig. 15). Maps as graph drawings up to homeomorphisms are combinatorial objects: there is a finite number of maps with n edges. Indeed, consider a map with n edges, and label each half-edge by a number -an index -from 0 to 2n -1. The set of edges is then naturally encoded by a set α of pairs of half-edges, and each vertex by the cyclic ordering of half-edges around it, that defines a permutation σ on the set of half-edges through its cycles. These permutations fully characterize the map, and thereby provide a third definition: Definition 6.1. A connected indexed map 15 with n edges, is a pair M = (σ, α), where σ is a permutation on 0, 2n -1 , α is a fixed-point free involution on 0, 2n -1 , and the group < σ, α > generated by σ and α acts transitively on 0, 2n -1 (the map is connected).

The numbers V , n and F of vertices, edges, and faces of a map (σ, α) satisfy Euler's formula:

V -n + F = 2 -2g,
where g is a non-negative integer, called the genus of a map (the genus of the surface on which the graph is drawn). Planar maps are maps with genus 0. The distance in a map is the length of the shortest path between two vertices. A map is said to be pointed if a particular vertex is distinguished. Two consecutive half-edges j = σ(i) and i define a corner of the map. A map is said to be rooted if a particular corner is distinguished. It is equivalent to provide an orientation to a given edge, say from i to α(i) (i.e. to specify the first element of one of the disjoint pairs in α). We call root vertex (or simply root) the vertex incident to the root corner. Combinatorial maps are usually considered up to reordering of the half-edges. In this case, an unindexed map is an equivalence class

{(ρ • σ • ρ -1 , ρ • α • ρ -1 ) | ρ ∈ S 2n }.
In this paper, we generally consider rooted unindexed maps. 16Unicellular maps and trees. A rooted unicellular map is a rooted (connected) map with one face σ • α. A tree is a unicellular map of genus 0. The face of a unicellular map with n edges is a cycle of length 2n which organizes all the corners: using the root as a starting point (indexed 0), the corners can be re-indexed from 0 to 2n -1: the "counterclockwise corner sequence" of the tree. 17Labelings of trees have been defined in Def. 3.7. A labeling provides an integer to every vertex (its label), such that the label of the root vertex is 0, and the labels of the extremities of any edge differ by at most 1. The set of labeled rooted trees (T, ) with n edges will be denoted by LT n , and we define

m(T, ) = min v∈V(T ) (v). ( 6 

.1)

Non-crossing partitions and trees. Another encoding of a rooted planar tree with n edges, which we will use later in this section, is as a pair (C, σ), where C is an ordered set C = {1, . . . , 2n} (the corner sequence of the tree), and σ is a non-crossing permutation on this set, that is, a permutation for which the disjoint cycles respect the cyclic ordering of C and have supports which do not cross for this ordering.

Definition 6.2. We say that a permutation σ on a totally ordered set C respects the ordering of C if for each one of its cycles c, there are only two consecutive elements a < b in c for which σ(a) > σ(b). Definition 6.3. A partition C = i V i of C is said to be non-crossing if there are no elements p 1 < q 1 < p 2 < q 2 such that p 1 , p 2 ∈ V i and q 1 , q 2 ∈ V j with i = j. We say that a permutation σ on C is non-crossing if the partition it induces is non-crossing, and if in addition it respects the ordering of C.

In addition, we require that the Kreweras complement [START_REF] Kreweras | Sur les partitions non croisées d'un cycle[END_REF][START_REF] Nica | Lectures on the Combinatorics of Free Probability[END_REF] of σ on C is a (non-crossing) matching, where a matching is a partition in pairs, and: Definition 6.4. Consider the totally ordered set C = {1 < 2 < . . . < N } and make a copy C = {1 < 2 < . . . < N } of this set, so that C C is ordered as {1 < 1 < 2 < 2 . . . < N < N }. If π is a non-crossing partition on C, we define its Kreweras complement π as the maximal non-crossing partition on C for the inclusion order such that π ∪ π is a non-crossing partition on C C, where the inclusion order is defined as

C = i V i ≤ C = i V i if each V i
is the union of one or several V j . See Fig. 16. The rooted planar tree is then obtained from (C, σ) by drawing the ordered set C on a circle and the cycles of σ as shaded regions, adding vertices in the shaded regions, and edges between two vertices whenever the corresponding shaded regions face each other, as shown in Fig. 17 Note that more generally, if the permutation σ is not required to be non-crossing, then (C, σ) encodes a unicellular map (a map with only one face) of positive genus. is built (middle), as well as a third tree τ 5 glued by σ (2) and σ (1) (left), as Q

(2,3) 5

(up to a rerooting) glued by σ (1) (middle), and as the completely folded object (right).

We do not provide exact formulas for the numbers m 6.6 New proposition for the notion of D-combinatorial map 6.6.1 A simple encoding using nested permutations.

In the previous sections, a combinatorial structure has emerged in the iterated encoding of the discrete feuilletages. We propose to define a notion of "D-general feuilletages" which encompasses our notion of Ddiscrete feuilletages. We omit some constraints on the trees τ (j) n or the permutations σ (j) (their Kreweras complements are matchings, for instance), but we keep the fact that the permutations involved are noncrossing, as it provides an important restriction, which for D = 2 is equivalent to the planarity of the map. Denoting the non-zero elements of the support of σ (j) by i 1 , . . . , i p j ∈ N , where p j ≥ 1, we consider the ordered set C j = {0 < i 1 < . . . < i p j } and introduce the notation C j which refers to the ordered set C j if j and D have the same parity, and to the ordered set C j = {0 < i p j < i p j -1 . . . < i 1 } otherwise, so that σ (j) is a non-crossing permutation on C j iff it induces a non-crossing partition on C j (and thus on C D ), and it respects the ordering of C D if j ≡ 0 mod D and of C D if j ≡ 1 mod D. Definition 6.6. We call D-general feuilletage a (D + 1)-uplet M D = (C D , σ (D) , . . . , σ (1) ), where C D is the totally ordered set C D = {0 < 1, • • • < N -1}, and for 1 ≤ j ≤ D, σ (j) is a permutation on C D whose support C j is included in that of σ (j+1) (the permutations are nested), σ (j) is a non-crossing permutation on C j , and it has one element per disjoint cycle of σ (j+1) at most. For any j, (C j , σ (j) ) is a planar tree (the tree τ (j) n for a discrete feuilletage). Gluing the vertices of this planar tree according to the cycles of σ (j-1) provides a planar map, encoded by the triplet (C j , σ (j) , σ (j-1) ) (for a discrete feuilletage, it is a planar quadrangulation Q (j-1,j) n

) 21 . Given a D-general feuilletage M D and for k > 1, M D-k+1 = (C D , σ (D) , . . . , σ (k) ) is of the same form as a (Dk + 1)-general feuilletage. For k = D, it is a planar tree, for k = D -1 it is a planar map, and M D-k+1 is obtained from M D-k by folding it as many times as there are disjoint cycles in σ (k) . 21 The reason why we don't have to shift the first element of the set Cj to obtain the various iterated trees is precisely because the root of τ (j+1) n is chosen as dual to the root of τ (j) n .

Comparison with other notions of D-dimensional combinatorial maps

Colored triangulations D-dimensional triangulation whose vertices are colored from 0 to D are called colored triangulations (in this section, by "triangulation" we always mean D-dimensional triangulation). Such triangulations appear in the topology (see [START_REF] Ferri | A graph-theoretical representation of PL-manifolds -A survey on crystallizations[END_REF] for a survey) and combinatorial (see e.g. [START_REF] Bonzom | Maximizing the number of edges in three-dimensional colored triangulations whose building blocks are balls[END_REF][START_REF] Chapuy | On the number of coloured triangulations of d-manifolds[END_REF]) literature, and in the context of random tensor models [START_REF] Gurau | Invitation to random tensors[END_REF][START_REF] Gurau | Random Tensors[END_REF]. Orientable colored triangulations are fully encoded by the 1-skeleton of their dual graphs, which are (D + 1)-regular bipartite graphs, whose edges carry a color c ∈ {0, . . . , D}, so that the vertices have one incident edge of each color, and one only. Labeling for instance the edges of color 0 in the graph, we see that a D-dimensional orientable colored triangulation is fully encoded by a D-uplet of permutations (ρ 1 , . . . , ρ D ) acting on the n white vertices, so that ρ c (k) = p iff an edge of color c goes between the white vertex k and the black vertex p. 22D-G-maps and D-maps In the constructions by Lienhardt [START_REF] Lienhardt | N-dimensional generalized combinatorial maps and cellular quasi-manifolds[END_REF], two generalizations of maps are defined on a set of darts D. We give the encodings without further comments, and refer to the references for more details. A D-G-map without boundary is defined by a (D + 2)-uplet (D, α 0 , . . . , α D ), where the α i are involutions on D without fixed points. In addition, for 0 ≤ i ≤ D -2 and i + 2 ≤ j ≤ D, α i α j is also an involution. The involution α 0 gathers the darts into edges, α 1 groups edges into vertices of valency 2, thus forming faces, α 2 groups pairs of edges together thus gluing faces, and so on. When two darts are identified by α 2 , the other two-darts of the edges they belong to, must also be paired by α 2 , so that α 0 α 2 is an involution, and so on. A D-map is defined similarly as a (D + 1)-uple (D, α 0 , . . . , α D-1 ), where for 1 ≤ i ≤ D -2, α i is an involution on D without fixed point, α D-1 is a permutation on D, and for 0 ≤ i < i + 2 < j ≤ D -1, α i α j is an involution. D-maps are suited to describe oriented spaces.

Concluding remarks regarding the physics motivations

The notion of D-generalized maps we introduced in Defi. 6.6 has in common with the other notions reviewed above, their encodings by D or (D +1)-uplets of permutations, with different types of constraints As mentioned in Sec. 1.4 of the introduction, the issue in trying to obtain interesting asymptotic objects as limits of random generalized maps in the cases just reviewed, is to find a suitable criterion of selection for generalized maps such that uniform generalized maps in the corresponding subset have interesting asymptotic properties. Indeed, as mentioned in the introduction, the approaches based on the curvature or on the topology so far lead to Aldous' CRT, to the Brownian map, or to degenerated spaces for which likely a continuum limit cannot be obtained [START_REF] Carrance | Uniform random colored complexes[END_REF][START_REF] Ambjørn | Three-dimensional simplicial quantum gravity[END_REF][START_REF] Thorleifsson | Lattice gravity and random surfaces[END_REF] (and references in the introduction).

So far, there are no known ways to obtain continuum scaling limits other than trees or surfaces from the generalized maps just reviewed, a necessary and important step towards building discrete statistical theories with interest for quantum gravity.

On the other hand, although we do not have a representation of the iterated random discrete feuilletages as gluings of elementary D-dimensional volumes, because of our construction based on iterated trees which renders difficult the identification of elementary volumes (see the end of Sec. 6.1), we do have the convergence to the iterated random continuous feuilletages, which are not expected to be continuum random trees or surfaces. This has not been obtained in any physics approach to the problem, and in this respect, we believe that our construction provides an important step in the context of discrete approaches to quantum gravity. We recall here that as mentioned in the introduction, it is not clear from a physics point of view whether the continuum limiting space should have a spherical topology, only that general relativity should be recovered in some "coarse-grained" limit (see the footnote 9). Clearly, the definition of (toy-)models leading to limiting spaces other than trees or surfaces is a necessary step towards defining such a coarse-graining procedure and understanding the properties (topology, fractal properties...) that the limiting continuum space should have to recover general relativity.

between the two strips that are face to face). Up to some details concerning the parity of the strips, the cubes that have size 1 and which are placed on "planes" at distance 2, intersect at their vertices only. Observe again Picture 4, and imagine the Z 3 lattice in between the two planes: notice that every edge of the lattice belongs to exactly one of the cubes. What is shown on Picture 4 represents what happens inside each of the 4 layers, and between 3 inter-layers of Picture 3, so, it concerns a total section of width 13 of Z 3 .

Hence, it is possible to fold and identify vertices in quadrangulations to construct some objects whose underlying graphs contain G n .

As a matter of fact, it may be argued that this example is not in the set R N [START_REF] Ambjørn | Dynamically triangulating Lorentzian quantum gravity[END_REF] for any N large (one of the reasons being that the extracted trees (t 2 , t 3 ) of the textured fabric with the Cori-Vauquelin-Schaeffer bijection provides a tree t 2 whose height process has not the required increments +1, -1 or 0). But we hope that it illustrates the fact that such "3D-like objects" can arise in the construction we propose.
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Figure 2 :

 2 Figure 2: A planar tree and its contour process.
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 1 n . Starting from a uniform planar quadrangulation with n

Figure 4 :

 4 Figure 4: Identification of the non-crossing partition with a tree.

  n ) forms a planar quadrangulation Q (2,3) n , and the additional foldings of the nodes of T

  n (or the equivalent non-crossing partition) forms R n[START_REF] Ambjørn | Dynamically triangulating Lorentzian quantum gravity[END_REF]. Notice that the set of nodes of the quadrangulation Q (2,3) n coincides with the nodes of T[START_REF] Ambjørn | Quantum geometry: A statistical field theory approach[END_REF] 

( 1 )

 1 n , and then represents half the nodes of Q (2,3) n

Figure 5 :

 5 Figure 5: A planar map constructed from two trees T (1) n and T (2)

n

  will have 2 i-1 n edges, and proceed to the identification of the nodes of T (D) n : for any j < D, the tree T (j) n is used to identify the corners of T (j+1) n (as do non-crossing partitions), producing D successive series of foldings of the vertices of T (D) n starting from the circle. This allows identifying the nodes of the obtained object R n [D] as those of T (1) n (roughly), and the edges of R n [D] as those of T (D)

Figure 6 :

 6 Figure 6: Definition of a new tree with the labels of a labeled tree. To a labeled tree (top left) is associated a label sequence (top right), and the conjugated labeled sequence (bottom left) is the height sequence of a new tree (bottom right).

( 1 )

 1 n , since the process used to define the height process of T(2) n is the sequence of labels of the corners of T (1) n , and since each node of T (2)n (but its root) comes from one of the corners of T[START_REF] Aldous | The continuum random tree. II. an overview[END_REF] 

  from different corners of the same node of T (1) n

  3.1), and then iterated discrete snakes BS n [D] and the iterated random discrete trees T (D) n (Sec. 3.2), before introducing the iterated random discrete feuilletages R n [D] (Sec. 3.3), as well as their normalized versions (Sec. 3.3.2).

Figure 7 :

 7 Figure 7: Some images of randomly generated R n [D] for D going from 1 to 6 (loops and multiple edges have been removed, keeping a unique single edge between adjacent vertices). The size of the vertex set is 50000.

Figure 8 :

 8 Figure 8: Tree associated with a function taken in C + [0, 1]: the green path in the tree is visible in the functional encoding; the red arrows point toward the three corners c 1 , c 2 and c 3 of a vertex in the tree.

Figure 9 :

 9 Figure 9: Illustration of the map f → Conj(f ): it exchanges the part of the graph before and after a(f ).

  ] , the traveller can only walk on the tree t (D) , but whenever he wants, if he is at a ∈ [0, 1], he can jump at b ∈ [0, 1] without paying anything if a ∼ D b.Open question 1. Are the distances d (1) r[D] and d (2) r[D] non-trivial for any D > 2? (that is, is the diameter of r[D] under d (j) r[D] a.s. positive)?

  ] for D ∈ {1, 2}. Open question 3. What are the Hausdorff dimensions of the random trees (t (D) , D h (D) ) and of the random feuilletages (r[D], d (2) r[D] ) for D > 2? If 2 D is indeed the Hausdorff dimension of (t (D) , D h (D) ), then this value provides a lower bound for the dimension of r[D], d (2) r[D] ... We conjecture that both spaces indeed have Hausdorff dimension 2 D .

  of words on the alphabet N . For any word w = w 1 ...w k in U where w j ∈ N , |w| = k is the length of w, also called the depth of w. For u and v in U , uv stands for the concatenation of u and v. Definition 3.1.

Figure 10 :

 10 Figure 10: From left to right: a rooted planar tree T , and the corresponding height process and contour process.

Figure 11 :

 11 Figure 11: Illustration of the map Φ H→T n

Figure 13 :Figure 14 :

 1314 Figure 13: Simulation of BS 5000 [3]. On the kth column are the processes C (k) 5000 and L (k) 5000 . The range decreases when k increases. The "irregularities" of the processes increase with k.

  for j ≥ 1,

n and n 1 / 2 n

 12 j+1 of L (j) n . We call normalized Dth random discrete snake the process bs n [D] := c(1) n , is considered as being interpolated between discrete points, and then bs n [D] belongs to ----→ Snakes D . The corner set of c (j)

  of the jth tree in the N

Definition 3 . 12 .

 312 Let D ≥ 1 and n ≥ 1 be two fixed parameters, and BS n [D] = C (j) n , L (j) n , 1 ≤ j ≤ D a Dth random discrete snake. Let T (j) n be the random planar tree with contour process C j-1 n). We call Dth random discrete feuilletage R n [D] of size n the graph obtained by identification of the nodes of the T (j) n 's, for j = 1, . . . , D as follows. For all j ≥ 2, for all pairs (c, c ) ∈ 1, N (j) n 2 such that the corners c and c of T (j-1) n are both corners of the same node, identify in T The edges of R n [D] coincide with those of T (D) n , so that the number of edges of R n [D] is N (D) n = 2 D-1 n. The vertex set of R n [D] coincides with that of T (1) n union the set {r (j) n , 2 ≤ j ≤ D} where r (j) n is the root of T (j) n , since as discussed above the definition, the root of T (j) n is new and won't be identified with any node of the ∪ m≤j-1 T (m) n . The number of vertices of R n [D] is thus n + D. It remains to normalize this object and to represent it using the map Feuilletage.

3. 3 . 2

 32 Normalized discrete feuilletage as foldings of normalized discrete snakes Recall the definition of the normalizations (3.14). Definition 3.13. We call Dth normalized random discrete feuilletage the space r n [D] = Feuilletage c (j) n , (j) n , λ (j) n , for j ∈ 1, D . (3.20) Two important remarks have to be done: Remark 3.14. The tree T (j) n encoded by the contour C (j)

  is the contour process of T , and let R = (argmin C T ) \ {2 T } be the set of corners of the root vertex of T . For each element a ∈ R, call T (a) the tree T rerooted at its corner a. Since C T (a) = L T (a) = 0, the tour of the discrete snake now indexed by T (a) is simply,

  (j+1) n is obtained by conjugating (j) n . We do not impose the consistence condition (Def. 4.8) in the initial definition of Dth pointed snakes, because in the discrete case, the processes c (j+1) n and (j) n are not in general in the same class modulo ∼ Ψ (while the continuous Dth Brownian snake is consistent).

Definition 4 . 10 .

 410 We call Dth pointed Brownian snake a process taking its values in Snakes•,D , bs • [D] := π • h (j) , (j) , 1 ≤ j ≤ D ,(4.14)

(j- 1 Remark 4 . 13 .

 1413 ) n by a simple change of origin (as explained in Rem. 4.9). Theorem 4.11 implies that the right scale for the tree encoded by h (D) n

  other words limiting contour and height processes are asymptotically indistinguishable, c = h). Proof. Let u 0 , • • • , u T be the nodes of T sorted according to the lexicographical order. Denote by m T (k) = inf j, c T (j) = u k } the first visit time of u k by the depth first traversal. A simple induction shows that m T (k) = 2k -H T (k), for any k ∈ 0, T

5. 4 6 (

 46 Proof of Proposition 4.Skhorohod's theorem, there exists a probability space Ω where some copies y n (d) = y n , y

  a.s. (written with an extra ): D Ψ (Conj(y nm k ), Conj(y )) → 0. Since D Ψ (Conj(y nm k ), Conj(y )) = D Ψ (y nm k , y ), along this subsequence, y nm k (as.) ---→ n y in QC 0 [0, 1], from what we deduce that y nm k (d)--→ n y in QC 0 [0, 1]. Since the limit coincides with y in distribution in QC 0 [0, 1], its distributions does not depend on the extracted subsequence, (iii) holds.

Proposition 5 . 6 .

 56 Under the hypotheses of Proposition 5.5, ( n , c n ) converges in C[0, 1] × QC[0, 1] to some limiting process ( , c), and a.s., for any c ∈ c, there exists a unique a ∈ [0, 1) such that c(.a mod 1) = , in other words, there is almost surely a unique shift sending onto c.Proof. The convergence of n(d) --→ n in C 0 [0, 1] implies the convergence of n (d) --→ n in QC 0 [0, 1]. Sincefor any n, D Ψ (c n , n ) = 0, we can deduce that D Ψ (c, ) = 0. Since has a.s. no period, for c fixed in c, there exists a unique a ∈ [0, 1] such that c = Ψ a ( ).

  any element c ∈ C + [0, 1] different from the zero function.

Lemma 5 . 9 .

 59 ]: every accumulation point of this sequence belongs to PointedTreeClass(c).Proof. As in the proof of Proposition 4.2 (section 5.3), we start by observing that the sequence (c n ) is relatively compact: the reason is that c n → c in QC 0 [0, 1] is equivalent to the existence of a sequence (a n ) such that c n (a n + . mod 1)c ∞ → 0; from there follows the fact that ( c n ∞ ) is bounded and (c n ) equicontinuous. The sequence (c n ) is therefore relatively compact by Arzela-Ascoli, and owns some accumulation points (that are clearly elements ofC + [0, 1]). Consider an accumulation point c ∈ C + [0, 1]. Since along a subsequence c n k -c ∞ → 0, clearly D Ψ c n k , c→ 0 and since by hypothesis D Ψ (c n , c) → 0, we deduce that D Ψ (c , c) = 0 so that c and c = QC 0 [0, 1]. Let C n be a uniform Dyck path taken in Dyck 2n , and c n (•) = Cn(2n•) √2n . The sequence (c n ) is q-Hölder tight for any q < 1/2. As stated in (5.16) (first marginal convergence), c n

Figure 15 :

 15 Figure 15: Two representations of the same planar map.

Figure 16 :

 16 Figure 16: A partition π on an ordered set C (left), and its Kreweras complement π on C (right), and the non-crossing partition π ∪ π on C C (middle).

18
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3 Figure 17 :

 317 Figure 17: Encoding of a rooted planar tree by its counterclockwise corner sequence, together with a non-crossing permutation, whose Kreweras complement is a matching.

Figure 20 :

 20 Figure 20: The tree τ(2) n is in turn provided with a labeling L (2) 5 (left), from which a second rooted pointed planar quadrangulation Q (2,3) 5

Figure 21 :

 21 Figure21: The 3-discrete feuilletage R 5[START_REF] Ambjørn | Dynamically triangulating Lorentzian quantum gravity[END_REF], represented as τ(3) 

3 D- 2 j=0 2 j

 322 n of rooted D-discrete feuilletages, pointed or not. This depends for instance on how exactly the D -1 pointed vertices are chosen in R n [D]: among the n+D vertices of R n [D] (laying a factor (n+D) D-1 ) or on the various quadrangulations (laying a factor D-2 j=0 (2 j n + 2)). In any case, the asymptotics for these numbers behave asm •(D) n ∼ c D • λ n D • n γ D +D-3 and m (D) n ∼ c D • λ n D • n γ D -2 ,(6.4)where λ D has a contribution of the form coming from the enumeration of the iterative labelings of the trees, and the critical exponent is now well-known exponents for rooted planar trees and maps: γ 1 = 1/2 and γ 2 = -1/2.

  min y, a contradiction. Hence, the accumulation points of (a n ) belong to A. If a converging subsequence a mn tends to some a ∈ A,Conj( mn ) → Ψ a ( ) in C[0, 1].(ii) Use the same Skhorohod embedding as in (i). Now, in C[0, 1], the map g → min argmin g is not continuous, but if g ∈ C[0, 1] reaches its minimum only once, then g ng ∞ → 0 ⇒ min argmin g n → min argmin g. Hence, on the space Ω, min argmin y n

	(as.) ---→

n min argmin y, and since y ny ∞ (as.)

We use encodings of planar trees by non-crossing partitions whose Kreweras complements are matchings (disjoint sets

"Spatial" is an adjective that is used to distinguish the different processes into play: prosaically, it is just a usual linear Brownian motion.

Between integer points, Ln is linear, and it is folklore and easy to check, that the tightness can be proved by proving the moment condition only at these discretization points.

The common denomination would be labeled map, but we chose indexed to avoid confusion with the labeling of the trees and the label processes in the rest of the text.

For trees, we rather consider rooted trees together with a canonical indexing of the half-edges, as detailed below.

This is not the convention used for processes in Sec. 3, in which the corners of the trees are labeled from 0 to 2n -1 going around the tree clockwise. This should be kept in mind when comparing the various examples. Apart from that, one then recovers the contour and height sequences of the tree, as defined in Sec. 3.

Planar trees with n edges are also mapped bijectively to non-crossing partitions on n ordered elements. To obtain the description in the text from this last one, the non-crossing partition on n elements is completed by its Kreweras complement C → C C. In the context of this paper, the permutations we obtain naturally have matchings as Kreweras complements.

Note that there is a bijection[START_REF] Bonzom | Colored triangulations of arbitrary dimensions are stuffed Walsh maps[END_REF][START_REF] Bonzom | Counting gluings of octahedra[END_REF][START_REF] Lionni | Colored discrete spaces: higher dimensional combinatorial maps and quantum gravity[END_REF][START_REF] Fusy | Combinatorial study of graphs arising from the Sachdev-Ye-Kitaev model[END_REF] between orientable colored triangulations labeled this way and so-called (D + 1)-constellations[START_REF] Bousquet-Mélou | Enumeration of planar constellations[END_REF] (but without any assumption on the genus of the constellation).

This works has been partially supported by ANR GRAAL (ANR-14-CE25-0014). This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. ERC-2016-STG 716083, "CombiTop"). LL thanks Dario Benedetti and Valentin Bonzom for useful discussions on the physical motivations.

Iterated discrete snakes. We define iterated discrete snakes as we did in the continuous case. Definition 3.9. For any positive integer D, we call Dth random discrete snake of size n, the process BS n [D] := C (1) n , L (1) n , . . . ,

)

n is uniform in Dyck 2n (the contour process of a uniform planar tree with n edges), if C

n is defined for some j ≥ 1, L

n is the label process of a branching random walk with increment distribution ν as given in (3.9) with underlying tree T (j) n , the tree with contour process C (j) n , if for some j ≥ 2, L (j-1) n ∈ L 2 j-1 n is known, then the jth tree T (j) n is defined by its height process, obtained by conjugation of L (j-1) n , H (j) n := Φ L→H 2 j-1 n (L (j-1)

and its contour process is C

Some simulations for the processes of BS 5000 [START_REF] Ambjørn | Dynamically triangulating Lorentzian quantum gravity[END_REF] are shown in Fig. 13.

The discrete conjugation map Φ L→H N is length preserving; its image is the set of height processes of trees with N edges (they are indexed by 0, N ).

If one observes L 0, N , the two extremal values L 0 and L N correspond to the labels of the same corner of the root. This redundancy is suppressed during the construction of H = Φ L→H N (L 0, N ): the -1 and +1 shifts in (3.11) correspond to the creation of a new vertex (which is drawn in blue in Fig. 12). This size difference is not "a problem": the standard encoding of quadrangulations with n faces by pairs of trees shares this characteristic [START_REF] Marckert | Limit of normalized quadrangulations: the Brownian map[END_REF]. Hence, the construction we propose fits in the case D = 2 with the case of rooted pointed quadrangulations. This is the main reason why we use this convention.

The map Φ H→C N sends H N onto Dyck 2N . Dyck paths indexed by 0, 2N are used to construct branching random walks whose label processes are indexed by 0, 2N . Each iteration in the construction of the iterated snake multiplies the number of edges by 2. The number of edges of the tree T (j) n is thus

Normalized versions. Let BS n [D] be the Dth random discrete snake of size n. We need to fix some normalizing sequences to state the convergence of C (j)

n and L (j)

n : the normalization is fixed so that C

n , after normalization, converges to the Brownian excursion e. When one iterates, since

The following result is immediate:

Lemma 4.3. Two functions f and g in C + [0, 1] are in the same tree class (that is,

in which case

Hence, two rooted trees are in the same pointed tree class if each tree can be obtained from the other by a rerooting at a corner of the root vertex (for the measured version, the push-forward measure of the root corner of µ f is required to coincide with that of µ g , as explained in Rem. 2.8).

The next lemma is a direct consequence of Proposition 4.2 and its proof. The following proposition will be proven in Sec. 5.4.

Proposition 4.6. Let y, y 0 , y 1 , • • • be a sequence of processes taking their values in C 0 [0, 1] such that

The limits of the converging subsequences (in C[0, 1]) are all in the tree class of Conj(y).

Pointed snakes

We extend the notion of pointed trees to pointed snakes: Definition 4.7. Two snakes (f 1 , w 1 ) and (f 2 , w 2 ) taken in ----→ Snakes are said to be the same pointed snake if there exists a ∈ [0, 1] such that, 

(measured normalized) Dth pointed random discrete feuilletage, the space

For this topology, the convergence of discrete pointed snakes (Theorem 4.11) extends immediately to the convergence of pointed discrete random feuilletages: Theorem 4.16. For any D ≥ 1,

for the topology induced by D Ψ .

However, this convergence does not imply the convergence for the Gromov-Hausdorff distance. In terms of feuilletages it means in fact that their codings converge; we are not able at this point to deduce from this fact even the non triviality of r • [D] for D ≥ 3.

Remark 4.17. Theorem 4.16 implies that the sequence of diameters of r • n [D] (seen as graphs with edgelengths) is tight, so that, without edge normalization, an upper bound on the scale of the Dth random discrete feuilletage is n 1/2 D (we expect n 1/2 D to be the right normalization).

A variant for the feuilletage

We present here a variant which has the property to provide a feuilletage which scales clearly in n 1/2 D . However, we will just sketch this alternative construction, as it seems to us that it breaks the invariance by change of pointed vertex; moreover the representations of the trees T (D) n using linear processes and the study of their asymptotics seems less tractable.

In the construction detailed in this paper, the tree T

(3) n is first constructed using the label process L n can be used to recover the distances in this quadrangulation: hence the right scale of Q (2,3) n is n 1/8 . However, the corners of T

(2) n that are identified using T ; it is not easy to prove the scale n 1/8 for R n [START_REF] Ambjørn | Dynamically triangulating Lorentzian quantum gravity[END_REF]. We propose the following variant: we can adapt the labeling of T 

of its corners (in T

n ). Every vertex of T

n but one corresponds to a corner of T

n . Then, to construct the variant labeling of T n with smaller index (j < k), then label u k with the label of u j .

If the node u k is not identified by T

n with a node of smaller index, then label this node (in T

n ) with the label of its father (in

n ) in which is added a random variable ν-distributed. By this construction, the labeling attributed to the k first vertices of T 

Proofs

Some cornerstones of the proofs

We factorize here some ingredients of the proofs of the theorems.

Main arguments to prove the continuity of processes, and of limits of processes

The q-Hölder coefficient of a function f :

The function f is said to be q-Hölder for some q ∈ (0, 1) (shorthand for Hölder with exponent q) if Hol q (f ) < +∞. Needless to say that a q-Hölder function is continuous.

A process X is said to be Hölder continuous with exponent q, if a.s. Hol q (X) is finite. We recall Kolmogorov's continuity criterion (see e.g. Kallenberg 

then X has a continuous version, and for any c ∈ (0, b/a), it is a.s. Hölder continuous with exponent c. Definition 5.2. A sequence of processes (X n ) defined on [0, 1] is q-Hölder tight, if (X n (0)) is tight, and if, for any ε > 0, there exists M > 0 and N ≥ 1, such that for any n ≥ N ,

(5.1)

Another criterion for tightness is the -Now, bridges are invariant by translation, so that it suffices to prove that their first half are q-Hölder tight for any q < 1/2. Consider then a simple random walk (S 0 , • • • , S 2n+1 ), and A be an event (S 0 , • • • , S n+1 ) measurable (which depends on the first "half" of the trajectory).

Claim: Up to a multiplicative constant, the probability of A under the bridge condition is bounded by the probability of A for the random walk:

for a universal finite constant c (independent from n and from A).

Taking for a moment this claim as granted, the fact that the rescaled random walk is q-Hölder tight on [0, 1/2] (for any q ∈ (0, 1/2)) implies that it is also the case for the rescaled bridge (taking some events of the type A = {|S ns -S nt |/ √ n ≤ C|s -t| q , s, t ≤ n + 1}) to use the claim). To prove the claim, write 

n ,

--→ n (c (1) , (1) ) in C[0, 1] 2 : it implies the convergence in Snakes •,1 of

n , 1) , (1) ). Lemma 5.9, allows us to see that (c

n ) is q-Hölder tight for q ∈ (0, 1/2); Theorem 5.7 allows us to deduce that (

n ) is q-Hölder tight for q ∈ (0, 1/4), and since c (1) (d) = √ 2e is a.s. different from the zero process, that (1) has a.s. no period. Propositions 4.6 and 5.5 allow deducing from the convergence [START_REF] Aldous | The continuum random tree. II. an overview[END_REF] n → (1) , the fact that c

(2)

Now, the proof is basically a proof by induction: by the incremental nature of the construction of the iterated discrete snakes, we have for any j ≥ 2:

In order to prove the convergence of π • c

, m ≤ j -1 the simplest method consists in working on a space on which some copies of these processes are defined, that converge almost surely (whose existence is guaranteed by Skhorohod representation theorem). On this space, since (j-1) n → (j-1) a.s. (in QC 0 [0, 1]), by the same argument as above (mainly Propositions 4.6 and 5.5), c (j) n converges to some process, c (j) in QC 0 [0, 1]. We suppose also by induction that (c

Graph explosions. Maps can be decomposed yet in another way, "exploding" some of their vertices [START_REF] Cori | Planar maps are well labeled trees[END_REF][START_REF] Schaeffer | Conjugaison d'arbres et cartes combinatoires aléatoires[END_REF][START_REF] Marckert | Limit of normalized quadrangulations: the Brownian map[END_REF][START_REF] Chapuy | A bijection for rooted maps on orientable surfaces[END_REF][START_REF] Bouttier | Planar maps as labeled mobiles[END_REF][START_REF] Bernardi | Bijective counting of tree-rooted maps and shuffles of parenthesis systems[END_REF][START_REF] Chapuy | A simple model of trees for unicellular maps[END_REF]. More precisely, for each cycle of the permutation encoding the vertices in Def. 6.1, we may choose to split it in two or more disjoint consecutive cycles e.g. ( 123456) → (1)(234)(56). When doing so, a corner is distinguished on each copy of the vertex (the corners (1), (4, 2), and (6, 5) in this example). Exploding some of the vertices of a map M to obtain a map M and gathering the disjoint cycles σ v for each exploded vertex v, the explosion is thus encoded as a permutation σ = v σ v defined on the corners of M , which allows reversing the explosion and reconstructing the vertices of M . Now suppose that the map M obtained after exploding some of the vertices of M is a unicellular map, encoded by its corner sequence (an ordered set C ) and a permutation σ on C . Then the support of the permutation σ = v σ v just described is a subset of C , and the map M can be encoded by the triplet (C , σ , σ). In addition, there is at most one element of the support of σ per disjoint cycle of σ .

Any map M can always be encoded as such a triplet (C , σ , σ) by exploding some vertices to obtain a unicellular map. The original map M is planar if and only if both σ and σ are non-crossing permutations on C , i.e. if both (C , σ) and (C , σ ) are trees.

To our opinion however, for an encoding of a map M as a tree T = (C , σ) together with a permutation σ encoding the explosion of vertices, it is less obvious to read the dimension and the topology of M directly on the encoding (T, σ ): the 2-dimensional faces of the map for instance are created from portions of the tree (that can be viewed as a one dimensional object) that are assembled to form the faces. This explains to our opinion why it is not obvious at first glance to identify elementary cells of a certain dimension in our iterative construction of random graphs, which is based on iterating such an encoding, see Sec. 6.6.

Planar maps and labeled trees: the Cori-Vauquelin-Schaeffer bijection

A quadrangulation is a map whose faces all have length four. We denote by Q •,→ n the set of rooted and pointed quadrangulations with n faces. The minimum m(T, ) of was defined in (6.1).

Theorem 6.5 (Cori-Vauquelin 1981 [20], Schaeffer 1998 [65]

). There is a 1-to-2 mapping between rooted and pointed quadrangulations with n faces in Q •,→ n , and labeled trees with n edges in LT n . Furthermore, if the quadrangulation Q is the image of (T, ), then the set of nodes of T is sent bijectively onto the set of nodes of Q deprived from the pointed vertex ν; if the node u ∈ T is sent onto v, then, up to a global translation, (u) coincides with the distance of v to the pointed vertex ν in Q:

For our purpose, we only detail the mapping from LT n × {0, 1} to Q •,→ n : consider a labeled rooted tree (T, ), and a parameter η in {0, 1}. As usual, the depth traversal function c T of T associates with each integer k in 0, 2n -1 , the node c T (k) (which can be seen as a corner, recall (3.4)). Note that here however, we use the counterclockwise contour sequence of T to label the corners from 0 to 2n -1. Consider also L(k) = (c T (k)), the label of the kth corner of T , for k in 0, 2n -1 . First draw in red a special vertex ν in the plane, and draw in blue the tree T in the plane. Then, treat successively all the corners (c T (k), 0 ≤ k < 2n -1) (starting from the root corner c T (0)) as follows: to each corner c T (k), -if L(k) = m(T, ) (see (6.1)), add a black edge between c T (k) and the special vertex ν, -if not, add a black edge between c T (k) and the preceding corner with label L(k) -1.

At each step, this is done so that the black map remains planar. There is always a unique corner on either ν or the preceding vertex carrying the label L(k) -1 such that it is possible. We now remove the tree T (the blue edges), keeping only the vertices and the black edges. It can be proved that the resulting map is a connected planar quadrangulation. The map is pointed at ν, and rooted by choosing an orientation for the edge that had been added at the very first step, as follows: if η = 0, this edge is oriented from the corner indexed 0, and if η = 1, this edge is oriented towards the corner indexed 0.

The CVS bijection as a graph explosion

Let us consider a quadrangulation Q ∈ Q •,→ n with n faces, and denote by T n on the corner that was glued to the root corner of T

n , as it simplifies the combinatorial encoding of feuilletages in Sec. 6.6. To obtain the tree T

(2) n defined in Sec. 3, whose choice of root was needed to show the convergence, simply reroot the tree τ n to form the vertices of Q (middle of Fig. 19), and this gluing can also be encoded by a permutation σ (1) defined on a subset of corners of τ [START_REF] Ambjørn | Quantum geometry: A statistical field theory approach[END_REF] n (right of Fig. 19), with one corner per non-pointed vertex of τ n ), see 19 The min argmin is a corner of T

n , and if e is the edge added from this corner towards the pointed vertex ν, τ

(2) n has to be rerooted on the corner of ν which precedes e on ν counterclockwise in order to obtain T

(2) n (the orange arrow in Fig. 19). n . Middle: Q can be understood as a discrete "mating" of two trees T n can be seen as a permutation σ (1) gluing some corners of τ the end of Sec. 6.1). The planarity of Q is encoded in the fact that T

n is a tree, or equivalently that σ (1) is a non-crossing permutation on the clockwise corner sequence

The fact that the Kreweras complement of σ (1) is a matching is equivalent to Q being a quadrangulation.

Considering the encoding of the tree τ

n as a pair (C 2 , σ (2) ), where C 2 is the ordered set {0 < . . . < 4n -1} and σ (2) is a non-crossing permutation on C 2 , then Q is encoded as the triplet (C 2 , σ (2) , σ (1) ), where σ (1) is also a non-crossing permutation on a subset C 1 of C 2 . From (C 2 , σ (2) , σ (1) ), the tree T [START_REF] Aldous | The continuum random tree. II. an overview[END_REF] n is recovered as (C 1 , σ (1) ). In Fig. 19 for instance, we have τ (2) 5 = (C 2 , σ (2) ) and T

(1) 5 = (C 1 , σ (1) ), with (resp. T

). With this encoding, the corners of T in the following we will say that the corners that have the same index are dual one to another.

Discrete iterated feuilletages in the map picture

Consider a first rooted planar tree T (1) n , label it, and build a planar quadrangulation

3) using the CVS bijection (Sec. 6.2). Then delete T n , and build a planar quadrangulation Q

2n from the CVS bijection (Fig. 20). Identifying the vertices of Q n . The discretized 2-sphere 20 The cycles of σ (1) induce a non-crossing partition on C2 = {0 < . . . < 4n -1}, but it is (σ (1) ) -1 that respects the ordering of C2, since when going around T . Its oriented edge induces a rooting on Q

n , and T [START_REF] Aldous | The continuum random tree. II. an overview[END_REF] n : the oriented edge in R n [START_REF] Ambjørn | Dynamically triangulating Lorentzian quantum gravity[END_REF] is also an oriented edge of τ 

Asymptotic enumeration of discrete iterated feuilletages -pointed or not

From the CVS bijection, the numbers m

n of rooted planar quadrangulations respectively pointed or not are obtained as

where the factor 2 is due to the parameter η in the CVS bijection, n + 2 comes from the choice of a pointed vertex in the quadrangulation Q

(1,2) n which has n + 2 vertices, and 3 n from the choice of labeling. Using the fact that asymptotically, C n ∼ π -1/2 4 n n -3/2 , we obtain the asymptotics for m

with γ 2 = -1/2. As this critical exponent is important in theoretical physics discussions, we compute it in the case of iterated discrete feuilletages, pointed or not.

Appendix

7.1 Folding a planar map to get a 3D object?

This informal section is devoted to explaining that a construction similar to that of R N [START_REF] Ambjørn | Dynamically triangulating Lorentzian quantum gravity[END_REF] allow constructing "3D discrete objects", for a certain notion of 3D explained below. First, consider the graph G n having as vertex set the points of the discrete cube {1, ..., n} 3 , and as edges, the pairs of points at Euclidean distance 1 from each other. In the sense above, G n is a "3D-spherical-like" graph, as it is the 1-skeleton of a gluing of cubes which discretizes a 3-ball. And more generally, it may be argued that any reasonable definition of spherical graph dimension should give dimension 3 or higher to a graph having G n as subgraph. Now, we will present G n as a refolded map, very similar to some elements of R N (3) for some N .

The idea is the following: consider the chessboard type figure represented in Picture 1, Fig. 23, obtained by taking a section of R 2 (or Z 2 ), in which a unit square out of two has been removed. Each of the lacking square is then used in Picture 2 as the basis of a cube with the same lacking face: half of these cubes are placed above the plane, half below in such a way that the west-south corners of the cubes above (resp. below) forms, up to some translation, a section of (2Z) 2 . The obtained object is a quadrangulation (with a big square boundary) since all its inner faces have degree 4. Now, change a bit of point of view in Picture 2, and view what is represented as a kind of fabric with a texture: the fabric being the plane, the texture being made of cubes above and below the fabric. Now, imagine a large piece of fabric which is folded and sewn as on Picture 3: it is a quadrangulation with 4 "layers", each of them made by two large strips of fabric "at distance 2". Each layer is also at distance 2 from the next layer. Here, "distance 2" has to be understood for the usual metric in R 3 since clearly this picture can be embedded isometrically in R 3 . Now add the texture to the fabric! Picture 4 figures what happens inside one layer (between two strips that are face to face) or between two layers of the fabric (outside the big quadrangulations,