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ABSTRACT
The resources published on the Web of data are often described by
spatial references such as coordinates. The common data linking
approaches are mainly based on the hypothesis that spatially close
resources are more likely to represent the same thing. However,
this assumption is valid only when the spatial references that are
compared have been produced with the same positional accuracy,
and when they actually represent the same spatial characteristic of
the resources captured in an unambiguous way. Otherwise, spatial
distance-based matching algorithms may produce erroneous links.
In this article, we first suggest to formalize and acquire the knowl-
edge about the spatial references, namely their positional accuracy,
their geometric modeling, their level of detail, and the vagueness of
the spatial entities they represent. We then propose an interlinking
approach that dynamically adapts the way spatial references are
compared, based on this knowledge.
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1 INTRODUCTION
Interlinking data on the Web is a crucial step in the data publica-
tion process. This step aims to identify and create links between
resources which represent the same real-world entity, or are related
to each other by some kind of relationship. Many of the existing
approaches, used for data linking on the Web, are mainly inspired
by previous works on data integration and entity resolution. The
data matching subtask is thus generally performed by comparing
the values of similar properties used by resources from hetero-
geneous data sources for describing real-world entities in order

to estimate the degree of similarity between these resources. The
higher the similarity score is between two resources, the more they
are likely to represent the same real-world entity [12]. Tools like
Silk1[16] or LIMES2[22] implement such approaches. They allow
one to compare the property values that describe the resources, by
means of various distance measures. For each property comparison,
a confidence value is computed based on the distance value and
parameters defined by a data linking expert. Then, a function is
applied to aggregate these confidence values into one value, used
to decide whether to create a link or not for this pair of resources.
This is a typical multicriteria decision problem.

In the Web of data, many resources are associated, via a spatial
reference, to a location in the geographic space. Spatial references
may be direct, such as geographic coordinates or geometric prim-
itives (points, linestrings or polygons), or indirect such as postal
addresses or names of administrative units. Like any other property,
spatial references can be used to evaluate the similarity of resources
in a data matching process. In the field of geographic data matching,
many measures have been proposed to evaluate the similarity of
geometries3. They are progressively implemented in data linking
tools. However, they have been designed for traditional geographic
databases matching and may not provide good results when directly
reused for georeferenced resources of the Web. The open nature
of Web of data sources, mainly produced by crowdsourcing, poses
indeed new challenges for geometric similarity evaluation due to
the heterogeneity of the geometric quality within and between data
sources .

In this work we follow the intuition that improving the spatial
data matching results requires one to adapt each pair of geometries
similarity evaluation to the characteristics of the tested geome-
tries. The remainder of this paper is organized as follows: section
2 presents related works about geometry similarity evaluation on
the Web of data. In section 3, we present a vocabulary to describe
geometry characteristics that must be taken into account for geom-
etry comparisons and in section 4 we detail our adaptive geometry
similarity evaluation approach. Section 5 details the experiments
that we carried out to validate our approach.

2 COMPARING GEOMETRIES ON THE WEB
OF DATA

Previous works in the field of geographic data matching have fo-
cused on approaches for evaluating the similarity of geographic
features, mainly based on the evaluation of their geometries similar-
ity. As two geographic feature located far from each other in space
1http://silkframework.org/
2http://aksw.org/Projects/LIMES.html
3For the sake of brevity, we will use the term "geometries" instead of "direct spatial
references" throughout this article.
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are not likely to represent the same real world phenomenon, geome-
try similarity prevails indeed over any other properties similarity to
decide whether two geographic features should be matched or not
[2]. In this section, we present the approaches proposed in the field
of geographic data matching for geometric similarity evaluation in
order to adapt them for georeferenced resources linking.

2.1 Geometry similarity measures for
geographic data matching

Geographic databases are created through a process of abstraction
of real world phenomena. Geometries are used to provide a quan-
titative description of spatial characteristics of real world entities,
such as their dimension, position, size, shape, and orientation [25].
Due to the quality of raw data sources and the discrete nature of
the geometrical primitives in spatial databases, the spatial charac-
teristics of real world entities can be captured only in a simplified
way. This has an impact on the quality and the data capture rules
of the resulting geometries [13].

Geometry similarity measures designed for geographic databases
matching are all based on one or more geometry similarity func-
tion(s), that evaluate(s) geometry similarity with respect to some
particular descriptor [18]. These functions are chosen depending
on the types of the geometries and the criteria with respect to
which they are compared: distance functions based on euclidean,
orthodromic or elliptic curve spatial distances, like the min distance
function, deal with location of points sets [30]; boolean functions
based on the inclusion of the evaluated geometry in some buffer
built around a given geometry are used in [34], [14] and [32] for
comparing geometry locations; the surface distance is used by [5]
to compute the similarity between polygons with regards to their
location and the area of their overlapping surfaces; [6] and [3]
propose two measures for comparing polygon shapes, respectively
based on distances and angles values; the Hausdorff and Fréchet dis-
tances, which deal with both location and shape of linestrings, are
widely used for linestring and polygon similarity evaluation (see for
example [26], [7]); [24] uses a function for comparing linestrings
orientations and [35] functions for comparing polygons orienta-
tions, area and length; [7], [24] also use functions for comparing
geometries neighborhoods (i.e. their topologically related or spa-
tially close geometries).

All geometry similarity measures use at least one location-based
similarity function. This function can be combined with functions
based on other descriptors. To that end, they are standardized to
values between 0 and 1 bymeans of various normalization functions
and (eventuallyweighted) aggregationmethods are used to compute
an overall standardized geometry similarity value [18].

Parameters such as buffer size or normalization function thresh-
olds are used to define to what extent differences between geome-
tries with regards to some given descriptor are considered accept-
able. Setting such parameters is usually assigned to experts, who
define their values based on their knowledge about the databases
to be matched and the functions behaviors. Parameters related to
the evaluation of location-based geometry similarity are the most
intuitive. Most of the time, they represent the maximum acceptable
spatial distance between two geometries for them being considered
as potentially representing the same real world entity; above this

value, geometries are considered too far from other to represent the
same thing. This parameter is thus closely related to the absolute
positional planimetric accuracy of the databases, defined by the ISO
19157 standard as the "closeness of reported coordinate values to
values accepted as or being true". It may also be affected by geome-
try capture rules or geographic feature boundary vagueness. For
example, a postal address represented by a point might be captured
in various ways: within the extent of the building located by the
address, at the entrance of the building, on the centerline of the
street in front of the building, etc. [24] details what information is
needed to configure confidence functions used for geometry simi-
larity evaluation based on location, neighborhood and orientation.

Most of geometry similarity measures designed for complex ge-
ometries such as linestrings and polygons combine several geomet-
ric similarity functions [24], [35]. This is usually done to overcome
some data integration conflicts due to differences in the levels of
detail of the datasets, i.e. the degree of geometric and semantic
abstraction used for representing real world entities in these geo-
graphic datasets [27]. Geographic databases integration conflicts
caused by differences of level of detail have been thoroughly de-
scribed by [8]. In [33] and [21], the road networks to be matched
have different levels of granularity, i.e. the road segments are more
detailed in one of the databases than in the other. This conflict is
solved by the similarity functions based on the spatial neighborhood
of road edges and nodes.

Some approaches also apply geometry transformation opera-
tions before computing geometry similarity in order to reduce the
gap between the geometries to be compared. For example, [34]
performs conflation to lower the location differences between the
road segments to be matched due to each database positional plani-
metric accuracy. [36] uses generalisation algorithms to harmonise
the levels of detail of the compared databases.

Many approaches have thus been propose to compute geometry
similarity for geographic databases matching. Some of them are
progressively introduced for georeferenced resource linking.

2.2 The heterogeneity of geometries on the
Web of data

Unlike geometries of geographic databases, geometries used on the
Web of data are not the main piece of information of the resources
they describe. They are not necessarily available in the description
of the resources. Besides, spatial data on the Web may have various
origins: they may be extracted or transformed from geographic
databases provided by traditional data producers such as national
mapping agencies (e.g. Ordnance Survey data, geo.linkeddata.es),
but they may also be a fusion of many data sources as they can
be produced by crowdsourcing (e.g. DBpedia4, Geonames5). In
such cases, inside a same data source, spatial references may have
been captured differently which leads to what we call "internal
heterogeneity".

Standardization efforts, specifically the recommendation of the
OGC/W3C working group on the best practices when publishing
spatial data6 tend to solve syntactic heterogeneity of geometries

4http://www.dbpedia.org/
5http://www.geonames.org/
6https://www.w3.org/TR/sdw-bp/

http://www.dbpedia.org/
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Figure 1: Internal geometric heterogeneity in Geonames.

on the Web of data. However, crowdsourced geometries may have
been produced with different capture rules and at different lev-
els of details. Fig. 1 shows an example of internal heterogeneity of
geometries. In Geonames, hotels are located by points. One was cap-
tured on the building while the other was captured on the roadway.
As Geonames is an open voluntary data source, this discrepancy
could be due to some difference of positional accuracy or geometry
capture choices.

Classical geometry similarity measures presented in 2.1 are de-
signed to compare homogeneous geometry sets, each set being
produced at the same level of detail, with the same positional plani-
metric accuracy and the same capture rules. They may thus be
inadequate for geometries used to georeferenced linked data.

2.3 Geometry similarity functions selection,
combination and tuning

Choosing automatically the adequate setting of a matching process
has been the subject of many works in both ontology matching
and data linking fields, and still poses challenges [31]. Approaches
such as [10] and [23] propose to take advantage of the alignment
of the vocabularies that structure the data to select the proper-
ties that should be compared and the distance measures used for
that purpose. Other approaches addressed the question of tuning
the parameters of the matching process such as the approach pro-
posed in [29] to automatically compute the comparison criteria
weights. The challenge of tuning the ontology matching process
has been addressed by various approaches. [9] propose an approach
for choosing the comparison criteria and computing a decision tree
to aggregate them. [15] propose a classification of matching algo-
rithms and use a set of decision rules to assess to each ontology
context an adequate matching algorithm. [20] propose also an ap-
proach based on decision rules to tune the matching process using
the metadata describing the ontologies and those describing the
matching algorithms

The self-tuning of the matching process provide an adaptation
of its settings to the context of matching while reducing the inter-
vention of the expert. In fact, techniques such as using decision
rules provide a materialization of the experts knowledge about the
best setting of a matching process according to different contexts.
In this work, our intuition is to use decision rules to automatically
select and tune the adequate similarity measures between geome-
tries while taking into account the heterogeneities that may exist
between every pair of geometries.

3 THE XY SEMANTICS ONTOLOGY
We have seen in the previous section that geometries used for
representing real world geographic features may be produced by
different capture processes and may therefore be different from one
data source to another. In addition, human and material input errors
and the collaborative open nature of some data sources on the Web
may accentuate geometric heterogeneities within a single dataset. A
geometric level of detail and well-defined data specifications allow
us to understand the meaning of each geometry: what it represents,
how it was captured, how it is modeled, how accurate it is, and so
on. In other words, what is the semantics carried by this geometry?
The heterogeneities between the geometries are therefore nothing
but differences in their semantics. We thus define "the semantics
of the XY" as "the set of geometry characteristics related to the
geometric level of detail and to the capture process". Naming our
ontology as so is motivated by the definition of geographic data
semantics given by [19] as the relationship between the data and
the real world phenomenon they represent.

From the heterogeneities faced in the geographic databases
matching approaches, to the challenges faced in the context of
the Web of data presented in section 2, we have identified the fol-
lowing characteristics that are more likely to affect the setting of a
spatial data matching process:

• the absolute positional accuracy of geometries,
• the geometry capture rules (geometric modeling),
• the vagueness of the spatial characteristics of the geographic
entities represented by the geometries,
• the level of detail of the data sources.

3.1 Vocabulary description
We propose an ontology7, called XY semantics, that describes these
characteristics, and thus, enables using them as knowledge through
an interconnection process. We have chosen only these four charac-
teristics since we assume that, although they are the most important
for understanding heterogeneities, the only way to take advantage
of them is to make them explicit. Indeed, other geometric features
such as orientation, elongation, area, etc. are implicitly present in
geometry, and therefore they are not difficult to extract on the fly.

The XY semantics ontology is based on the ISO standards on
geographic databases metadata ISO 19115 and geographic data
quality ISO 19157. It also includes works related to spatial entities
vagueness [28] and geometry capture rules [1]. Fig. 2 shows an
excerpt of XY semantics ontology.

The XY semantics ontology enables to associate to each geometry
elements describing each of the four characteristics of geometry
semantics listed above. As an example, the positional planimetric
accuracy is described by a method and an evaluation result. The
evaluationmethod specifies whether the evaluation result is derived
from another quality element or assessed from the data. This latter
is the most often employed. A data-based evaluation can be carried
out by looking to a sample of the data or to their genealogy. For
this reason we used the Entity class from the PROV-O8 ontology.

7http://data.ign.fr/def/xysemantics
8https://www.w3.org/TR/prov-o/

https://www.w3.org/TR/prov-o/
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Figure 2: Excerpt of the XY semantics ontology describing
the planimetric accuracy of geometries.

The evaluation result is described by its numerical value as well as
its unit of measure defined from the QUDT9 ontology.

Populating the XY semantics ontology is a task that can be very
complicated. In the case of geographic data produced by mapping
agencies, descriptive records and metadata, including geometric
metadata, are often providedwith datasets. Moreover, these datasets
guarantee an internal homogeneity of the geometrical character-
istics: for the same class, geometries often have often the same
geometrical modeling, the same planimetric accuracy, etc. Even
when the geometries of the same class have different characteristics,
additional indications are often provided to explain the different
situations (e.g. the different possible planimetric accuracy of ad-
dresses). In contrast, in the context of the Web of data, metadata
about the methods used for georeferencing or its quality are rarely
provided. In addition, datasets built collaboratively do not neces-
sarily provide guidance on how to represent spatial references, and
even if they do, they do not necessarily guarantee that contributors
comply with these guidelines.

We describe in the following how to populate the XY semantics
ontology in the presence and in the absence of geometric metadata.

3.2 Populating the ontology when geometric
metadata are provided with datasets

The metadata of the geographical data are often provided in descrip-
tive files. Those provided with the authoritative data of mapping
agencies make populating our ontology much easier. According
to the metadata of the IGN10 address database, address points are
captured in various locations: at the address sign, at the entrance of
the building, 4.5m from the axis of the street (by projections from
centroids of plots, by interpolations or arbitrarily), in an addressing
area or in the center of the city. Moreover, the different planimetric
accuracy values of the geometries are provided. These metadata
can be easily translated into RDF data structures according to our
XY semantics ontology and associated them with each geometry
through SPARQL data insertion queries.

9http://qudt.org/schema/qudt
10The French national mapping agency

3.3 Populating the ontology when geometric
metadata are not provided

Identifying geometric characteristics when they are not described
in metadata is a laborious task if performed manually for each
geometry in a data source. Thus, populating the XY semantics on-
tology becomes a complicated task. To deal with this issue, we
propose a two-steps approach that automatically identify the geom-
etry capture rules. First, it finds for each resource within the same
dataset, which characteristic element of its form was chosen, when
the coordinates used to locate it were entered. Identifying this char-
acteristic allows then the evaluation of the planimetric accuracy
of the spatial references. This latter is carried out by adapting the
direct estimation methods for the absolute planimetric accuracy of
geographical data [17] to the collaborative data.

We propose to use a "reverse-engineering" mode to identify
the different geometric modelings of the spatial references. We
start from the main assumption that a geometry results from an
intentional choice of geometric modeling by the contributor. We
propose to formulate the different hypotheses on the choices made
by the contributors when entering geometries of resources. These
hypothetical choices may be determined by visually comparing
the spatial references of the resources to the geometries used to
represent geographical entities of semantically similar or equivalent
types within a geographic dataset. This empirical visual analysis
allows mainly to identify the various hypothetical patterns (trends)
of the geometric modeling choices that emerge from the data.

The next step is to associate each spatial reference to one of the
identified geometric modeling patterns. We formalize our problem
as follows: we have a geometry populationG and a set of geometric
modeling classes {C1, ...,Cn }. We must therefore define a set of rele-
vant descriptors D and select a set of learning S × {C1, ...,Cn } (with
S ⊂ G) in order to define the classification function C . Relevant
descriptors D must be descriptive indicators whose values combina-
tion allow to discriminate the different classes. To define them, we
propose to analyze the geometries of resources in comparison with
geometries which represent geographical entities of semantically
similar or equivalent types within a reference geographic dataset.
The descriptors can therefore be a distance or a relationship be-
tween the analyzed geometries and the characteristic elements of
the shape of the geographical features represented by reference
geometries. We can for example consider the distance between each
analyzed geometry and the closest linestring used for represent-
ing a road centerline in the reference dataset. The selection of a
learning set consists in finding for each class of geometric modeling
a representative sample of easily recognizable geometries in the
analyzed dataset. Then, we apply a learning algorithm to assign
each geometry to a geometric modeling class.

In order to evaluate our approach, we applied it to 625 resources
from the French DBpedia11 that describe historical monuments
of Paris. The monuments in DBpedia are spatially referenced by
prop-fr12:longitude and prop-fr:latitude properties. DBpedia is ex-
tracted from Wikipedia, a volunteered encyclopedia, where the
location of the resources are provided without any metadata about
their geometric modeling or their positional accuracy. Though, by

11http://fr.dbpedia.org/. Version of December 2013.
12http://fr.dbpedia.org/property/
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Figure 3: Learning features for geometry capture rules

Table 1: Learning results for each classifying algorithms

Method Precision Recall F-measure

Bayes Network 91,6% 91,3% 91,3%
JRIP 96,3% 96,3% 96,3%

Decision Table 96,4% 96,3% 96,2%
Random Forest 98,8% 98,8% 98,7%

plotting the data on a base map we can intuitively distinguish three
principal representations of the monuments locations: near the
building center, near the building facade or near the road center-
line. The assumption that these are the actual intended geometric
representation cannot be verified because of the open volunteered
nature of this source. However, we take it as hypothesis in order to
automatically learn the geometry capture rules and estimate the
positional accuracy of the geometries.

We used two reference geographic data sources about buildings13
and road network14 and we investigated some possible learning
features computed with state of the art GIS tools and presented in
Fig.3. We prepared a training set by manually labeling ∼30 mon-
uments of each class. Then, we applied some of Weka15 learning
algorithms and validated the results manually (see results in ta-
ble 1). The resulting classification is interpreted on the level of the
geometries by adding metadata about their capture rules.

Finally, we estimated the absolute positional accuracy of each
point by summing two values: the distance between the point and
its intended location (the building facade, the building barycenter or
the road centerline) and the planimetric accuracy of the geographic
feature that represents this intended location. More details on the
population approach described in this section are presented in [11]

4 AN ADAPTIVE APPROACH FOR
GEOMETRY SIMILARITY EVALUATION

In this section, we present how to use parameters about thresholds
or the confidence value function, inferred using the XY semantics
ontology, to automatically adapt the in-progress geometry similar-
ity evaluation process.

4.1 General Description of the Approach
We have seen in section 2.1 that geometry similarity measures are
usually based on some main choices: one or more similarity func-
tions, the behavior of their normalization function, their parameters

13From the BD PARCELLAIRE® , IGN’s land parcels database.
14From the BD TOPO® , IGN’s topographic database.
15http://www.cs.waikato.ac.nz/ml/weka/

such as thresholds, the way they are combined through aggrega-
tion operators and weights. All these choices can be made based on
the knowledge provided by the metadata about geometries capture
process represented consistently with the XY semantics vocabulary.

As shown in Fig. 4, we suggest choosing the geometry distance
function and customizing the confidence function for every com-
parison of geometries, depending on their metadata. For example,
the threshold, the confidence function and the weight of the spatial
criterion can be adapted. This can be decided through some decision
rules that take as input the metadata of two geometries and give
as output the parameters for their comparison. The decision rules
must be defined by a data matching expert. The decisions concern
different cases and can impact distinct parameters:
• The value of the distance threshold.
• The behavior of the confidence function.
• The weight of the spatial criterion.
• The potential neutrality of the spatial criterion.

For example, when two geometries have different capture rules,
we can expect a considerable gap between them. In this case we
can be less strict with distance values (i.e. define a higher distance
threshold), and thus we can provide higher confidence values for the
same distance. Moreover, when two geometries have a bad absolute
positional accuracy, or when they are captured based on some
vague geographic entity, we can increase or decrease the weight
of the spatial criterion or even removing it from the aggregation,
depending on its estimated reliability.

4.2 Approach Implementation
Silk is a very well known and maintained data linking tool with
many interesting features. In order to capitalize on the assets of
Silk, we implemented our approach as described in Fig. 5 to make
Silk compatible with our adaptive approach for geometry similarity
evaluation.

In the case of Silk, the confidence value16 is obtained as described
in equation 1, where d is the distance computed between property
values and θ is the threshold chosen by the user.

conf idence =

{
1 − (d/θ ) i f d ∈ [0, 2 × θ]
−1 else

(1)

As explained in 4.1, decision rules based on the metadata that
describe the geometries may impact the confidence function behav-
ior. We thus suggest changing Silk’s default confidence function
and replacing it by the following function:

conf idence =



1 − (d/θ )α i f d ∈ [0,θ]
−((d − θ )/θ )β i f d ∈ [θ , 2 × θ]

−1 else
(2)

Where d is the distance computed between geometries and θ , α and
β are the parameters affected by the decision rules. θ represents the
threshold. It can be computed by summing the absolute positional
accuracy values of the geometries. α and β are the convexity/con-
cavity factors for respectively the positive and the negative parts of
the confidence function. Both α and β should be positive values (c.f.
Fig. 6). When the decision rules affect one or more of these three
parameters, the confidence function becomes more or less strict

16https://github.com/silk-framework/silk/blob/master/doc/LinkageRules.md
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Figure 4: The global approach for the self-adaptive comparisons of geometries

Figure 5: Implementation of the self-adaptive linking approach

distance

Conf idence

θ 2 ∗ θ

1

−1

α=1
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β=1 β >1
β <1

Figure 6: Variations of confidence function behavior

while keeping its monotony. Two other parameters are eventually
necessary: λ the neutrality of the spatial criterion and ω its weight
in the case of a weighted aggregation.

All the parameters used by the geometry comparison process are
defined by means of a decision rule base defined in advance by a
data linking expert. The rule base is written in RuleML17.The pieces
of knowledge about geometries capture process and planimetric
accuracy are formatted as RuleML facts. The resulting values of the
requested parameters are represented as RuleML goals.

Then, a backward reasoning is executed by PROVA18 rule engine
on the whole rule base to infer the comparison parameters. θ , α ,
β , ω and λ are thus given as an output from the reasoning engine.
They are then used together with the spatial distance to compute
the confidence value of the spatial criterion respecting the formula
17Rule Markup Language, http://wiki.ruleml.org/
18https://prova.ws/

described by the equation 2. A backward (Top-Down) reasoning
works similarly to most Prolog systems[4]. It gives answers to a
set of goals by reasoning on a base of rules and facts. In order to
make sure that our approach works safely, the rule base must be
decidable. Since we have a fixed number of goals, the complexity of
the reasoner is linear with the number of the rules declared in the
rules base. Using PROVA in Silk for every comparison results in a
total quadratic complexity. This implementation is scalable though,
because it remains compatible with the MapReduce version of Silk.

5 INTERLINKING THE MONUMENTS OF
PARIS

To evaluate our adaptive geometry similarity measure, we applied
it on datasets on Paris historical monuments. The first one is the
Mérimée19database, which is a national monuments registry pro-
duced and maintained by the French Ministry of Culture and Com-
munication. Mérimée database contains 1582 instances, it is pro-
vided as a CSV file and its monuments are located by textual ad-
dresses. We transformed the data to RDF with the Datalift20 plat-
form. Then we selected only the monuments located in Paris and
we geocoded these monuments by linking their addresses to their
corresponding BD ADRESSE®21 features. The second comes from
DBpedia and is presented in 3.3

19 https://www.data.gouv.fr/fr/datasets/immeubles-proteges-au-titre-des-monuments-
historiques/
20http://datalift.org/
21Address database of IGN (French national mapping agency).

http://wiki.ruleml.org/
https://prova.ws/
https://www.data.gouv.fr/fr/datasets/immeubles-proteges-au-titre-des-
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Extracting metadata about the absolute positional accuracy and
the geometry capture rules of Mérimée resources is quite straight-
forward. Indeed, their geometries come from the BD ADRESSE®
database, which is a well-documented traditional geographic data-
base. Its implementing rules provide information about the four
different geometry capture rules applied for addresses: at the ad-
dress sign, by projection on the corresponding street centerline, by
interpolation on the corresponding section of the street centerline,
and more rarely in the center of the addressing zone. Depending
on these geometry capture rules, three different positional accu-
racy values are possible: 12, 18 and 30 meters. We structured these
metadata according to the vocabulary presented in 3 and we added
them to Mérimée geometries with Sparql update queries. In the
case of DBpedia monuments, we used the approach presented in
section 3.3 to learn their metadata.

5.1 Comparative Matching Tests
In order to evaluate our approach, we have performed two spatial
matching tasks on the datasets described above: one with Silk’s de-
fault spatial distance operator and one with our adaptive geometry
similarity measure.

For Silk’s default spatial distance operator, the confidence value
of each comparison is computed according to the formula 1. We
performed several runs with different distance thresholds θ to find
out which value gives the best results. The top table of Table.2
outlines these results. The best f-measure is obtained for θ=40
meters. The runtime of this approach is around 2 seconds.

For our approach, we used two rule bases to define θ , α , and λ
parameters (see section 4.1). Since it is a mono-criterion matching
task, the parameters β and ω are not needed. Since the geometries
in the two datasets are points only, we chose to use a euclidean dis-
tance measure between them. With respect to what is usually done
in geographic data matching, we define the threshold θ as the sum
of the positional accuracies of the two compared geometries (here
named accu1 and accu2). When the geometries capture rules target
different spatial characteristic (characelem1 and characelem2) of
the real world entities they intend to represent (e.g. the first geom-
etry is the barycenter of the building while the second is a point of
the facade of a building), we add a bias named deltac . When they
target different types of real world entities (host1 and host2), we
add another bias named deltah . For our use case, we set deltac at
10 m and deltah at 15 m. The rule base rb1 is summarized below
and the results we get with it are shown on Table.2:
t h e t a (X) : − hos t 1 =host2 , cha race l em1=charace lem2 , X=accu1+accu2 .
t h e t a (X) : − hos t 1 =host2 , cha race l em1 != charace lem2 , X=accu1+accu2+ d e l t a _ c
t h e t a (X) : − hos t 1 != host2 , X=accu1+accu2+ d e l t a _ h .
d i s t a n c e ( " e u c l i d i a n " ) .
a l pha ( 1 ) . lambda ( f a l s e ) .

Based on the experience of the test performed with the rule base
rb1, we defined a second rule base by adding more fine-grained
rules, namely rb2. In this rule base, we set the values of deltac at
20 m and deltah at 30 m22. We also change the convexity of the
confidence function when geometry capture rules are different and
when the targeted real world geographic entities are too vague or
too wide, we neutralize the spatial criterion. These additional rules

22deltac and deltah were estimated by investigating the bias in some cases where
two geometries with different geometric modelings locate two equivalent resources

Table 2: Instance matching results compared to a reference
links set produced with Wikidata information and com-
pleted manually

θ Precision Recall F-measure

10 84,55% 20,90% 33,51%
20 74,15% 39,33% 51,40%
30 64,15% 51,46% 57,11%
40 57,96% 58,88% 58,42%
50 50,09% 63,15% 55,86%
60 44,75% 65,17% 53,06%
70 40,43% 66,97% 50,42%
80 36,76% 68,31% 47,80%
90 33,99% 69,44% 45,64%
100 31,68% 70,34% 43,68%

Using Bayes Network learning results

Rule base Precision Recall F-measure
rb1 70,43% 58,88% 64,14%
rb2 71,43% 62,92% 66,91%
Using learning results after correction

Rule base Precision Recall F-measure

rb1 73,46% 59,10% 65,50%
rb2 70,99% 62,70% 66,59%

are described below and the results are also presented in Table.2.
These rules replace the last line of rb1:
a lpha ( 1 ) : − hos t 1 =host2 , cha race l em1= charace l em2 .
a lpha ( 2 ) : − hos t 1 =host2 , cha race l em1 != charace l em2 .
a lpha ( 3 ) : − hos t 1 != hos t 2 .
lambda ( t r u e ) : − hos t 1 = addressZone . lambda ( t r u e ) : − hos t 2 = addressZone .
lambda ( t r u e ) : − hos t 1 = commune . lambda ( t r u e ) : − hos t 2 = commune .
lambda ( f a l s e ) : − hos t 1 != addressZone , ho s t 2 != addressZone , ho s t 2 != commune ,

ho s t 2 != commune .

The runtime of the matching task using these rule bases is 9∼14s.

5.2 Discussion
Extracting knowledge about the causes of heterogeneity between
geometries by using supervised learning method shows promising
results. Nonetheless, the choice of adequate learning features is
conditioned by the context of the data and has an important impact
on the results. For instance, we ran another learning test on the
address data in the city of Lyon in France. In this case the geometries
had also three possible geometry capture rules: in the center of the
building, at the entrance of the building and on the street centerline.
In this city, the buildings sizes and their distances to the road are
more homogeneous than in Paris. In this case, simple learning
features such as d_f, d_r and d_c (Fig.3) were sufficient to obtain
very good results. The choice of the training set is also crucial:
the entities must be clearly representative of the different learning
classes. The classification errors induced by the learning step show a
low effect on the final linking results compared to the improvement
brought by the linking approach.

The matching results of our approach show clearly better f-
measure scores than the default approach. Adapting the parameters
of the geometry comparison measure ensures some of the benefits
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of both small and big distance thresholds. Compared to the best
result of the classical approach (θ=40), we avoid 50% of the false
positive links using rb1 and 40% using rb2. We do not significantly
add new true positive links using rb1 but we increase their number
by 6% using rb2.

Unsurprisingly, our approach has a clearly higher runtime. The
complexity of the implementation depends on the size of the rule
base. This is why we have tried to define the minimum number of
decidable rules that can sufficiently adapt the parameters of the
confidence function. A more detailed rule base could have provided
better results but it would have been much less efficient in run-
time. The user has to find the best trade-off between efficiency and
performances. As a matter of fact, our approach is better suited to
instance matching tasks of data sources which have a high spatial
density and instances described by geometries with a lot of internal
geometric heterogeneities.

6 CONCLUSION AND FUTUREWORKS
In this work we tackled the problem of the geometry similarity
evaluation for georeferenced resources linking. We proposed an
ontology to represent knowledge about geometry positional ac-
curacy and capture rules and an approach to extract it from the
considered spatial data and geographic reference data by using
automatic supervised learning. We also defined a data matching
approach that relies on this knowledge to adapt the comparison of
geometries during its runtime. The matching results show better
performances than the classical non-adaptive approach.

Yet, the main downside of our approach is the time complexity
of the current implementation that should be improved. This could
be done by adding a cache system for the reasoning results in
order to reduce the workload of the reasoning engine. Further tests,
with bigger and more heterogeneous datasets, especially datasets
with different types of geometry, could also bring new insights to
this proposal. Future tests should also include the two remaining
aspects of the XY semantics, namely the geometry resolution and
its vagueness, in both populating and interlinking approaches.

REFERENCES
[1] Nathalie Abadie. 2012. Formalisation, acquisition et mise en œuvre de connaissances

pour l’intégration virtuelle de bases de données géographiques: les spécifications au
cœur du processus d’intégration. Ph.D. Dissertation. Université Paris-Est.

[2] Benjamin Adams, Linna Li, Martin Raubal, and Michael F Goodchild. 2010. A
general framework for conflation. Extended Abstracts Volume, GIScience (2010).

[3] Esther M Arkin, L Paul Chew, Daniel P Huttenlocher, Klara Kedem, and Joseph S
Mitchell. 1991. An efficiently computable metric for comparing polygonal shapes.
Technical Report. CORNELL UNIV ITHACA NY.

[4] Marcel Ball, Harold Boley, David Hirtle, Jing Mei, and Bruce Spencer. 2005. Im-
plementing RuleML Using Schemas, Translators, and Bidirectional Interpreters.
(2005). https://www.w3.org/2004/12/rules-ws/paper/49/

[5] Atef Bel Hadj Ali. 1999. Geometrical Matching of Polygons in GISs and Assess-
ment of Geometrical Quality of Polygons. (1999).

[6] Scott D Cohen and Leonidas J Guibas. 1997. Partial matching of planar polylines
under similarity transformations. In 8th Annual ACMSIAM Symposium on Discrete
Algorithms. 777–786.

[7] Benoît Costes. 2014. Matching old hydrographic vector data from Cassini’s maps.
(2014), 51–65 pages.

[8] Thomas Devogele, Christine Parent, and Stefano Spaccapietra. 1998. On spatial
database integration. International Journal of Geographical Information Science
12, 4 (1998), 335–352.

[9] Fabien Duchateau, Zohra Bellahsene, and Remi Coletta. 2008. A flexible approach
for planning schema matching algorithms. On the Move to Meaningful Internet
Systems: OTM 2008 (2008), 249–264.

[10] Zhengjie Fan, Jérôme Euzenat, and François Scharffe. 2014. Learning concise
pattern for interlinking with extended version space. In Web Intelligence (WI)
and Intelligent Agent Technologies (IAT), 2014 IEEE/WIC/ACM International Joint
Conferences on, Vol. 1. IEEE, 70–77.

[11] Abdelfettah Feliachi, Nathalie Abadie, and Fayçal Hamdi. 2017. Assessing the
planimetric accuracy of georeferenced data on theWeb: A case study on DBpedia..
In QMMQ 2017 workshop, in conjunction with ER2017 conference.

[12] Alfio Ferraram, Andriy Nikolov, and François Scharffe. 2013. Data linking for
the semantic web. Semantic Web: Ontology and Knowledge Base Enabled Tools,
Services, and Applications 169 (2013), 326.

[13] JF Girres. 2012. Modèle d’estimation de l’imprécision des mesures géométriques
de données géographiques. Application aux mesures de longueur et de surface.
PhD, Université Paris–Est, France (2012).

[14] S Hahmann and D Burghardt. 2010. Connecting linkedgeodata and geonames in
the spatial semantic web. In 6th International GIScience Conference.

[15] Mirella Huza, Mounira Harzallah, and Francky Trichet. 2007. OntoMas: a tutoring
system dedicated to ontology matching. In Enterprise Interoperability II. Springer,
377–388.

[16] Robert Isele, Anja Jentzsch, and Christian Bizer. 2011. Efficient Multidimensional
Blocking for Link Discovery without losing Recall. In WebDB.

[17] ISO. 2013. 19157: Geographic information – Data quality. International Standard.
International Organization for Standardization (http://www.iso.org).

[18] Krzysztof Janowicz, Martin Raubal, and Werner Kuhn. 2011. The semantics of
similarity in geographic information retrieval. Journal of Spatial Information
Science 2011, 2 (2011), 29–57.

[19] Marinos Kavouras and Margarita Kokla. 2007. Theories of geographic concepts:
ontological approaches to semantic integration. CRC Press.

[20] Malgorzata Mochol and Anja Jentzsch. 2008. Towards a rule-based matcher
selection. In International Conference on Knowledge Engineering and Knowledge
Management. Springer, 109–119.

[21] Sébastien Mustière and Thomas Devogele. 2008. Matching networks with differ-
ent levels of detail. GeoInformatica 12, 4 (2008), 435–453.

[22] Axel-Cyrille Ngonga Ngomo. 2013. Orchid–reduction-ratio-optimal computa-
tion of geo-spatial distances for link discovery. In International Semantic Web
Conference. Springer, 395–410.

[23] Andriy Nikolov, Victoria Uren, Enrico Motta, and Anne N De Roeck. 2008. Inte-
gration of semantically annotated data by the KnoFuss architecture. In EKAW.
Springer, 265–274.

[24] Ana-Maria Olteanu-Raimond, Sébastien Mustière, and Anne Ruas. 2015. Knowl-
edge formalization for vector data matching using Belief Theory. (2015), 21-
46 pages.

[25] George Percivall, Carl Reed, Lew Leinenweber, Chris Tucker, and Tina Cary. 2003.
OGC reference model. (2003). http://rap.opengeospatial.org/orm.php

[26] J Salas and Andreas Harth. 2011. Finding spatial equivalences accross multi-
ple RDF datasets. In Proceedings of the Terra Cognita Workshop on Foundations,
Technologies and Applications of the Geospatial Web. 114–126.

[27] LT Sarjakoski. 2007. Conceptual models of generalisation and multiple repre-
sentation. Generalisation of geographic information: cartographic modelling and
applications (2007), 11–35.

[28] S Schade. 2010. Computer-tractable translation of geospatial data. International
Journal of Spatial Data Infrastructures Research, Revue en ligne publiée par le Joint
Research Centre (European Commission) 5 (2010).

[29] Md Seddiqui, Rudra Pratap Deb Nath, Masaki Aono, et al. 2015. An efficient metric
of automatic weight generation for properties in instance matching technique.
arXiv preprint arXiv:1502.03556 (2015).

[30] Mohamed Ahmed Sherif and Axel-Cyrille Ngonga Ngomo. 2015. A system-
atic survey of point set distance measures for link discovery. Semantic Web
Journal.(Cited on page 18.) (2015).

[31] Pavel Shvaiko and Jérôme Euzenat. 2013. Ontology matching: state of the art
and future challenges. IEEE Transactions on knowledge and data engineering 25, 1
(2013), 158–176.

[32] Luis M Vilches-Blázquez, Víctor Saquicela, and Oscar Corcho. 2012. Interlinking
geospatial information in the web of data. Bridging the Geographic Information
Sciences (2012), 119–139.

[33] Steffen Volz. 2006. An iterative approach for matching multiple representations
of street data. International Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences 36, Part 2/W40 (2006), 101–110.

[34] Volker Walter and Dieter Fritsch. 1999. Matching spatial data sets: a statistical
approach. International Journal of geographical information science 13, 5 (1999),
445–473.

[35] Yanxia Wang, Deng Chen, Zhiyuan Zhao, Fu Ren, and Qingyun Du. 2015. A Back-
Propagation Neural Network-Based Approach for Multi-Represented Feature
Matching in Update Propagation. Transactions in GIS 19, 6 (2015), 964–993.

[36] Bisheng Yang, Xuechen Luan, and Yunfei Zhang. 2014. A Pattern-Based Approach
for Matching Nodes in Heterogeneous Urban Road Networks. Transactions in
GIS 18, 5 (2014), 718–739.

https://www.w3.org/2004/12/rules-ws/paper/49/
http://rap.opengeospatial.org/orm.php

	Abstract
	1 Introduction
	2 Comparing geometries on the Web of Data
	2.1 Geometry similarity measures for geographic data matching
	2.2 The heterogeneity of geometries on the Web of data
	2.3 Geometry similarity functions selection, combination and tuning

	3 The XY Semantics Ontology
	3.1 Vocabulary description
	3.2 Populating the ontology when geometric metadata are provided with datasets
	3.3 Populating the ontology when geometric metadata are not provided

	4 An Adaptive Approach for Geometry Similarity Evaluation
	4.1 General Description of the Approach
	4.2 Approach Implementation

	5 Interlinking the Monuments of Paris
	5.1 Comparative Matching Tests
	5.2 Discussion

	6 Conclusion and future works
	References

