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Radiomics: Principles and Radiotherapy 

Applications 

 

Abstract 

Radiomics is defined as the extraction of a large quantity of quantitative image features. The 

different radiomic indexes that have been proposed in the literature are described as well as 

the various factors that have an impact on the robustness of these indexes. We will see that 

several hundred quantitative features can be extracted per lesion and imaging modality. The 

ever-growing number of features studied raises the question of the statistical method of 

analysis used.  

This review addresses the research supporting the clinical use of radiomics in oncology in the 

staging of disease, discrimination between healthy and pathological tissues, the identification 

of genetic features, the prediction of patient survival, the response to treatment, the recurrence 

after radiotherapy and chemoradiotherapy and the side effects.  

Based on the existing literature, it remains difficult to identify features that should be used for 

current clinical practice.  
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1. Concept of radiomics 

Medical imaging, such as computed tomography (CT), positron emission tomography (PET) 

using FDG radioactive glucose analogue, and magnetic resonance imaging (MRI) are used 

routinely in the clinical management of cancer patients. They tend to play a leading role in 

personalised treatment based on tumour imaging. Personalised medicine has been largely 

developed using invasive techniques based on genomics and proteomics. However, there is a 

spatial and temporal heterogeneity of tumour features [1] that makes it difficult to repeat 
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biopsies, both in space and time, where imaging can readily give a spatial representation of 

the lesion and has the advantage of being easy to repeat.  

Radiomics is defined as the extraction of a large quantity of quantitative features from the 

image [2]. It allows highlighting the heterogeneity, texture, and shape of the lesion 

corresponding to tissue characteristics such as necrosis, metabolic activity, tissue density, and 

vascularity [3]. Medical interpretation of images is generally based on a simple visual 

interpretation of the contrast. Although this type of interpretation has proven to be very 

effective in the management of cancer patients, it remains qualitative and subjective, while 

quantitative features are needed for reasons of objectivity and reproducibility. 

There are two ideas underlying the concept of radiomics. The first is that tumour features at 

the tissue, cellular, and/or genomic level would also be highlighted in medical imaging [4]. It 

is considered that image features are strongly correlated with clinical and/or biological 

features. The second rationale is that the information obtained by the image would be 

complementary to the other data sources, thus increasing the number of features [5] and the 

knowledge of the tumour. 

The aim is to highlight recent results of the contribution of radiomics to radiotherapy in recent 

years and to assess the current state of the literature in this field. In the first part of this paper, 

we will describe the different radiomic features that have been proposed in the literature, the 

various factors that have an impact on the robustness of these indexes, and the most salient 

clinical results. We will see that several hundred quantitative features can be extracted by 

lesion and imaging modality, requiring the use of statistical tools to determine which of these 

features are relevant. We will conclude with the current limitations of radiomics and the 

perspectives that this new concept reveals. 

 

2 Image features 

Numerous image features have been proposed in the literature [6]. Features based on the 

shape and size of the lesion, histogram features based on first-order statistics, texture features, 

and filter- and model-based features are generally distinguished (see Figure 1). 

2.1 Shape- and size-based features 

In oncology, it is generally considered that a small tumour volume (TV) leads to a better 

prognosis than a large lesion. The reduction in lesion volume in CT imaging, assessed by 

measuring the longest length of the lesion, is a predictive factor for treatment response 

(RECIST 1.1 criteria [7]). A review of the literature from Van de Wiele et al. [8] lists 

numerous publications showing the predictive and prognostic value of the TV determined 
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using FDG PET images for solid tumours. Tumour volume is thus an imaging feature of the 

first choice. 

Similarly, in oncology, spherical lesions with sharp edges are frequently considered less 

aggressive than diffuse and infiltrating tumours. Thus, imaging features corresponding to a 

metric of this phenomenon have been investigated, such as the sphericity and the extent. 

Hofheinz et al. showed the prognostic value of the sphericity on pre-therapeutic FDG-positive 

lesions in PET imaging in a cohort of 37 patients with head and neck tumours (H&N) [9].  

El Naqa et al. showed that the extent, in combination with other FDG PET imaging features, 

was involved in predicting the response to chemoradiotherapy (CRT) of H&N tumours [10].  

2.2 Histogram-based features 

In imaging, the basic feature is the intensity (I) of the voxel. In CT, this corresponds to the 

Hounsfield units (HU) linked to the tissue density travelled by the X-rays, which is widely 

used for the delineation of the gross tumour volume (GTV) and the organs at risk (OAR). In 

PET imaging, I corresponds to a normalised FDG uptake, called SUV for standard uptake 

value, representing the consumption of glucose by cells based on the fact that tumour cells 

need more energy than healthy cells. The maximum uptake value, SUVmax, is the most 

common feature used in PET imaging. FDG-positive tissues are used to delineate the 

biological target volume proposed for dose painting in RT in the setting of clinical trial [11]. 

Furthermore, high FDG uptake areas seen on pre-treatment PET/CT scans can identify tumour 

subvolumes at greater risk of relapse in patients with non-small cell lung cancer (NSCLC) 

treated using concomitant CRT [12]. In MRI, the interpretation of I is more complex due to 

the diversity of possible sequences and the multiple signal origins (proton density, relaxation 

times, diffusion coefficient, vascularity, etc.). In particular, in diffusion-weighted imaging 

(DWI), the intensity corresponds to the apparent diffusion coefficient (ADC) based on the fact 

that tumour tissues are composed of anarchic cell proliferation, where water diffusion is 

usually reduced. On the other hand, dynamic contrast-enhanced magnetic resonance imaging 

(DCE-MRI) allows the visualisation of tumour vascularisation [2,13]. 

Descriptive statistics, also called first-order statistics, describe voxel intensities in the volume 

of interest, here the TV, corresponding to the measure of central tendency and variability. The 

main imaging feature used to measure the central tendency is the mean (Imean), while the 

measure of variability includes the standard deviation (ST) or the variance, the coefficient of 

variation (COV) defined as ST divided by Imean. Bundschuh et al. showed that the tumour 

heterogeneity of FDG uptake measured by the coefficient of variation was predictive of the 

response to CRT in rectal cancer [14]. 
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The frequency histogram is a simple and concise summary of first-order statistical 

information. Its shape reveals the image homogeneity in the TV. The histogram of a 

homogeneous lesion is distributed on a narrow peak, whereas a heterogeneous image 

corresponds to a broad peak of intensities. The general features of intensity distribution are 

asymmetry (skewness), flattening (kurtosis), energy, and entropy. By analogy with dose-

volume histograms used in RT, El Naqa et al. have proposed an intensity-volume histogram to 

characterise tumour heterogeneity, enabling several indexes to be extracted, such as Ix (the 

minimum intensity to the x% highest intensity volume) and Vx (the percentage volume with at 

least x% intensity value) [10]. In addition to the feature of the form corresponding to extent, 

El Naqa et al. showed in their small cohort of patients (9) with H&N cancer treated by CRT 

that V90 measured on the pre-treatment FDG PET image had the highest univariate predictive 

power of survival. King et al. [15] found in H&N cancer that tumours that responded poorly 

to CRT showed a significant increase in the mean ADC values on DWI during treatment.  

2.3 Texture features 

The benefit of first-order indexes is that they are simple to calculate when the TV is 

delineated. However, they do not provide any information about the voxel intensity relative to 

each other. For this reason, it was proposed to use higher-order statistical methods to carry out 

a more in-depth analysis of the relationships between voxels, such as texture features. Four 

main texture matrices have been proposed in the literature. The grey-level co-occurrence 

matrices (GLCM) characterise the intensity relationships between pairs of neighbouring 

voxels in all spatial directions [16]. The grey-level difference matrix (GLDM) [17] 

characterises the intensity differences between neighbours. The grey-level run length 

(GLRLM) [18] and the grey-level size zone (GLSZM) matrices [19] characterise the range of 

intensities in one direction or in all directions, respectively. The GLRLM features are highly 

correlated with the GLSZM features and therefore do not provide complementary information 

[20]. Thus, in 3D imaging, the GLRL matrix is not of particular interest and is generally not 

used.  

Tixier et al. [20] studied the predictive value of the response to CRT of 38 texture features in 

addition to first-order features in a cohort of 41 patients with oesophageal cancer. Their 

results showed that features of textures enable to differentiate patients better than those of the 

first order. 

2.4 Filter- or model-based features 

Other approaches based on prior image transformation have been proposed in the literature, 

mainly on CT and MRI data, defined in spatial domains such as filters (Gabor filters, Law’s 
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filters, and Laplacian transform of Gaussian filters (LoG filters) or in the frequency domains 

(Fourier and wavelet transform) [2]. Other features derived from complex mathematical 

models have also been proposed in the literature, such as fractal dimension measuring image 

complexity [21].  

In order to study the predictive value of distant metastasis (DM) and the prognostic values of 

radiomic features, Coraller et al. [22] extracted 635 indexes from planning CT in 98 patients 

treated using CRT for lung cancer for analysis and 84 patients for validation. Of the 635 

features, 180 were extracted from LoG filters and 384 from wavelet transform maps. The 

authors found 12 prognostic features and 35 predictive features of DM occurrence, including 

several LoG filters and wavelet transform features. 

 

3 Medical applications 

Various reviews of the literature [1-2,4,6,23] show that many studies support the clinical 

interest of radiomics in oncology, both in MR, CT, and FDG PET imaging, particularly for 

patients treated using radiotherapy for many localisations (NSCLC, H&N, oesophagus, breast, 

cervix, etc.). Before treatment, this concerns the staging of the disease and the identification 

of genetic features. For treatment planning, this concerns the tissue discrimination between 

healthy and pathological tissues, the delineation of the GTV, or a boost. For therapeutic 

monitoring, this concerns the prediction of the patient's survival, the response to treatment, 

and the occurrence of distant metastases and side effects. 

Image features can be extracted from diagnostic or patient monitoring images, as well as from 

CT [22] or MR treatment planning images [24]. Fave et al. [25] also showed in 10 NSCLC 

patients treated using RT that a radiomic analysis could be performed from cone-beam CT 

(CBCT) images using medical Linac on-board imaging systems. Of 68 features studied, 37 

were robust to noise and poor image quality. 

3.1 Genetic features 

Radiomic analysis was used to describe different tumour phenotypes corresponding to distinct 

genotypes. For instance, Buch et al. [26] showed, on contrast-enhanced CT, statistically 

significant differences in some texture features between human papillomavirus-positive and 

human papillomavirus-negative oropharyngeal tumours.  

3.2 Segmentation 

Nailon et al. [27] have proposed an automatic segmentation of the GTV and OAR in bladder 

cancer based on 27 features of CT imaging. The authors showed that this approach offers 

significant accuracy using only 3 texture features. Yu et al. combined a radiomic analysis of 
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PET and CT images in H&N tumours, highlighting that some image features had a better 

discriminating power between healthy and pathological tissues than experts, the UH values 

(CT), or the SUV (PET imaging) [28-29]. 

Radiomic features can also be used for boost planning. Shiradkar et al. [24] developed a 

radiomic-based software platform for the treatment of prostate cancer using brachytherapy 

and external beam radiation therapy (Rad-TRaP, radiation treatment planning for prostate). 

This platform allows the extraction of 154 radiomic features from T2-weighted and ADC MR 

images. From a database of 11 patients, the authors identified 11 features (5 from the T2-

weighted image and 6 from the ADC image), making it possible to discriminate, within the 

gland, the voxels belonging to the lesion and to calculate the probability of the presence of the 

tumour for each voxel to define a boost from this probability map. 

3.3 Prediction of treatment response and recurrence of disease 

Aerts et al. [30] studied the prognostic value of 440 radiomic features (first-order, form, and 

texture features (GLCM, GLRLM, and wavelets)) extracted from CT images on 3 cohorts of 

patients corresponding to a total of 1019 patients with lung cancer or H&N tumours. The 

authors showed that the results obtained using a radiomic signature generated from 4 features 

of the image were better than those obtained using TNM staging or the TV alone. The 4 

features were energy (first-order statistics), compactness (shape feature), and 2 features of 

grey-level non-uniformity (texture and wavelets, respectively). In addition, this signature 

appeared to be associated with gene expression profiles.  

In a database of 92 patients, Li et al. [31] showed that features extracted from pre-treatment 

planning CT have a prognostic value of recurrence after stereotactic body radiotherapy 

(SBRT) for NSCLC. Because of the difficulty of differentiating between recurrence of lung 

cancer after stereotactic radiotherapy treatment and benign radiation-induced lung injury 

(RILI), Mattonen et al. [32] showed the contribution of radiomics in the rapid prediction of 

the recurrence of cancerous disease.  

Gnep et al. [33] showed that pre-therapeutic features extracted from the co-occurrence matrix 

of T2-weighted images in patients treated with RT for prostate cancer were strongly 

correlated with a biochemical recurrence of the disease. 

3.4 Prediction of side effects 

Radiomic analysis has also been proposed to predict the occurrence of side effects due to 

ionising radiation on OAR in NSCLC and oesophageal cancers, as well as salivary glands and 

parotids in the treatment of H&N tumours using RT [23]. 
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Moran et al. [34] showed that CT-based radiomic features were significantly correlated with 

radiation oncologist-scored post-SBRT lung injury, suggesting the potential of radiomics to 

measure post-SBRT lung injury. Cunliffe et al. [35] showed, in a database of 106 patients 

treated with RT for their oesophageal cancer, a significant change in 20 radiomic features 

between the pre-RT CT scan and the post-RT CT scan as a function of the radiation dose. 

Twelve features changed significantly in patients who developed radiation pneumonitis (RP), 

allowing the authors to develop a classifier based on these CT features. The same team [36] 

showed the additive value of the SUV standard deviation on pre-RT PET images indicating 

the potential of a multimodality radiomic analysis. on a prospective study, Jahangiri et al. [37] 

showed the feasibility of FDG PET/CT imaging to quantify radiation-induced lung 

inflammation in locally advanced NSCLC receiving proton or photon radiotherapy. This 

study suggests less induction of inflammatory response in both ipsilateral and contralateral 

lungs of patients treated with proton compared to photon or combined proton-photon RT. 

From a radiomic study conducted on a retrospective treatment planning CT database of 249 

patients treated using RT for H&N tumours, van Dijk et al. [38] showed the benefits of 

radiomic analysis in predicting xerostomia and sticky saliva 12 months after RT. With the 

same goal, Pota et al. [39] developed a model for classifying patients at risk of developing 

parotid gland shrinkage and 12-month xerostomia. Features came from several information 

sources (clinical data, dosimetry, and CT). 

 

4 Factors influencing radiomic features 

The very encouraging results of radiomics, however, raise the issue of the robustness of 

features with respect to the experimental conditions and image processing performed before 

their extraction as well as the manner of extraction. 

4.1 Feature definition 

In the literature, there are differences in the definition of radiomic features due to a lack of 

consensus [40]. Sometimes, 2 texture features with different definitions are referred to using 

the same name. Features are also found under different names, but with the same 

mathematical expression. Calculation methods can also be different. Some texture features 

can be extracted from a single slice of the tumour (2D texture) or from the entire tumour 

volume (3D texture) [41-42]. Similarly, some authors considered the different directions of 

the GLC matrices individually, while others preferred to extract features from the average 

matrix in 13 directions [43]. These findings show that an effort to harmonise and define 

features is still essential [6,44-45]. 



	  

 

4.2 Image acquisition and processing 

Several authors have studied the robustness of radiomic features according to test-retest 

studies [46-49], modifying acquisition [42], image reconstruction parameters [50-51], and 

lesion segmentation [52]. These studies showed that some features are less robust than others, 

leading some authors to eliminate the least robust features from the radiomic analysis.  

These results show that it is necessary to harmonise image acquisition and perform the most 

automatic image processing and segmentation as possible to increase the robustness and 

relevance of the radiomic analysis [53].  

4.3 Lesion size 

Brooks et al. [54] studied the variation in entropy (GLCM) as a function of the number of 

voxels in TV based on a PET database of 70 patients with cervical cancer. The results showed 

that entropy is strongly correlated with TV if the latter is less than 45 cm3 (700 voxels). 

Below this threshold, the index was 5 times more sensitive to volume differences. The authors 

have suggested that it is not appropriate to study this feature for a tumour with a volume less 

than 45 cm3, which in oncology corresponds to a large volume and eliminates a significant 

number of patients.  

Hatt et al. [43] studied the influence of tumour volume on 4 texture features using PET 

images based on a database of 555 patients with different cancers (lung, breast, and others). 

The authors found that the correlation between the radiomic features and the TV tends to 

decrease when TV increases.  

4.5 Resampling image intensity values 

An important methodological factor is the image discretisation corresponding to resampling 

image intensity values. When the number of intensity levels in the TV is large, resampling is 

necessary. Its aim is to group the very large number of intensity levels into a limited number. 

This step reduces the computation time of the texture matrices, as well as the noise in the 

image, but to the detriment of a loss of information [48]. 

Two approaches have been proposed in the PET imaging literature. The first is based on 

relative resampling using a fixed number (e.g., 16, 32, or 64) of discrete resampled values or 

bins to divide the SUV range into equally spaced intervals before calculating textural features 

[20,40]. Orlhac et al. showed that texture features are not very sensitive to the number of 

intensities used when the intensity level is greater than or equal to 32 [40]. Hatt et al. 

concluded that this type of resampling by more than 64 intensity levels did not provide any 

additional information and advised limiting the number of resampling to this level [43].  




  

 

More recently, an absolute resampling process was proposed to resample SUV with a fixed 

bin size in units of SUV (for example, 0.1 and 0.5), maintaining a constant intensity resolution 

across all tumour images [55-56]. It has been shown in PET imaging that absolute resampling 

has a better predictive power than relative resampling [54-57]. 

 

5 Methods of radiomic analysis 

The ever-growing number of features studied raises the question of the statistical method of 

analysis used and its quality, especially as patient databases can be limited. 

5.1 Conventional statistical analysis 

The majority of the first articles from the literature studying the predictive value of radiomic 

features were based on the Mann-Whitney U-test when studying the ability of the feature to 

differentiate patients into 2 classes (for example, responding and not responding to treatment) 

or the Kruskal-Wallis test for more than 2 classes. When the feature corresponds to a 

continuous numerical value, the threshold value of the feature used to optimise the 

classification of the population into groups is determined using receiver operating 

characteristic (ROC) curve analysis to calculate the area under the curve, the sensitivity, and 

the specificity. For prognostic studies of patient survival, Kaplan-Meier's univariate analysis 

combined with a log-rank test followed by Cox's multivariate analysis is generally used.  

The number of features extracted from the image does not necessarily mean that the amount 

of information increases. Many authors have shown that some features are highly correlated 

using ranking tests and should be excluded from radiomic analysis based on conventional 

statistical analysis, leading to a reduction in the number of characteristics studied [40,57]. 

Orlhac et al. [56] showed on PET images that there was a significant correlation between 

texture features and TV when a relative resampling is used. This correlation does not exist 

with absolute resampling, but there is a correlation between texture features and SUVmax. To 

further reduce the number of features, only those that are the most robust with regard to the 

experimental conditions and image processing are used [46]. Despite these strategies for 

limiting the number of features, radiomic studies based on conventional statistics present 

many methodological pitfalls and limitations when handling a large number of indexes [58].  

5.2 Machine learning methods 

Given the number of features, the use of machine learning methods is of great interest. Based 

on a learning database, the goal of machine learning is to develop algorithms that generate a 

decision rule, also called a model, to predict new patient outcomes. Numerous machine 

learning algorithms have been proposed in the literature (see Table 1). Examples include 
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logistic regression, multivariate Cox proportional hazards regression models [30], methods 

based on Bayesian statistics, support vector machine searching the optimal hyperplane 

separating patient outcomes [59], as well as the decision tree method and its extension to 

random forests [60]. Another group of methods corresponds to Artificial Neural Network and 

deep learning algorithms simulating neuronal functioning [61]. 

The advantages of machine learning methods are that they were created, from the start, to 

handle the processing of a large number of features. Although they require a learning 

database, which is quite important because the number of features studied is so large, some 

are better suited than others to the low ratio between the number of patients and the number of 

features. Depending on the method, they make few or no assumptions about the relationship 

between feature and prediction, nor about linear or rank relationships between features.  

Many feature selection methods have been proposed in the literature to remove features that 

are highly correlated [40] or that have limited contribution [57,62] and avoid overfitting. 

Here, unlike conventional statistical methods, highly correlated features, in the sense of a rank 

test, can provide additional information.  

These methods are recent and widely used in all areas of big data processing. Therefore, they 

have a strong potential for methodological development in the future. Their diversity allows 

clinicians to make a choice depending on the problem, such as the balance between the 

different classes, the presence of features of different formats (binary, discrete, or 

continuous), and others. 

Ypsilantis et al. [63] studied the use of several machine learning methods (ANN, SVM, and 

RF, among others) to predict the response to neoadjuvant chemotherapy in 107 patients with 

oesophageal cancer. For this purpose, 103 radiomic features were extracted from FDG PET 

images. ANN gave the best performances for predicting treatment response with a good 

classification accuracy of 73.4% ± 5%, followed by RF (65.7% ± 6%) and SVM (60.5% ± 

8%). The results were superior to those using SUVmax alone, with an accuracy of 41.0% ± 5%.  

From a database of 65 patients with oesophageal cancer treated using CRT and 61 clinical and 

FDG PET features, Desbordes et al. [57] showed the superiority of RF over conventional 

statistical analysis. The RF classifier improved the predictive and prognostic values compared 

to the Mann-Whitney U-test and the univariate Kaplan-Meier survival analysis when applied 

to several tens of features in a limited patient database. 
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6 Conclusions and perspectives 

Numerous articles support the clinical use of radiomic analysis in oncology, as well as on 

MRI, CT than on FDG PET images, in staging of the disease, significantly differentiating the 

early and advanced stages of the disease, tissue discrimination between healthy and 

pathological tissues, demonstrating genetic characteristics, predicting the response to 

treatment, patient survival, and side effects. These results from the literature mainly concern 

solid tumours for many localisations (pulmonary, H&N, oesophagus, breast, and cervix, 

among others). They potentially concern any type of treatment (chemotherapy, radiotherapy, 

and concomitant treatments). 

This study of the literature reveals very important perspectives within the context of 

personalised medicine and highlights many scientific issues not yet resolved, which leaves a 

large margin of progression for the concept of radiomics. 

Numerous factors have been reported to influence the robustness of features, such as 

acquisition conditions, data reconstruction, tumour volume segmentation, and image 

resampling. Radiomics requires a harmonisation of practises, which raises the issue of the 

quality of the database, especially multicentric databases, in a context where the results must 

be robust to be generalised. Some features are more robust than others, but there is currently 

no real consensus to establish a list of preferred features or tumour signatures to separate 

lesions of good and poor prognosis. 

Given the number of features studied, the size of databases and their constitution remain 

issues. In this context, conventional statistical analyses seem too limited and many 

methodological pitfalls and limitations were described [55] that may explain the lack of the 

emergence of radiomic signatures. This is likely due to the multiplication of features. It can be 

noted that very few articles currently address the contribution of multimodality imaging, 

genomics, and proteomics, corresponding to very important fields of investigation. These 

issues can be addressed using machine learning methods. Although many methods of 

selecting features have been proposed in the literature to reduce the number of features, 

machine learning methods make it possible to manage a large number of features. They can 

also incorporate correlated features according to a rank test as being relevant information.  

Despite the enthusiasm for radiomics, it requires the definition of robust signatures to be used 

in clinical routine. The ultimate goal of such an approach would be to use these signatures 

individually for each patient. These radiomic signatures must be coupled with other relevant 

information sources (clinical, biological, genomics and biophathological) in order to improve 

the prognostic and predictive value of the treatment towards personalized medicine.  
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Figure 

Figure 1: Different categories of radiomic features and non-exhaustive list of associated features. 

Example with two lung lesions in PET/CT imaging. The filter-based example corresponds to wavelet 

decomposition. 
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Table 

Table 1: Main machine learning algorithms used in radiomics with their advantages and limitations. 

 

Algorithm Advantages Limitations 

Logistic regression [63] - easy to interpret 

- Does not require input features 

to be scaled 

- Does not require any tuning 

- Easy to regularize 

- Easy to implement and very 

efficient to train 

- A good baseline to compare 

the performances with those of 

other more complex algorithms 

- Cannot solve non-linear 

problems 

- Features must be independent 

- Risk of overfitting 

Multivariate Cox proportional 

hazards regression model [30] 

- Does not require the division 

of the studied features into 

discrete classes (keep the 

information as precise as 

possible) 

- Limited by its very restrictive 

application conditions (hazards 

should be proportional) 

Bayesian statistics [62] - Provides a natural and 

principled way of combining 

prior information with data 

- Provides interpretable answers 

 

- Requires the choice of prior 

- Can produce posterior 

distributions that are strongly 

influenced by the priors 

- Computationally expensive 

Support vector machine [62,63] - Possible regularization 

parameter to avoid overfitting 

- Possible integration of expert 

knowledge about the problem 

through kernel engineering 

- No local minima 

- kernel models can be sensitive 

to overfitting 

- Difficult to interpret results 

- Computationally expensive 

Random forests [57,61-63] - Powerful and accurate 

- Training on even small 

samples 

- Sensitive to overfitting 

 

Artificial neural network [61-

63] 

- Ability to work with 

incomplete knowledge 

- Bias tolerance in data 

- Distributed memory using 

several neurons in parallel  

- Computationally expensive 

and needs a lot of computer 

resources 

- Output model difficult to 

understand (black-box) 

- Determination of proper 

network structure: fine tuning 

of the model hyperparameters  

 






