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Abstract: The latest developments in the field of digital humanities have increasingly enabled
the construction of large data sets which can be easily accessed and used. These data sets often
contain indirect spatial information, such as historical addresses. Historical geocoding is the
process of transforming indirect spatial information into direct locations which can be placed
on a map, thus allowing for spatial analysis and cross-referencing. There are many geocoders
that work efficiently for current addresses. However, these do not tackle temporal information,
and usually follow a strict hierarchy (country, city, street, house number, etc.) which is difficult—if
not impossible—to use with historical data. Historical data is filled with uncertainty (pertaining to
temporal, textual, and positional accuracy, as well as to the reliability of historical sources) which
can neither be ignored nor entirely resolved. Our open source, open data, and extensible solution
for geocoding is based on extracting a large number of simple gazetteers composed of geohistorical
objects, from historical maps. Geocoding a historical address becomes the process of finding one or
several geohistorical objects in the gazetteers which best match the historical address searched by the
user. The matching criteria are customisable, weighted, and include several dimensions (fuzzy string,
fuzzy temporal, level of detail, positional accuracy). Since our goal is to facilitate historical work, we
also put forward web-based user interfaces which help geocode (one address or batch mode) and
display results over current or historical maps. Geocoded results can then be checked and edited
collaboratively (no source is modified). The system was tested on the city of Paris, France, for the 19th
and 20th centuries. It showed high response rates and worked quickly enough to be used interactively.

Keywords: historical dataset; geocoding; localisation; geohistorical objects; database; GIS;
collaborative; citizen science; crowd-sourced; digital humanities

1. Introduction

1.1. Context

In historical sciences, cartography and spatial analysis are extensively used to uncover the
spatial patterns at play within textual historical data. These data contain indirect textual references
about location, such as place names (toponyms) or postal addresses. In order to map such data,
each item needs to be geocoded—that is, assigned with coordinates through the matching of an indirect
spatial reference with entities identified in a geographical data source (e.g., a map georeferenced
in a well-known coordinate reference system) [1]. Problems emerge when such spatial references
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become obsolete due to the temporal gap between the data to be geocoded and the reference
datasource—locating the London Crystal Palace (destroyed by fire in 1936) on a current map would be
rather difficult. Worse still, it might create ambiguities and possibly lead to erroneous geocoding, as the
Crystal Palace now refers to a South London residential area. Although manual geocoding can help
in such cases, the constantly increasing volume of historical data, which results from the flourishing
number of initiatives in the field of digital humanities, calls for automatic approaches. Despite the
existence of highly efficient geocoding tools and API for modern data, it remains a challenge to come
up with a truly historical geocoder [2,3].

1.2. Approach and Contributions

The main focus of this article is the historical geocoding problem: providing the best matching of
geohistorical objects in available gazetteers for a given textual address query.

We propose to depart from the classic geocoding paradigm, where a high-quality, hierarchical,
complex and complete gazetteer is used in conjunction with a simple matching method.
Instead, we intend to relax the constraints on the address definition process, and use several simpler
gazetteers at the same time. The complexity is transferred to the matching method, which is fully
temporal, fuzzy, and can be customized according to the user’s goal.

We also discuss the construction of a geohistorical database, the development of data matching
(linkage) methods which make full use of the temporal aspects of geohistorical data and the input
query, as well as the collaborative dimension. The main contributions of this article consist of
(1) a formalisation of the historical geocoding problem; (2) a minimal model of geohistorical objects
which can easily be re-used and extended; (3) an open-source geocoding tool which is powerful,
easy to use, and can be extended with any geohistorical data; (4) a graphic tool to control and
edit the geocoding results, which can then optionally be used to enrich the geohistorical database;
(5) a qualification of geocoding results in textual, spatial, and temporal terms.

2. Theory

2.1. Geocoding

2.1.1. Related Work

Geocoding is an inevitable step in any spatially-based study with considerable bodies
of data. This makes it a critical process in various contexts: public health, catastrophe risk
management, marketing, social sciences, etc. Many geocoding web services have been developed
to fulfil this need, originating from private initiatives (Google Geocoding API, Mapzen (mapzen.
com)), public agencies (the French National Address Gazetteer (adresse.data.gouv.fr/api/)) or
from the open-source community (OpenStreetMap Nominatim (nominatim.openstreetmap.org),
Gisgraphy (gisgraphy.com)). These services can be characterized in terms of their three main
components [1,4]: input/output data, reference dataset, and processing algorithm. The input is
the textual description the user wants to refine into coordinates. It might take the form of a traditional
address containing a building number, street name, city name, or country (e.g., “13 rue du Temple, Paris,
France”), but it may also be incomplete, or simply refer to a landmark (e.g., “The Eiffel Tower, Paris”).
The reference dataset designates a gazetteer which pairs names of geographical entities (places, addresses)
with geographical features. Because the main geocoding tools are provided by heavyweight actors
of geographical information such as Google, Microsoft, OSM, or the national cartographic agencies,
the geographical databases they produce are used as the reference dataset for these geocoders. These
databases are extremely structured (hierarchy, normalization) and of high quality.

The processing algorithm consists of finding the best-matching element from the reference dataset
for the associated input description. Finally, the output usually contains a geographical feature along
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with its similarity score (e.g., perfect or approximate match). Although the geometries of the matched
features may be complex, they are most often rendered into simple two-dimensional points.

2.1.2. Estimating and Conveying the Quality of Geocoded Places

Because of its ability to transform the indirect spatial reference of a piece of information into
a direct spatial reference, the process of geocoding is a critical stage of many spatial analyses wherein
data is not directly associated with geographical coordinates (e.g., observations associated with place
names). However, geocoding cannot be limited to this process. It is crucial to estimate or measure the
quality of each individual indirect-to-direct transformation and either convey this information along
with the final results or provide a mechanism which can correct these results. It would otherwise be
impossible to establish a distinction between result variations due to the imperfection of the geocoding
process and a real phenomenon which could be hidden in the data.

The quality of geocoding services can be estimated via two very important criteria [5].
First, the database quality: how complete and up-to-date is the reference database? Second, result
characterisation: how spatially accurate is each result, and what is its associated reliability? In addition,
the quality of the matching process can also be evaluated (how the process deals with errors in the
input address, for instance).

2.1.3. Temporal Depth

Common geocoding approaches cannot be used for (geo)historical data for three main reasons.
To begin with, existing geocoding services do not take the temporal aspect of the query, or the
dataset they rely on, into account. Indeed, they usually rely on current data, such as OpenStreetMap
(openstreetmap.org) data, which is continuously updated. As such, they implicitly work on a valid
time that is the present (or possibly the interval between the beginning of the database construction
and present time). The second reason is that they rely on an exhaustive, strongly hierarchical database
whose accuracy can be checked against ground truth (i.e., there is always a way to check the actual
location of an address; the database can therefore constitute an unambiguous and objective reference).
Unfortunately, historical data cannot easily be verified. One must compare it with different available
(geo)historical sources (possibly incomplete and conflicting), and must often make assumptions or
hypotheses. Such hypotheses are in turn continuously challenged and updated by new discoveries,
and there is no way to provide a truly definitive answer. Primary sources may also be wrong
or misleading. Modern geocoding tools are not geared towards dealing with these ambiguities.
Finally, available historical sources for the weaving of a gazetteer are sparse (both spatially and
temporally), heterogeneous, and complex. We believe that all of these specificities call for a dedicated
approach. Similar observations have already been made in the context of archival data by the UK
National Archives, for example [6]. Large historical event gazetteers already exist [7,8] and provide
an important basis for the development of the reference dataset. More specifically, the classic steps
we have identified in geocoding for a historical source are first to establish a reference gazetteer
for addresses (associating standardized textual addresses with coordinates), and then to determine
the input standardized textual addresses within this gazetteer (geocoding). Theoretically speaking,
this whole process is very akin to a simple database join, where the key would be the standardized
textual address. However, this methodology does not take the historical dimension into account, and
requires both standardized and complete gazetteers. For instance, St-Hilaire et al. [2] pinpoint a
reference gazetteer of “CSD” (census subdivision) for each year in the historical period of interest.
Geocoding is then completed separately for each year, with a simple CSD match. Logan et al. [9]
introduce more detailed address gazetteers (which go so far as to provide street numbers). However,
since the work was still in progress at the time the article was written, it gives no details on the
geocoding process. Lafreniere and Gilliland [10] present work pertaining to several historical periods,
and each one comprises a gazetteer of standardized addresses. When a historical address needs to be
geocoded, the temporally closest gazetteer is chosen, which then allows for regular matching to occur.

openstreetmap.org
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However, our ambition is to fully make use the time dimension, and to relax the constraints on
gazetteers. First, we can simultaneously combine several simple gazetteers by merely using a minimal
subset of required information (according to the suggested geohistorical object model). Each gazetteer
contains data which can both be fuzzy (errors in the address text, the date, or the position) or
situated on different scales (house address, street, neighbourhood). Moreover, gazetteers may conflict
with one another. Then, the geocoding of a query address is achieved thanks to a sophisticated
multi-dimensional matching tool which can be customized according to user needs.

2.1.4. Handling the Imperfections of Geohistorical Data

Geohistorical data, like any other type of data, contains imperfections. Such imperfections can
be categorized into three main classes : uncertainty, imprecision, and ambiguity [11]. Uncertainty
applies to information of which the reliability can be questioned. To what extent can we trust the
location of an address point depicted in a map, when we know that this map contains errors? Just as
a GPS can generate a location within a 20-m radius, the precision of the locations spawned within
a historical map is limited by the precision of the map itself. Ambiguity arises from two situations.
First, different sources can provide conflicting information about the same geographic entity. Second,
the information available in an entity can be too sparse to properly define the properties of that entity,
and can therefore be unable to produce data of sufficient quality.

To our knowledge, no other historical geocoding approach has taken the the characterisation of
geocoding results into consideration. However, it is an essential aspect for historical geocoding due
to the very imprecise and sparse nature of geohistorical data. Indeed, geocoding results need to be
validated and/or edited manually.

Given the large amount of addresses (more than 100,000 addresses for Paris) and the potential
complexity of the task, this is clearly a large amount of work. Fortunately, several projects such
as OpenStreetMap have lead the way for what is usually called volunteered geographical information
(VGI) [12] of crowdsourcing geospatial data [13]. This approach consists of using collaboration to solve a
problem collectively, usually by having citizens participate in the process. This approach has already
been extensively used for historical data, although in distinctively different contexts. For instance,
Southall, Mostern, and Berman [14] put forward a website which aspires to collaboratively input
the place names that appear on the map of Great Britain for the years 1888 to 1914. Other projects
such as Keweenaw history http://www.keweenawhistory.com/ and several projects heralded by the
New York City Public Library labs [15] have been using crowdsourcing to create or edit historical data,
such as building footprints. Our approach is similar: a convenient web interface and the power of
collaborative editing are also used. However, our end goal is different. Our purpose is not to create an
authoritative historical data source. Rather, we intend to allow each user to adapt the source to their
own usage.

As suggested in a recent typology of participation in citizen science and VGI [16], different levels
of participation can be defined. These levels range from “crowdsourcing”, where the cognitive demand
is minimal, to “extreme citizen science” or “collaborative science”, where citizens are involved in
all stages of research (problem definition, data collection and analysis). In the rest of this article,
we propose a collaborative historical geocoding approach for a simpler participation of citizens in
geohistorical research using dedicated interactive tools. A reproducible research approach using open
source tools and open data [17–20] leads to a more collaborative historical science.

2.1.5. Handling Heterogeneous Address Types

Some modern geocoders are able to return various types of geographic features. For instance,
the OpenStreetMap geocoder can return a set of hierarchically organized geographical features.

Similarly, the method we present here is able to return different geographical features based on
the best match for the textual address. For example, the following textual address, “12 rue du Temple,
Paris, France”, might return a dot representing the building, a polyline representing the street, and/or

http://www.keweenawhistory.com/
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a polygon for the city or the country, depending on the available information and on user preferences
(the scale parameter).

2.2. Integrating Geohistorical Data

General Considerations about Building a Spatio-Temporal Database

Extracting information from historical maps amounts to building a spatio-temporal database.
There are several approaches to doing so, and we stress that our attempt is not to create a continuous
spatio-temporal database. Instead, we store representations of the same space at multiple moments in
history, according to the well-known snapshot model [21].

2.3. Extracting Geohistorical Objects from Historical Maps

The starting point for building gazetteers is to extract information from historical maps. The first
part of the extraction process is to scan the maps (i.e., going from a paper map to a computer file)
and to georeference the map in a defined coordinate reference system. These maps are historical
sources, and as such, a historical analysis is performed in order to estimate the probable valid time
(temporalisation), positional accuracy, completeness, confidence, relation to other historical maps, etc.).
In our approach, we focus on geometrically accurate historical maps as our primary source for two
main reasons:

• Historical maps are spatially close to modern maps. The way in which spatial information is
described is very similar (both are based on mathematically well-defined reference systems, as
opposed for instance to an artistic painting of a city which would be seen as a non-geometrical
map). The integration of the information they convey in a Geographical Information System (GIS)
is therefore facilitated.

• The main goal of such maps is to provide a reliable depiction of the shape and location of
geographical features.

Although this choice seriously reduces the number of possible sources and therefore lessens
the quantity of accessible spatial information, it aims at efficiency. Indeed, geometrical maps are a
good compromise because they are reliable while at the same containing a large amount of spatial
information, and can bear the complexity of information extraction.

2.3.1. Georeferencing Historical Maps

We must establish a correspondence between each pixel of the historical map and its geographical
coordinates. To do so, we first choose a common spatial reference system (SRS). We then identify
common geographical features between historical maps and current maps: so-called ground control
points (GCPs). Last, we compute a warping transform which will stick as closely as possible to the
matching points. Finding GCPs between current maps and historical maps can be increasingly difficult
as we go back in time, because there are less and less perennial GCPs. Consider, for instance, the city of
Paris, where the French Revolution and its consequences combined with 19th century transformations
(including the so-called Haussmannian transformations) resulted in massive changes in the shape of
the city. To this end, we could start by georeferencing, for example, 20th century maps to current maps,
then georeference, for example, 19th century maps to 20th century maps, and keep going for even
older maps. A more in-depth analysis of the spatial quality of historical maps of Paris can be found
in [22].

Choosing the Target Spatial Reference System

Geographic coordinates are expressed through a coordinate reference system, which can either
be geographical (i.e., coordinates are latitude and longitude) or projected on a plane. Georeferencing
a map requires choosing a target coordinate system to place it on the Earth’s surface. It can be chosen
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arbitrarily, but it is advisable to select a coordinate system associated with a cartographic projection
close to that of the map which is to be georeferenced. Indeed, most Western countries’ maps since the
18th century have attempted to depict a geometrically accurate geographical space, which implies
using a mathematical model for the Earth and to display a projection on a piece of paper. Large-scale
maps such as city maps usually rely on a simple plate carrée projection with an approximation of the
Earth, depicted as a flat surface. In the case of low-scale maps such as country maps, the projection
and coordinate system depends on the state of geodetic knowledge and cartographic methods. In most
cases, however, the exact parameters of the historical map projection are unknown. Ignoring the
original projection and coordinate system of the map can result in geometrical distortions of the
georeferenced map.

Selection of Ground Control Points

The identification of pairs of GCPs is a critical step because the number, distribution, and quality
(i.e., positional accuracy, reliability, confidence) of the points strongly influence the quality of the
georeferencing. The reliability of the chosen GCPs actually depends on the geographic entities they
are placed on, which calls for an in-depth study of the construction process of the historical map.
Because this can be a very time-consuming task, it is possible to choose the GCPs based on some simple
rules. First, the GCPs should be located on the geographic entities that are the most stable through
time. This typically includes the main religious and administrative buildings such as churches and
palaces. On high-scale maps of cities, street intersections might also be acceptable supports for GCPs.
On low-scale geometric maps, bell towers are often the most accurate objects since they have been
extensively used as anchors for survey operations. In general, unstable geographical features such
as rivers, forests, rural roads, coastal lines, etc. should be avoided. While the quality of the selected
points depends on each map, a simple general rule is to select as many homogeneously distributed
points as possible in order to make some progress [23]. Three parameters must be considered: the
geometrical type of the features carrying the ground control points, their nature, and the method
used to identify them. Usually, features chosen as ground control points are represented by 2D
points. Lines or surfaces may also be used, and possibly even curves [24]. For historical maps,
the positional accuracy of mapping themes can vary greatly, either because of the map’s purpose,
or due to the mapmaking process itself. Optionally, geodetic features drawn on the map such as
meridians or parallels can also be used as GCPs, provided their geodetic characteristics can be fully
specified (e.g., identify exactly which meridian is drawn in which exact reference system). The actual
identification of GCPs can be achieved by automatic or manual processes. Automatic approaches are
notably used for historical aerial photographs, where feature detection and matching algorithms are
well-fitted [25]. Common GIS tools offer georeferencing software, allowing users to manually select
pairs of ground control points identified in both the input and reference maps. Such tools are often used
for historical map georeferencing because: (1) they are easy to utilize and (2) they allow historians
to control the quality and reliability of the identified points by using co-visualization between both
maps. The NYPL Lab even proposed a web-based version geared toward historical data (Map Warper
http://maps.nypl.org/warper/).

Choosing a Geometric Transformation Model

Once an acceptable set of paired features has been identified, the last step is to compute the
transformation from the input map to the reference. Several transformation models have been
proposed: global transforms (affine, projective), global with local adaptations (polynomial-based),
and local transforms (rubbersheeting, thin-plate spline, kernel-based approaches, etc.). Studies
have been conducted to assess the relevance of these transformations for historical maps [23,26,27].
They show that choosing a model is mostly a matter of compromise between the final spatial matching
between the feature pairs (i.e., the expected residual error) and the acceptable map distortion with
regards to its legibility. Exact or near-perfect matching between features can be achieved with local

 http://maps.nypl.org/warper/
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transforms and high-order polynomials, whereas the internal structure of the map is mostly preserved
by global transformations. Low-order polynomials offer a compromise between both constraints.

2.3.2. Temporalization: Locating Geohistorical Sources in Time

Georeferencing is a way of locating multiple maps in the same reference space. Similarly,
temporalization is the process of locating each geohistorical source in time. When building
spatio-temporal snapshots from historical maps, the key problem is determining the moment where the
map is representative of the actual state of the area it portrays (i.e., the valid time of the map). We define
the valid time of each map as the period starting with the beginning of the topographic survey and
ending with the publication of the map, which is often uncertain. Representing uncertain or imprecise
periods of time is a common issue when dealing with historical information, and many authors have
relied on fuzzy set theory to represent and reason on imperfect temporal knowledge [28,29]. In all
generality, temporal knowledge is represented by a function of time with values ranging from 0
(the source provides no information at this time) to 1 (geographical entities portrayed in the map are
regarded as existing and tangible at this time).

2.3.3. Extracting Information from Maps

Once the historical maps have been georeferenced and temporalized, their cartographic objects
can be extracted to produce geohistorical objects. The most common way of extracting information
from maps is by human action with classic GIS software (e.g., QGIS). However, each historical map of
Paris contains a large amount of information to be extracted (e.g., thousands of street names, even more
building numbers, etc.). A first solution would therefore be to use computer vision and machine
learning methods to create automatic extraction tools. These tools can process the whole map in
a few hours. Regrettably, such tools are difficult to design, are very specific to each historical map,
and may produce low-quality results (see Figure 1). Collaborative approaches have recently shown
to be very efficient for building large geographical databases in a relatively short period of time
(OSM http://www.openstreetmap.org, NYPL http://buildinginspector.nypl.org/). In the end, for the
use case of Paris, data is mainly extracted manually by experts, except for the Open Street Map data
which is a mix of collaborative editing and collaboration with the French Mapping Agency (IGN).

Figure 1. In this example, handwritten text is automatically detected and extracted (red) from
a historical map using various image processing methods. Note that some building numbers are
not extracted.

3. Methods

Based on historical sources and historical maps, we extracted geographical features which
were then gathered into several gazetteers. These (geo)historical features were modelled generically
(geohistorical objects) into a relational database management system (RDBMS). Geocoding an input
historical address involves finding the geohistorical object in the gazetteers that best matches this
historical address. We propose a matching process relying on several distances (temporal, textual,

http://www.openstreetmap.org
http://buildinginspector.nypl.org/
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spatial, etc.) which can be customised by the user. The results can be displayed via a web mapping
interface over current or historical maps, and further checked and edited collaboratively. Any edit
creates a duplicate of the original geohistorical object from the gazetteer, which is then added as
another geohistorical source (user-contributed). Figure 2 illustrates this approach.

Historical topographical maps

Build gazetteers of 
geohistorical objects

geohistorical_object_model

Gazetteers

name date s.
10 place Vendome
10 Place Vendome
12 place Vendome
10 Place Vendôme

geom

"10 place Vendfme, Paris"; 1850 
address/date to geocode

Collaborative editing
...

find best matching 
geohistorical objects

web UI

Figure 2. Gazetteers of geohistorical objects are created based on information extracted from
georeferenced historical maps. Geocoding a historical address means finding the best-matching
object in these gazetteers, based on a customised function (semantic, temporal aspect, spatial precision,
etc.). Results can be displayed through a dedicated web interface for collaborative editing.

3.1. Building Historical Gazetteers

Our approach for building a historical gazetteer follows these steps:

1. a historical map is scanned;
2. scans are georeferenced using hand-picked control points;
3. historical work allows for the estimation of temporal information and spatial precision of the map;
4. road names and axis geometry are extracted from the scan (manually or automatically);
5. building numbers are extracted from the scan (manually or automatically);
6. in some cases, building numbers can be generated from the available data (e.g., road starting and

ending building number);
7. normalised names are created from historical names (dealing with abbreviations, etc.),
8. geohistorical objects are created.

Extracting Geo-Historical Information from Maps

The whole process is carefully designed and explained in detail in [30], which is a work on
modelling historical geospatial information including source qualification, georeferencing, analysis,
and data extraction, associated with optimization methods to create and exploit spatio-temporal street
graphs (linkage between historical information).

Geohistorical objects are then extracted from the referenced historical maps, mostly manually
(collaboratively), or with the help of computer vision techniques. The main advantage is that for a given
moment in time we can have several conflicting snapshots that coexist. This is essential, as solving these
conflicts may not be possible, and reporting these several conflicting geocoding results to historians
may help appreciate the results. The drawbacks of this model (i.e., information redundancy and the
inability to store the changes themselves) can be overcome during the geocoding process.

3.2. Modelling Geohistorical Objects

Information extracted from historical maps is used to create gazetteers. Gazetteers may contain
different kinds of information, but we designed a core set of information that these gazetteers must
possess: the geohistorical object model. To this end, we designed a geohistorical object model with
all the necessary attributes and the flexibility to adapt to a great variety of geohistorical object types
and sources. Our goal was to provide a generic minimal (geo)historical object model which can be
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used by others and easily extended when necessary. Please note that this geohistorical object model is
separate from the geocoding issue, and that several gazetteers may contain redundant or conflicting
geo-historical objects. Such occupancy is allowed, as it is common for historical sources to be redundant
and conflicting. Furthermore, the geocoding method was designed to take these issues into account.

3.2.1. Modelling Geohistorical Objects

Geohistorical data is extremely diverse, both in terms of historical sources and of how the sources
were dealt with by historians. As such, historians use complex tailored models. We do not aim to
model every piece of geohistorical data in its own specificity and complexity. Instead, we propose
to model the bare minimal common properties of all geohistorical objects, and offer mechanisms
in order for this model to be easily extended and tailored to the specificities of the data. To define
the bare minimal model, we start from the very nature of a geohistorical object: both a historical
object and a geospatial object. The extension mechanism is provided via a database-object oriented
design using table inheritance, and is packaged into a PostgresSQL extension https://github.com/
GeoHistoricalData/geohistorical_objects.

Geohistorical objects possess both a historical and a geospatial component. We stress that
modelling the primary source and the extraction process of a geohistorical object is important in
order to trace the provenance of the information. The details of the model are illustrated in Figure 3.

Historical Aspect

In our model, a historical object is defined by its name, source, and temporalization.

• Name. By name, we mean the historical name initially used to identify the object in the historical
source, and the current name used by historians to identify the object in the current context.
For instance, the historical name for the Eiffel Tower in Paris may be “tour de 300 m”, but today, it
is referenced as “Tour Eiffel”. Both can coexist in a gazetteer (two different geohistorical objects,
with a different source and date).

• Source. A historical object is defined by a primary historical source (document) where the object is
referenced. In addition to the historical source, the way in which the object was digitized in this
source is also essential. For instance, a street name may have the Jacoubet map as its historical
source, and would have been digitized via collaborative editing on the georeferenced map.

• Temporalization. Any historical source is associated with temporal information (fuzzy dates),
which is the period during which the source is most likely to be relevant. In addition to the
historical source’s temporal information, a historical object can also have its own temporal
information. For instance, a street may have been extracted from a historical map created between
1820 and 1842. The use of other historical documents may allow the probable existence of this
street to be narrowed to 1824–1836. Keep in mind that several other geohistorical objects may
describe this street at several other time periods in the same or in another gazetteer.

Geospatial Aspect

A geohistorical object is also defined by geospatial information: a direct spatial reference
(geometry) and its positional accuracy metadata.

• Geometry. A feature has a geometry which follows the OGC standard http://www.opengeospatial.
org/standards. It may be a point, polyline, polygon, or a composition of any of these,
in a specified SRS. The geometry is extracted from the historical source manually or automatically.
Such information will be given in the Source description.

• Positional accuracy. Historical features have positional accuracy information. This precision
expresses the spatial uncertainty of the historical source (the person drawing the map might
have made mistakes) and the spatial imprecision of the digitizing process (the person editing the
digitised map might have made a mistake). One historical source may contain several accuracy

https://github.com/GeoHistoricalData/geohistorical_objects
https://github.com/GeoHistoricalData/geohistorical_objects
http://www.opengeospatial.org/standards
http://www.opengeospatial.org/standards
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metadata, one for each geohistorical object type it contains. For instance, a historical map may
contain buildings and roads. Buildings may have a different positional accuracy (5 m) than the
road axis (20 m). Besides, the digitising process precision may have been 5 m.

numerical_origin_process
short_name
full_name
description
default_fuzzy_date
default_spatial_precision

historical_source
short_name
full_name
description
default_fuzzy_date
default_spatial_precision

geohistorical_object
historical_name
normalised_name
geom
specific_fuzzy_date
specific_spatial_precision
historical_source
numerical_origin_process

Figure 3. The geohistorical object model, where each object is characterized by its historical source
(e.g., the historical map in which the object was described) and a numerical origin process, which is the
process through which the object was digitized. Aside from source and origin processes, an object is
also described by a fuzzy date, a text, and a geometry.

Temporal Aspect

A historical source contains information about its valid time. This valid time is represented in
a fuzzy way. Our model can adapt to any piecewise linear function, but we chose to model imprecise
valid times as trapezoidal fuzzy sets, since these functions are simple to understand and use, and
cover most common use cases. We rely on the pgSFTI https://github.com/OnroerendErfgoed/pgSFTI
postgres extension to store and manipulate such temporal fuzzy information. For instance, Figure 4
illustrates the valid time of a map whose topographic survey started in year 1775, ended between years
1779 and 1780, and which was engraved in late 1780.

Figure 4. An uncertain valid time modelled as a trapezoidal fuzzy set function.

3.2.2. A Database of Geohistorical Objects

We define a conceptual schema for geohistorical objects, which is based on two names, a source,
a capture process, fuzzy dates, and a geometry. This delineates the core of a generic geohistorical object.
However, this geohistorical object model is easily extendible using the table inheritance mechanism,
an object-oriented design mechanism available in PostgreSQL (see Figure 5).

Table Inheritance

The concept of table inheritance is simple, although slightly dissimilar to classic object-oriented
inheritance. When a table child is created as inheriting from a table parent, child will at least feature
the columns of parent, but can also contain other columns (provided there is no name/type collision).
In our case, this means that a table of geohistorical objects will inherit from the main geohistorical
object table (i.e., will have all the core columns of geohistorical objects (names, sources, temporal
aspect, spatial aspect)), but can also have its own tailored column, providing the necessary flexibility.

https://github.com/OnroerendErfgoed/pgSFTI
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Another key aspect of table inheritance is that when the parent table is queried, the query will not only
be executed on the rows of the parent table, but also on the rows of all child tables. This means that all
tables using the geohistorical object model will be virtually grouped and accessible from one table.
This behaviour has no real equivalent in object-oriented programming.

- historical_name
- normalised_name
- geometry
- specific_fuzzy_date
- historical_source
-numerical_origin_process

- historical_name
- normalised_name
- geometry
- specific_fuzzy_date
- historical_source
- numerical_origin_process
- unique_id 
- road_width ...

- historical_name
- normalised_name
- geometry
- specific_fuzzy_date
- historical_source
- numerical_origin_process
- open_street_map_id
- type_of_building
- picture_id ...

parent table child table 1 child table 2

Columns are 
inherited 
from parent

Still free to 
add other 
columns

Figure 5. The table inheritance mechanism: a child table inheriting from a parent table inherits all the
parent columns, and can also have its own. However, the parent table also virtually contains all the
content of the child tables.

Simulated Inheritance of Index and Constraints

The PostgreSQL table inheritance mechanism is limited in some aspects, because constraints
and index cannot be inherited. Constraints are essential, because they are used to guarantee that any
geohistorical object will correctly use existing sources from the source tables (“historical_source” and
“numerical_origin_process”). Indexes are also essential, because when using hundreds of thousands of
geohistorical objects, they are needed to help speed up the queries.

We index not only names, but all geohistorical object core columns (names, sources, temporal
aspects, spatial aspects). We propose a registering function that the user can execute only once when
creating a new geohistorical object table. This function then creates all the necessary indexes and
constraints, and the appropriate inheritance.

Modelling a Geohistorical Object from the User’s Perspective

The practical steps to creating geohistorical objects are simple:

1. Add the historical source and numerical origin process in the source and process tables.
2. Create a new table inheriting geohistorical objects and containing your additional custom columns
3. Use the registering function with this table name
4. Insert your data in the table.

Please note that no disambiguation or comparison must be performed compared to other
historical sources. Several historical sources with conflicting/duplicate information can co-exist
without any problem.

3.3. The Historical Geocoder

In our method, geocoding something means finding the most similar geohistorical objects within
the available gazetteers, which then provide the geospatial information. This approach relies on two key
components: gazetteers of geohistorical objects, and a metric to find the best matches. This approach
allows geocoding to be performed broadly, as it does not rely on a structured address (number, street,
city, etc.), but rather on a non-constrained name. For instance, the address “Eiffel Tower, Paris” is not
structured, but would nonetheless be useful in our approach.
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3.3.1. Creating Geohistorical Object Gazetteers for Geocoding

Geohistorical object gazetteers are key for geocoding. These objects are extracted from historical
maps and inserted into geohistorical object tables. Each table forms a gazetteer.

Database Architecture for Geocoding

Again, we use the PostgreSQL table inheritance mechanism. To this end, we create two tables
dedicated to geocoding. Gazetteer tables which will be used in geocoding must inherit from these
two tables. Table “precise_localisation” is for geohistorical objects corresponding to postal addresses
(e.g., “12 rue du Temple, Paris”). Table “rough_localisation” is for road axis, neighbourhood, and other
coarse urban objects. We chose to have two separate tables for ease of use and performance. Geocoding
queries are then performed on the two parent tables, but thanks to inheritance, these parent tables
virtually contain all the gazetteers’ tables containing the actual geohistorical objects, as illustrated in
Figure 6.

precise_localisation
geohistorical_object
associated_geohistorical_object

rough_localisation
geohistorical_object

geohistorical_object inherits

inherits
extracted_building_number
precise_localisation
...

inherits
extracted_road_axis
rough_localisation
...

extracted_cities
rough_localisation
...

extracted_building_number
precise_localisation
...

extracted_building_number
precise_localisation
...

extracted_neighbourhoods
rough_localisation
...Geocoding queries

Figure 6. Geocoding table architecture. Two tables of geohistorical_object are the support for geocoding
queries. Because all extracted geohistorical object tables inherit from these two tables, they both virtually
contain all the objects.

3.3.2. Finding the Best Matches

Once geohistorical object gazetteers describing precise and rough localisation are available,
we geocode to find the best match between the input query and the objects.

Concept

We call the potential matches “candidates”, and the problem is then to rank the candidates from
best to worst. The user can choose how many candidates they want, depending on the application.
For an automated batch geocoding, the best match (top candidate) is optimal. For a human analysis of
data, several matches may be more interesting (e.g., the top 10 candidates). What qualifies as “best”
depends on the user’s expectations. We provide a number of metrics which can be combined by a user
into a tailored ranking function. The function is expressed in SQL, with access to all postgres math
functions. We describe the available metrics and give examples of such functions.

We note that other matching methods using probability or machine learning have recently
emerged (see [31] for an evaluation).

Example

For instance, when a user geocodes the address “12 rue de la Vannerie, Paris” in 1854, they may
be more interested in geohistorical objects that are textually close (e.g., a geohistorical object “12 r. de
la Vannerie Paris”, 1810), or maybe geohistorical objects that are temporally close (e.g., “12 r. de la
Tannerie Paris”, 1860).
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Metric: String Distance wd

We use the string distance provided by the PostgreSQL Trigramm extension (pg_trgm
https://www.postgresql.org/docs/current/static/pgtrgm.html), which compares two strings of
characters by comparing how many successive sets of three characters are shared. For instance
“12 rue du Temple” will be farther away from “12 rue de la Paix” than from “10 r. du Temple”.

Metric: Temporal Distance td

Both the address query and the geohistorical object are described by fuzzy dates. In order
to compare such temporal information, we propose a simple fuzzy date distance that casts fuzzy
dates into polygons. The x axis is the time, and the y axis is the object’s probability of existence.
Then, the distance between two dates A and B is computed as shortest_line_length (A,B) + Area (A) −
Area (A ∩ B). Note that this distance is asymmetric.

Metric: Building Number Distance bd

To get building number distance, a function first extracts the building number both from the input
address query (bi) and from the geohistorical object (bd). If bi and bd have the same parity, the distance
is | bd − bi |. If parity is different, the distance is || bd − bi | +10 |. In France, building numbers
generally have the same parity on each side of the street (e.g., Left : 1, 3, 5, . . . ; Right: 2, 4, 6, . . . ).
We analysed current building numbers in Paris and determined that on average, given a building
number bi, the closest building number with a different parity has a 10 number difference.

Metric: Positional Accuracy sp

Another way to rank geohistorical objects is to use their positional accuracy. The positional
accuracy of a geohistorical object is either the positional accuracy computed for this object when it is
available, or the default positional accuracy of its geohistorical source.

Metric: Level of Detail Distance sd

Providing localisation information at different levels of detail, depending on user requirements, is
an important quality issue for our geocoder. For instance, if the level of detail of the user’s query data
is the city, there is no need to perform a more precise geocoding. The user can therefore specify a target
scale range (Sl , Sh). Then, given a geohistorical object whose geometry is buffered (geomb) with its
spatial precision, the scale distance is defined by least(|

√
area(geomb)− Sl |, |

√
area(geomb)− Sh |).

The formula
√

area(geomb) gives an idea of the geohistorical object’s spatial scale.

Metric: Geospatial Distance gd

The user may provide an approximate position for the area they are interested in. For instance,
in France, cities “Vitry-le-Francois” (East) and “Vitry-sur-Seine” (near Paris) both exist, but are spatially
very far apart. A user expecting results in the Paris area may provide a geometry (e.g., a point)
near Paris. The classic geodesic distance is then computed between the provided geometry and the
candidate geohistorical objects.

Example of Matching Function

The different metrics can be weighted and combined depending on user needs. Equation (1)
provides an example favouring good string similarity, but not at the expense of a large
temporal distance:

100 ∗ wd + 0.1 ∗ td + 10 ∗ nd + 0.1 ∗ sp + 0.01 ∗ sd + 0.001 ∗ gd. (1)

https://www.postgresql.org/docs/current/static/pgtrgm.html
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3.4. Collaborative Editing of Geohistorical Objects

The geocoding approach we presented in the previous section works inside a PostgreSQL database.
Given an input address and fuzzy date, plus a set of parameters, it returns the geohistorical objects
that best match the input. However, the geocoding results are only as good as the gazetteers used
(at best). The geohistorical objects within the gazetteers may be spatially imprecise, mistakenly named,
or simply missing. Given that the volume of geohistorical objects is large (for Paris, approximately
50,000 building numbers per historical map), we created a collaborative platform which facilitates
geocoding, result visualisation, and geospatial object editing when necessary. To this end, we created a
dedicated web application in order for collaborative edits to be made without having to install specific
tools. The user can then edit both the position of the result and the fuzzy date of the result. In fact, the
user does not edit the sources, but actually edits a duplicate. These duplicates are stored and used by
the geocoder as another gazetteer. We do not try to merge/resolve several edits of the same address,
as is common for historical gazetteers, because there is no unique definition of an address’ proper
position. By design, the quantity of data is then ever-increasing, yet the very large number of addresses
(several hundreds of thousands) and the user profile (expert or historians) limit this potential problem.

3.4.1. About Collaborative Editing

Given the complexity of calibrating automatic extraction tools on specific maps and their relative
reliability, the collaborative digitisation of vector objects from maps is a safe alternative. For instance,
we used such an approach in order to extract the main feature of the Cassini maps (18th century
France) [32]. Furthermore, the results of the collaborative extraction of features can then be used to test,
calibrate, or train automatic extraction algorithms. However, the collaborative editing paradigm used
is somewhat different from the classic one, a-la Open Street Map, which has also been used in several
historical mapping projects. In the classic paradigm, users are asked to input and correct well-defined
historical data, such as building footprints or toponyms, based on a map where this information
appears unambiguously. The end goal is then to create authoritative, complete, and coherent gazetteers.
This requires a large amount of work on the users’ inputs, using strategies such as vote and anonymous
check to ensure the gazetteer quality.

In contrast, our approach introduces a much simpler collaborative editing process, whereby
the users are not tasked with creating an authoritative gazetteer, but rather create their own version
tailored after their specific needs. In our model, users never edit original data, but instead create their
own geohistorical objects.

For instance, a user might geocode the address “12 rue du Temple, Paris; 1856”. The geocoded
result (e.g., a point) might be drawn from an available gazetteer created from a historical map.
Such a point position may be not accurate enough for the user, and they may decide to correct it.
While correcting the point, the user is not editing the gazetteer, but just adding a new geohistorical
object into a new gazetteer which represents this user’s edits. Such edits can subsequently be modified
by the same user, and may appear in other users’ geocoding results. However, no step is performed
to aggregate user edits. The reason is that unlike a building footprint, an address position is not
something that is well-defined. Different historians may use different definitions of what an address
position should be. One might require that addresses be centred in the building, others that they be at
the front of the building, etc.

The necessity not to aggregate user edits is even more obvious when considering the address
date. Several historians may use different sources to date an address, leading to the creation of several
geohistorical objects representing this address in different time periods.

A potential issue would be data build-up, as each edit may introduce new data. The impact of this
issue is greatly reduced for several reasons. The first is that the goal is not to create a reference gazetteer.
As such, merging is not required per se. The second is relevant to scale. Just for the city of Paris,
there are hundreds of thousands of building numbers, with very frequent changes. Thus, the chances
that a single address gets edited many times by many different users is low. The third reason is more
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theoretical. The increasing amount of data is actually a useful feature. Several edits by several users
will result in several edited geohistorical objects being added to a specific gazetteer (the user-edit
gazetteer). In turn, these results will be used by the geocoder, which will enrich future user experience.
Indeed, a future user geocoding the same address would be able to see all the edited versions, and
thus choose the more appropriate one according to their needs.

3.4.2. Collaborative Editing Architecture

Figure 7 outlines the architecture used for collaborative editing.

Figure 7. Conceptual architecture for interactive display and edit of geocoding results. The stack
contains only standard components. The use of WFS-T and REST standard protocols makes the change
or customisation of some components easier.

Architecture

The heart of the architecture is a PostgreSQL database server, which contains the geohistorical
object gazetteers to be used for geocoding as well as the geocoding function. A web server can geocode
addresses and return results via a REST API. However, the web server has another option wherein the
results are not returned, but instead written in a result table along with a random unique identifier
(RUID). The RUID is then the key that allows the display and editing of the results. To this end,
a geoserver can access (read and edit) the result table via the WFS-T protocol. A web application based
on Leaflet then acts as a user interface to display and edit the results via the geoserver.

Persistence of Geocoding Results and Edits

The architecture that allows persistence of the results is illustrated in Figure 8. When using the
RUID mechanism, each geocoding result (i.e., the found geohistorical object from the gazetteers) is
associated to this RUID.

The user therefore has permanent access to its results, regardless of the computer session or
browser cache issues.

For edits, a specific mechanism is used. The user does not directly edit the result table, as they
could potentially edit other peoples’ results. Instead, the user edits a dedicated result_view which acts
like a bouncer. It allows one to edit only if the edit is occurring on a row that has the user’s RUID.
Of course, user edits of geospatial objects do not affect the source data, for tracking purposes.

Instead, a new user edit automatically creates an edited copy of the geohistorical object
in a dedicated table “user_edit_added_to_geocoding” which is a gazetteer and is used by the
geocoding process. The edited geohistorical objects are inserted in this table. The objects retain
their “historical_source”, but their “numerical_origin_process” is changed to properly document the
fact that they are the result of collaborative editing.
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/interactive_session

- Create unique session_id
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result
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write

Figure 8. Collaborative display and edit is achieved through a mix of standards (REST , WFS-T) and
custom solutions (triggers) that enable the sharing of a basic public/private key.

3.4.3. Collaborative Editing User Interface

We consider that building an efficient user interface is very important for historical geocoding.
In particular, many end users are specialised in history rather than computer science, and thus
an easy access to geocoding is essential. All our interfaces are web-based for maximum compatibility.
We propose three interfaces where results are shared (see Figure 9).

[{"rank":"1",
"input_address_query":" 12 rue du temple,Paris;1860",
"historical_name":"12 rue du temple",
"normalised_name":"12 rue du temple ,Paris",
"fuzzy_date":"[1887-01-01,1889-01-01)",
"geom":"POINT(652544.1   6862204.4)",
"historical_source":"poubelle_municipal_paris" ,
"numerical_origin_process":"poubelle_paris_number",
"aggregated_distance":"3.14999",
"spatial_precision":"3.5",
"confidence_in_result":"1",
"semantic_distance":"0",
"temporal_distance":"28",
"number_distance":"0",
"scale_distance":"0",
"spatial_distance":"0"}]

REST API UI Leaflet UI CSV UI

Figure 9. Various Web user interfaces (UIs) that can be used to access the proposed historical
geocoding tool. CSV: comma-separated values.

Interface for a REST API

The simplest interface we propose is a form that helps to build the necessary REST API
parameters. Indeed, a REST API works via URL containing precise parameters, and it can be tedious
to manipulate. For instance: http://api.geohistoricaldata.org/geocoding?address=12ruedutemple&
date=1850&precision=true&maxresults=1. This interface is designed to be used in an automated way,
for batch geocoding.

Interface for Batch Geocoding via CSV Files

In our experience, historians often work with spreadsheet files, where each line will be a potential
historical object, along with an address and a date. To facilitate the geocoding of these addresses,
we propose a user interface which reads comma-separated values (CSV) files (a standard spreadsheet
format) and geocodes the addresses and dates they contain. This interface is built around the PapaParse

http://api.geohistoricaldata.org/geocoding?address=12 rue du temple&date=1850&precision=true&maxresults=1
http://api.geohistoricaldata.org/geocoding?address=12 rue du temple&date=1850&precision=true&maxresults=1
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http://papaparse.com Javascript framework. The geocoding results can then either be downloaded as
a CSV file, or displayed and edited in a Web application.

Interface for Displaying and Editing Results

The most complex interface we propose is based on the Leaflet http://leafletjs.com Javascript
framework. There, the user can geocode an address, or use an address which has already been
geocoded via the RUID mechanism (see Section 3.4.2.1), be it from previous sessions or from geocoded
CSV files. The geocoding results are displayed on top of a relevant historical map, and can be edited.
Users can edit result geometry as well as result names (historical and normalised). We stress that
although such edits are stored in the database and used by further geocoding queries, they do not,
by design, affect source data.

4. Results

Several experiments were performed to validate our approach. First, the geohistorical model
was used to integrate objects extracted from historical maps from the 19th century for the city of
Paris, and the current OpenStreetMap road axis and building numbers for Paris city surroundings.
Road axis, building numbers, and neighbourhoods were successfully integrated to the geocoder
sources. Multiscale geocoding of dozens of thousands of historical addresses was then performed.
Addresses were extracted manually by historians and extracted automatically through an automatic
process. For one of the datasets, a historian manually corrected the automated geocoding results, so as
to evaluate the quality of our method. Lastly, the collaborative editing of geohistorical objects was
evaluated in two scenarios: analysis (several results for one address), and edit (efficiency of check/edit
top results for several addresses).

4.1. Geohistorical Objects Sources

Three main historical sources of geohistorical objects were used to build gazetteers and perform
geocoding (see Figure 10). The first two were historical maps of Paris from the 19th century. These maps
were georeferenced, then street axes (and possibly building numbers) were manually extracted. The
third historical sources were road axes and building numbers for Paris surroundings extracted from
current Open Street Map data.

Figure 10. An overview of some of the geohistorical objects used for geocoding. These were mostly
extracted manually, often collaboratively, using various tools.

4.1.1. Historical Maps Used

Two major French atlases of Paris from the 19th century were integrated as geohistorical sources.
The first one was the “Atlas municipal de la Ville, des faubourgs et des monuments de Paris”
(Municipal atlas of the city, suburbs and monuments of Paris) created at the scale of 1:2000 between
1827 and 1836 by Theodore Simon Jacoubet, an architect who worked for the municipal administration

http://papaparse.com
http://leafletjs.com
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of Paris. The second atlas is the 1888 edition of the “Atlas municipal des vingts arrondissements de
la ville de Paris” (Municipal atlas of the 20 districts of Paris). For legibility reasons, we refer to the
first atlas as the “Jacoubet atlas” and to the second as the “Alphand atlas” (named after Jean-Charles
Alphand who was the director of the department of public works of Paris at that time). The Jacoubet
atlas depicts a city standing between the housing development following the sale of properties which
had been confiscated during the French Revolution and the major changes in the urban structure
arising from the emergence of the fist train stations in 1837–1840 and the so-called Haussmannian
transformations.

The Alphand atlas is a portrayal of Paris on a scale of 1:5000, erected after most of the
Haussmannian transformations (major rework of Paris urbanism in the 19th century) had been made
and after the city was merged with 11 of its neighbouring municipalities in 1860. Both atlases contain
large-scale views of Paris, separated in several sheets (54 and 16 for Jacoubet and Alphand, respectively)
and portray the urban street network with the name of each street, as well as public and religious
buildings (see Figure 11). In addition, the house numbers are specified for most of the streets in the
city, although the Alphand atlas pictures only the numbers at the start and end of each street section.
Both atlases are also built upon a triangulation canvas which covers the entire city, enabling us to
expect a high positional accuracy of the geographical features they contain.

Figure 11. Samples of the georeferenced Alphand Atlas (2nd row) and Jacoubet Atlas (1st row) at
different scales: (a) district and (b) urban islet. Column (c) shows how buildings are portrayed in
the maps.

The two atlases are georeferenced using the grids drawn on the maps, which are aligned on
the Paris meridian, as a pseudo-geodetic object to identify feature pairs. The dimensions of the grid
cells also appear on the maps, allowing us to reconstruct the grids in a geographic reference system.
The Lambert I conformal conic projection was chosen to georeference the maps. It uses the Paris
meridian as the prime meridian and relies on the NTF (Nouvelle Triangulation Française) geodetic
datum. The main advantage of this projection is that it is locally close to the planar triangulation of
Paris used in the atlases. The projection of the maps can thus reasonably be approximated by the
Lambert I projection, making the reconstruction of the grids in the target coordinate reference system
straightforward. In addition, since both maps have a high scale and are reliable because they are
official maps with high positional accuracy, we used rubbersheeting as the geometric transform model.
The georeferencing process applied for each atlas was the following:
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• reconstruct the meridian-aligned grid with Lambert I coordinates;
• in each sheet, mask the non-cartographic parts out (cartouche, borders, etc.);
• for each sheet, set pairs of ground control points at each intersection between the vertical and

horizontal lines of the grids in the map and in the reconstructed grid;
• transform each sheet with a rubbersheeting transform based on the ground control points

previously identified on the grids.

Based on these atlases, vector road axis were manually drawn and the road names inputted
for the Alphand map. The building numbers at the beginning and end of each street segment were
also inputted. For Jacoubet, the building numbers from a previous map (Project Alpage, Vasserot
map, [33]) were adapted to fit the Alphand map. Multiple series of successive checking and editing
were performed using ad hoc visualisation and tools.

For Alphand, building numbers were then generated based on available information (for each
street segment, for each side, beginning and ending number) by linear interpolation, and an offset.
The size of the offset was estimated by using current Paris road width when the road had not changed
too much. Overall, the process is quite similar to that in [34].

4.1.2. Other Geohistorical Sources

The presented system accepts any data that conforms to the previously introduced geohistorical
object model. As such, we also introduced data from OpenStreetMap, dated from 2016.
As a comparison, Carrion et al. [35] use uniquely current data to geocode medieval places. We used
the version of the data which was transformed to be used by the Nominatim geocoder. Custom scripts
extracted road axis and building numbers, which were then converted into a geohistorical object table.
Spatial precision was estimated after a short analysis of the positioning of a few Paris addresses. The
use of Open Street Map addresses highlights several of the possibilities which the proposed method
offers. First, our geocoder can work seamlessly with historical and modern data. The user can choose
which type of data to use by placing more or less importance on temporal distance. Furthermore,
the OSM addresses may act as a safety net for addresses that do not appear in any other historical
gazetteer. Last, using modern data may be of interest for further address evolution analysis. We stress
that for the geocoding system, the OSM data is just another geohistorical data set that happens to be
dated from around 2016. Other modern address datasets could similarly be added.

4.2. Geocoding of Historical Datasets

One of the end goals of our geocoding tool is to be useful for historians. Therefore, we contacted
several historians working on 19th century Paris. They had been collecting historical textual addresses
associated to a person or business for their own research, by manually browsing hundreds of archive
documents. Overall, the collected textual addresses were of good quality (being hand collected),
although they sometimes contained errors and abbreviations. We imported their data into the
geocoding server and geocoded the provided addresses (i.e., associated matching geohistorical objects
from the gazetteers). Figure 12 shows an extract of the thousands of geocoded addresses, while Table 1
gives an overview of the number of successes and timing.

4.2.1. Manually Collected Datasets

South Americans: Collection of South American immigrants living in Paris in 1926, manually input
from census, collected by Elena Monges (EHESS).
Textile: Collection of professionals of the textile industry in Paris, manually input from the “Almanachs
du Commerce de Paris”, from 1793 to 1845, collected by Carole Aubé (EHESS).
Artists accommodations: Textual addresses of artist studios and artists accommodations between 1791
and 1831, collected by Isabelle Hostein (EHESS) to study their impact on Paris’ development.
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Health administrators: Addresses of public health and hygiene administrators in Paris between 1807
and 1919 ([36]), collected by Maurizio Gribaudi and Jacques Magaud (INED-EHESS).

Figure 12. Illustrations of all the historical textual address data sets that were geocoded. Result size is
proportional to spatial precision.

Table 1. For all textual address historical data sets, how many addresses were geocoded and how long
it took.

Dataset Name Input Addresses Response Rate (Rough) Seconds/1000 Addresses

South Americans 13,991 13,743 (250) 138
Textile 5777 5688 (16) 135

Textile 2 3070 3053 (2) 110
Artists accommodations 13,907 10,215 (2955) 244
Health administrators 1887 1698 (171) 316

Belle epoque (0.3) 6467 3880 (337) 280
Belle epoque (0.5) 6467 6000 351

4.2.2. Belle Epoque

The Belle Epoque dataset is different from the previous one because it was automatically extracted
from directories of Paris financial societies between 1871 and 1910. Directories are books referencing
company addresses (as well as names and other information). The process of automatic extraction is in
itself complex (Project Belle Epoque [37]), and is out of the scope of this article. We can only provide a
brief description below.

First, each page of the directories of Paris for specific years was photographed. Pictures were
then straightened, and information was extracted via an OCR software which was configured for the
directory’s specific layout. Further rule-based processing parsed the text into address fields. As a
result of this automatic process, the quality of addresses was often significantly lower than manually
edited addresses (characters may be wrong, other textual fields may have bled into the address field,
etc.). Therefore, we tested two settings by allowing a greater maximum string distance from 0.3 to 0.5
(over 1).

4.3. Manual Editing of the Geocoding Results for Evaluation

For one of the data sets (Textile 1 and 2), the historian manually corrected the positions of the
geocoding results (i.e., the positions the geocoding associated to input textual addresses). The corrected
positions now form a ground truth dataset (associating textual addresses and corrected positions).
We geocoded this ground-truth dataset again and analysed the results to try and understand the
accuracy of the geocoder.

The segment between an address point resulting from automated geocoding and an address point
after manual editing (ground truth) was plotted. Results are presented in Table 2 and in Figure 13.
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We classified the results based on the length of this segment (i.e., the error in metres generated by the
geocoding method).

• When the edit moved the address point by less than 15 m, we considered that the edit was mostly
about small moves (e.g., centering the point on the building limit).

• Between 15 and 55 m, the correct street is found, but the building numbers are slightly misplaced
(by a few numbers).

• Between 55 and 155 m, the street is correct in most cases, but the building numbers are far from
their correct position.

• Above 155 m, streets are mostly wrong.

Figure 13. A textual address data set was geocoded, then manually corrected by a historian. We plotted
the segment between the geocoded addresses and the corrected addresses, and analysed the results
based on the magnitude of the spatial error.

Table 2. Evaluating the error of geocoded results, via the geographic distance (dist.) of the edit
(in metres), the percentage of the total 8823 addresses, the average aggregated distance score (Avg(Agg)),
the average string distance (Avg(Sem)), or should the table column heading be changed? , the average
temporal distance (Avg(Tempo)), and the subjective most common reason for edits that we encountered
while browsing the data.

Dist. (m) % Avg(Agg) Avg(Sem) Avg(Tempo) Main Edit Cause (Subjective)

0–15 81% 9.4 0.07 19.5 moving point on building limit
15–55 11% 12.4 0.09 27.2 small numbering editing (same street)
55–155 2% 23.7 0.14 41.2 large numbering editing (same street)

155–7200 6% 26.9 0.18 49.1 editing street

We stress that given Paris buildings’ average size and the lack of a precise definition of an address
(is it the position of the door, the center of the building, etc.?), results up to 55 m (>92% of the dataset)
could be considered as very close to ground truth.

4.4. Collaborative Editing

We propose several user interfaces for easy geocoding, and collaborative editing of the geocoding
results. We informally tested the interfaces, and found that they facilitated geocoding, especially for the
batch mode. We also tested the collaborative editing in two use cases. In the first use case, a specialised
user geocodes a single address and displays the top three corresponding results. The user is an expert
and their goal is both to geocode an address and assess the reliability of the result at the same time.
In the second use case, a user batch geocodes several addresses (30), looking at the best result for each
address. The user then displays the results on the map and checks/edits the addresses. Please keep in
mind that edits never change the gazetteers, but rather create new geohistorical objects.
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4.4.1. Use Case 1: Top Three Results for One Address

Using the Web application, we geocoded the address “10 rue de Vaugirard, Paris” for the date
1840, and asked for the top three results, as shown in part one of illustration Figure 14. A matching
building number geohistorical object exists in the three gazetteers extracted from the three maps.
Based on these results, we can safely assume that this building number has not changed during the
last two centuries.

Figure 14. Two use cases. In the first use case, an expert geocodes an address and analyses the top three
results to assess the reliability of the result. In the second use case, a user batch geocodes 30 addresses
(one result per address) in Paris and checks/edits the results.

4.4.2. Use Case 2: Batch Geocoding of 30 Addresses and Check/Edit

In this use case, a regular user checks/corrects 30 random addresses from the Jacoubet map using
the Web application. The task is performed quickly; checking and editing each address is a matter
of seconds. The main time-consuming task is the loading of the background historical map, due to
unfortunate hardware limitations. The edit speed seems to be on par with a desktop-based editing
solution (using QGIS).

5. Discussion

5.1. Genericity

Reaching a more generic geocoding service is important if we want to make it usable in other
contexts and to profit from the various sources of knowledge on past spaces.

5.1.1. Geohistorical Sources and Data

Using External Resources from the Web of Data as New Sources

In addition to features representing address points and streets, georeferenced features of other
types could benefit the geocoding service. As a matter of fact, people often refer to places of interest,
such as famous buildings, monuments like statues or fountains, or even identified neighbourhoods
to describe their position in space. We are thus considering adding data about places of interest to
improve our geocoding service. Like the data used to build the geocoder, this data could be gathered
from ancient maps. It may also originate from existing gazetteers and knowledge bases published
on the Web of data, such as DBpedia (http://wiki.dbpedia.org/), Yago (http://www.mpi-inf.mpg.
de/departments/databases-and-information-systems/research/yago-naga/yago/#c10444), the Getty
Thesaurus of Geographical Names (http://www.getty.edu/research/tools/vocabularies/tgn/) or the
gazetteer of place names published by the French National Library http://data.bnf.fr/).

http://wiki.dbpedia.org/
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/#c10444
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/#c10444
http://www.getty.edu/research/tools/vocabularies/tgn/
http://data.bnf.fr/)
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Widening the Spectrum of Cartographic Sources

We drew from Jacoubet and Alphand maps, yet there are several other maps to be used,
dating from the end of the 19th century to the beginning of the 20th century. From the beginning of the
20th century, the Paris city administration produced one map per year, and it can be generally said that
major cities in France were often mapped starting in 1900. A natural progression of our work would
be to add maps of other cities and countries.

Before the beginning of the 19th century, the address system in Paris was very different.
In the mid-18th century, the address system consisted of each building having a specific name
(no number, no notion of street name) in its neighbourhood. Our geocoding process was also designed
to integrate this type of address system, but it has not yet been tested. More generally, this type of
indirect localisation very closely resembles the field of the Web of knowledge.

Diversity in Geohistorical Object Natures

In this article, several types of geohistorical objects were used for geocoding: building numbers,
streets axes , and neighbourhoods. Other datasets were investigated as well, such as the city limits
collaboratively extracted from the Cassini maps by the Geo Historical Data project [32]. In fact,
a compiled version of city limits (GeoPeuple project [38]) from 1793 to 2010, created by EHESS, was
also tested. However, building cadastres could also be integrated so as to have a building layout
associated to an address rather than a point, which would solve the old problem of address points.
Indeed, there is currently no consensus as to where a building number address point should be
positioned: on the entry door, on the letter box, etc. In some cases, there is more precise data available,
providing the layout of apartments in buildings, which is very exciting.

5.1.2. Genericity in Usages

Named Entity Linking

As previously mentioned in Section 5.1, people often refer to place names to describe their position
in space. The task of retrieving place names in a gazetteer or in a knowledge base, also known as
(spatial) named entity linking or toponym resolution, is a widely used way of disambiguating mentions
of spatial named entities extracted from texts by means of natural language processing approaches
for information retrieval, information extraction, or document indexing purposes [39]. As we plan
to upgrade our geohistorical database with data about places of interest, we must also adapt our
geocoding service in order to make it retrieve reference data stored in the database and corresponding
to place names mentions proposed by the users. Spatial named entity linking implies solving issues
related to place names’ inherent ambiguity [40], such as the fact that a place may have several names
or the fact that several places may be designated by the same name. For each spatial named entity
mention to be disambiguated, unsupervised state-of-the-art approaches first select candidates from
the gazetteer based on character string similarity. Then, they introduce additional criteria in order to
decide which candidate is the best reference for a given place name, usually taken from the textual
context of the mention [41,42]. In cases where textual context is very limited (e.g., in tweets or location
descriptions extracted from directories), this step of candidate ranking is even more challenging [43].

Analysis tool of the Cartographic Sources Content

It is interesting to look at which historical sources were the most used for geocoding, although
the historical sources were chosen based on a complex ranking function. If we take the example of the
over 10,000 geocoded addresses from the “Artists accommodations” dataset, we could expect all of the
results to be drawn from the Jacoubet map, as the dataset is between 1793 and 1836, and the Jacoubet
map is also in this range. However, analysing these results shows that if Jacoubet was used for 80% of
the addresses, Alphand was used for 15%, although the map was issued 30 years after Jacoubet. More
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surprisingly, the OpenStreetMap current data is still used for 5% of the addresses, although it is about
two centuries older than the dataset.

Similar analyses of other datasets show that all maps are always used, with of course a focus on
the temporally closest map. Interestingly, these results are in agreement with similar work presented
in [44], Section 4, where a prototype of multi-temporal geocoding is proposed. The approach shows
that for different datasets, all reference maps (Jacoubet, Alphand, and BDAdresse (2010)) were used,
with proportions depending on the parameters at play and the weight of each criteria. We think that
these results are explained by the fact that historical maps miss some information, contain errors,
and do not have the same geographical coverage.

5.2. Quality of the Geocoding

5.2.1. Increasing the Quality of the Gazetteers

Collaborative Enrichment

We propose several easy ways to use the geocoding capacities through Web-based user interfaces.
As we put prototypes forward, the experiments are merely proofs of concept for the moment. For a real
validation, a complete user study would be required, which is outside the scope of this article.

Cross-Referencing Historical Maps

One way to improve quality of available historical data is to use advanced cross-referencing.
Indeed, the process of linking and merging similar data from heterogeneous datasets, which is
called data conflation, enables the transfer of information from one feature to the another, and may
thus bring additional knowledge about data imperfections without using ground truth data, which
are non-existent for geohistorical data. For instance, Costes et aL. [44,45] proposed an aggregated
spatio-temporal graph to merge and confront historical road networks. This process can reduce data
heterogeneity and allow the detection of aberrations such as toponymic or numbering errors, as well
as doubtful temporal trajectories of objects such as short disappearances, thereby leading to better
data quality. Advanced cross-referencing also allows for the construction of a genealogy of addresses
by considering temporally linked addresses, which can deal with toponymic evolution or changes
in addressing systems or numbering of buildings, thus paving the way for better spatio-temporal
geocoding results.

5.2.2. Communicating the Reliability of a Geocoding

Geocoding Qualification and Quality Measures

Modern geocoders are evaluated by how often they find a localisation, and by the precision
of their returned localisation (e.g., [46]). The first criterion illustrates the geocoding algorithm’s
ability to retrieve an address as well as the gazetteer’s exhaustiveness. The second criterion refers to
the positional accuracy of the gazetteer. Using such quality evaluation measures which encompass
both the algorithm results and the gazetteer completeness makes the evaluation of their respective
quality impossible. In the field of named entity linking, however, distinct quality evaluation measures
have been proposed for the entity retrieval algorithm, such as the measures introduced by [42] and
completed by [47], and for the reference knowledge base (see [48] for knowledge bases general
quality measures and [49] to evaluate the fitness of some knowledge bases for a given named entity
linking task).

Geovisualisation

The prototype graphic user interface we put forward could be improved in several ways.
The goal would be to efficiently provide the user with information about the quality of geocoding,
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and the context of results. First, the size of the point displayed to represent the result could be
proportional to the estimated spatial precision. This would help to visually assess relevant information.
Second, the result could be colour-coded to represent the temporal proximity with the input date.
In a similar way, when multiple results are proposed, a time slider would be most useful to graphically
distinguish result candidates from one another. Third, the background historical map displayed in
the prototype is currently set. Yet, the most appropriate background map could be automatically
displayed based on the input address dates provided by the user. Last, the current prototype becomes
easily cluttered when displaying a large number of labels. Several strategies could be used, such as
a better clustering of spatially close results, shorter labels, or better label placement.

5.2.3. Integrating User Correction into Historical Sources

In collaborative editing, edits come from untrusted sources. Validating edits and solving conflicts
is a classic problem. In our prototypes, every user edit is potentially used by the geocoder (they are
added to a dedicated gazetteer). We could use a voting scheme where edits are only taken into
account when a sufficient number of users have made the same ones. However, we stress that due to
the amount of data to edit (several hundred thousand building numbers), we prefer to rely on user
benevolence, considering that a user who decides to spend the time to edit century-old historical data
is committed to accurate editing.

5.2.4. Scalability

The main design choice of our geocoding architecture is to use a flat model for the address
(an address is any set of characters), as opposed to current geocoders which are highly hierarchical
(an address refers to a street, which refers to a neighbourhood, etc.). This modelling choice allows
for the necessary freedom for incomplete historical data, but also comes with a trade-off regarding
scaling capabilities. Indeed, for strongly hierarchical data, it is possible to have separate databases
for each city, for instance, thus preventing one database from growing too much and ensuring a nice
scaling capability.

However, this is not the case with our architecture. By using database indexes, we can theoretically
guarantee a fast geocoding time for up to several million geohistorical objects used as sources.
The main bottleneck in this case is not the temporal aspect (it relies on PostGIS geometry, which enables
multiple theoretical solutions for scaling), but the textual aspects (i.e., the address string itself). To scale
over several million addresses, specific architectures may be used to deal with the text search,
for instance a distributed database (database sharing), in a way that resembles the current software
Elastic Search. However, we stress that given the current available amount of historical sources,
such a scaling problem should not be an issue for long.

6. Conclusions

This article tackles the historical geocoding problem. As shown throughout the article,
the historical aspects bring major complications to the geocoding problem. The main difficulties come
from the nature of historical data (uncertainty, fuzzy date, precision, sparseness), which prevents the
use of current-address geocoding methods based on strong hierarchical modelling. Instead, we propose
a historical geocoding system based on a sound geohistorical object model. This model is designed
to cover the minimal features, and thanks to its genericity, modularity, and open source nature,
can easily be extended to fit other historical sources. Geohistorical objects from several historical
sources have been integrated into the database and coherently georeferenced and edited to form
gazetteers. Geocoding an address at a given time is a matter of finding the best-matching geohistorical
object in the gazetteers, if any. Our simple, coherent, historical geocoding system has been tested on
several real-life datasets collected by historians, and can be easily used for other places/times/types of
localisations. Diverse historical sources covering two centuries for the city of Paris were integrated
into the geocoder. The proposed geocoder is able to localise a large percentage of addresses at a fast
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pace (about 200 ms per address). Finally, the article describes a prototype web-based user interface
which demonstrates the interest of collaborative editing of address localisation, and helps historians
and other digital humanities researchers use geocoding services.

Supplementary Materials: The code and additional documentation, its associated code repository and the code
for the geocoder itself it available here: http://www.mdpi.com/2220-9964/7/7/262/s1.
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