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{Radu.Iosif,Xiao.Xu}@univ-grenoble-alpes.fr

Abstract. Alternating automata have been widely used to model and verify sys-
tems that handle data from finite domains, such as communication protocols or
hardware. The main advantage of the alternating model of computation is that
complementation is possible in linear time, thus allowing to concisely encode
trace inclusion problems that occur often in verification. In this paper we consider
alternating automata over infinite alphabets, whose transition rules are formulae
in a combined theory of Booleans and some infinite data domain, that relate past
and current values of the data variables. The data theory is not fixed, but rather it
is a parameter of the class. We show that union, intersection and complementa-
tion are possible in linear time in this model and, though the emptiness problem is
undecidable, we provide two efficient semi-algorithms, inspired by two state-of-
the-art abstraction refinement model checking methods: lazy predicate abstrac-
tion [8] and the Impact semi-algorithm [16]. We have implemented both methods
and report the results of an experimental comparison.

1 Introduction

The language inclusion problem is recognized as being central to verification of hard-
ware, communication protocols and software systems. A property is a specification of
the correct executions of a system, given as a set P of executions, and the verification
problem asks if the set S of executions of the system under consideration is contained
within P. This problem is at the core of widespread verification techniques, such as
automata-theoretic model checking [22], where systems are specified as finite-state au-
tomata and properties defined using Linear Temporal Logic [20]. However the bottle-
neck of this and other related verification techniques is the intractability of language
inclusion (PSPACE-complete for finite-state automata over finite alphabets).

Alternation [3] was introduced as a generalization of nondeterminism, introducing
universal, in addition to existential transitions. For automata over finite alphabets, the
language inclusion problem can be encoded as the emptiness problem of an alternating
automaton of linear size. Moreover, efficient exploration techniques based on antichains
are shown to perform well for alternating automata over finite alphabets [5].

Using finite alphabets for the specification of properties and models is however very
restrictive, when dealing with real-life computer systems, mostly because of the follow-
ing reasons. On one hand, programs handle data from very large domains, that can be
assumed to be infinite (64-bit integers, floating point numbers, strings of characters,
etc.) and their correctness must be specified in terms of the data values. On the other



hand, systems must respond to strict deadlines, which requires temporal specifications
as timed languages [1].

Although being convenient specification tools, automata over infinite alphabets lack
the decidability properties ensured by finite alphabets. In general, when considering
infinite data as part of the input alphabet, language inclusion is undecidable and, even
complementation becomes impossible, for instance, for timed automata [1] or finite-
memory register automata [12]. One can recover theoretical decidability, by restricting
the number of variables (clocks) in timed automata to one [19], or forbidding relations
between current and past/future values, as with symbolic automata [23]. In such cases,
also the emptiness problem for the alternating versions becomes decidable [13, 4].

In this paper, we present a new model of alternating automata over infinite alphabets
consisting of pairs (a, ν) where a is an input event from a finite set and ν is a valuation
of a finite set x of variables that range over an infinite domain. We assume that, at all
times, the successive values taken by the variables in x are an observable part of the
language, in other words, there are no hidden variables in our model. The transition
rules are specified by a set of formulae, in a combined first-order theory of Boolean
control states and data, that relate past with present values of the variables. We do not
fix the data theory a priori, but rather consider it to be a parameter of the class.

A run over an input word (a1, ν1) . . . (an, νn) is a sequence φ0(x0)⇒ φ1(x0,x1)⇒
. . .⇒ φn(x0, . . . ,xn) of rewritings of the initial formula by substituting Boolean states
with time-stamped transition rules. The word is accepted if the final formula φn(x0, . . . ,xn)
holds, when all time-stamped variables x1, . . . ,xn are substituted by their values in
ν1, . . . , νn, all non-final states replaced by false and all final states by true.

The Boolean operations of union, intersection and complement can be implemented
in linear time in this model, thus matching the complexity of performing these opera-
tions in the finite-alphabet case. The price to be paid is that emptiness becomes un-
decidable, for which reason we provide two efficient semi-algorithms for emptiness,
based on lazy predicate abstraction [8] and the Impact method [16]. These algorithms
are proven to terminate and return a word from the language of the automaton, if one
exists, but termination is not guaranteed when the language is empty.

We have implemented the Boolean operations and emptiness checking semi-algorithms
and carried out experiments with examples taken from array logics [2], timed automata
[9], communication protocols [24] and hardware verification [21].

Related Work Data languages and automata have been defined previously, in a clas-
sical nondeterministic setting. For instance, Kaminski and Francez [12] consider lan-
guages, over an infinite alphabet of data, recognized by automata with a finite number
of registers, that store the input data and compare it using equality. Just as the timed
languages recognized by timed automata [1], these languages, called quasi-regular, are
not closed under complement, but their emptiness is decidable. The impossibility of
complementation here is caused by the use of hidden variables, which we do not allow.
Emptiness is however undecidable in our case, mainly because counting (incrementing
and comparing to a constant) data values is allowed, in many data theories.

Another related model is that of predicate automata [6], which recognize languages
over integer data by labeling the words with conjunctions of uninterpreted predicates.
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We intend to explore further the connection with our model of alternating data automata,
in order to apply our method to the verification of parallel programs.

The model presented in this paper stems from the language inclusion problem con-
sidered in [11]. There we provide a semi-algorithm for inclusion of data languages,
based on an exponential determinization procedure and an abstraction refinement loop
using lazy predicate abstraction [8]. In this work we consider the full model of alter-
nation and rely entirely on the ability of SMT solvers to produce interpolants in the
combined theory of Booleans and data. Since determinisation is not needed and com-
plementation is possible in linear time, the bulk of the work is carried out by the solver.

The emptiness check for alternating data automata adapts similar semi-algorithms
for nondeterministic infinite-state programs to the alternating model of computation. In
particular, we considered the state-of-the-art Impact procedure [16] that is shown to out-
perform lazy predicate abstraction [8] in the nondeterministic case, and generalized it to
cope with alternation. More recent approaches for interpolant-based abstraction refine-
ment target Horn systems [17, 10], used to encode recursive and concurrent programs
[7]. However, the emptiness of alternating word automata cannot be directly encoded
using Horn clauses, because all the branches of the computation synchronize on the
same input, which cannot be encoded by a finite number of local (equality) constraints.
We believe that the lazy annotation techniques for Horn clauses are suited for branching
computations, which we intend to consider in a future tree automata setting.

2 Preliminaries

A signature S = (Ss,Sf) consists of a set Ss of sort symbols and a set Sf of sorted func-
tion symbols. To simplify the presentation, we assume w.l.o.g. that Ss = {Data,Bool}1

and each function symbol f ∈ Sf has #( f ) ≥ 0 arguments of sort Data and return value
σ( f ) ∈ Ss. If #( f ) = 0 then f is a constant. We consider constants > and ⊥ of sort Bool.

Let Var be an infinite countable set of variables, where each x ∈ Var has an asso-
ciated sort σ(x). A term t of sort σ(t) = S is a variable x ∈ Var where σ(x) = S , or
f (t1, . . . , t#( f )) where t1, . . . , t#( f ) are terms of sort Data and σ( f ) = S . An atom is a term
of sort Bool or an equality t ≈ s between two terms of sort Data. A formula is an existen-
tially quantified combination of atoms using disjunction ∨, conjunction ∧ and negation
¬ and we write φ→ ψ for ¬φ∨ψ.

We denote by FVσ(φ) the set of free variables of sort σ in φ and write FV(φ) for⋃
σ∈Ss FVσ(φ). For a variable x ∈ FV(φ) and a term t such that σ(t) = σ(x), let φ[t/x]

be the result of replacing each occurrence of x by t. For indexed sets t = {t1, . . . , tn} and
x = {x1, . . . , xn}, we write φ[t/x] for the formula obtained by simultaneously replacing
xi with ti in φ, for all i ∈ [1,n]. The size |φ| is the number of symbols occuring in φ.

An interpretation I maps (1) the sort Data into a non-empty set DataI, (2) the
sort Bool into the set B = {true,false}, where >I = true, ⊥I = false, and (3) each
function symbol f into a total function f I : (DataI)#( f )→σ( f )I , or an element of σ( f )I

when #( f ) = 0. Given an interpretation I, a valuation ν maps each variable x ∈ Var into
an element ν(x) ∈ σ(x)I. For a term t, we denote by tIν the value obtained by replacing

1 The generalization to more than two sorts is without difficulty, but would unnecessarily clutter
the technical presentation.
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each function symbol f by its interpretation f I and each variable x by its valuation
ν(x). For a formula φ, we write I, ν |= φ if the formula obtained by replacing each term
t in φ by the value tIν is logically equivalent to true.

A formula φ is satisfiable in the interpretation I if there exists a valuation ν such that
I, ν |= φ, and valid if I, ν |= φ for all valuations ν. The theory T(S,I) is the set of valid
formulae written in the signature S, with the interpretation I. A decision procedure
for T(S,I) is an algorithm that takes a formula φ in the signature S and returns yes iff
φ ∈ T(S,I).

Given formulae ϕ and ψ, we say that φ entails ψ, denoted φ |=I ψ iff I, ν |= ϕ implies
I, ν |= ψ, for each valuation ν, and φ⇔I ψ iff φ |=I ψ and ψ |=I φ. We omit mentioning
the interpretation I when it is clear from the context.

3 Alternating Data Automata

In the rest of this section we fix an interpretation I and a finite alphabet Σ of input
events. Given a finite set x ⊂ Var of variables of sort Data, let x 7→ DataI be the set of
valuations of the variables x and Σ[x] = Σ × (x 7→ DataI) be the set of data symbols.
A data word (word in the sequel) is a finite sequence (a1, ν1)(a2, ν2) . . . (an, νn) of data
symbols, where a1, . . . ,an ∈ Σ and ν1, . . . , νn : x→ DataI are valuations. We denote by
ε the empty sequence, by Σ∗ the set of finite sequences of input events and by Σ[x]∗ the
set of data words over x.

This definition generalizes the classical notion of words from a finite alphabet to the
possibly infinite alphabet Σ[x]. Clearly, when DataI is sufficiently large or infinite, we
can map the elements of Σ into designated elements of DataI and use a special variable
to encode the input events. However, keeping Σ explicit in the following simplifies
several technical points below, without cluttering the presentation.

Given sets of variables b,x ⊂ Var of sort Bool and Data, respectively, we denote
by Form(b,x) the set of formulae φ such that FVBool(φ) ⊆ b and FVData(φ) ⊆ x. By
Form+(b,x) we denote the set of formulae from Form(b,x) in which each Boolean
variable occurs under an even number of negations.

An alternating data automaton (ADA or automaton in the sequel) is a tuple A =

〈x,Q, ι,F,∆〉, where:
– x ⊂ Var is a finite set of variables of sort Data,
– Q ⊂ Var is a finite set of variables of sort Bool (states),
– ι ∈ Form+(Q,∅) is the initial configuration,
– F ⊆ Q is a set of final states, and
– ∆ : Q×Σ→ Form+(Q,x∪x) is a transition function, where x denotes {x | x ∈ x}.

In each formula ∆(q,a) describing a transition rule, the variables x track the previous
and x the current values of the variables of A. Observe that the initial values of the
variables are left unconstrained, as the initial configuration does not contain free data
variables. The size ofA is defined as |A| = |ι|+

∑
(q,a)∈Q×Σ |∆(q,a)|.

Example Figure 1 (a) depicts an ADA with input alphabet Σ = {a,b}, variables x =

{x,y}, states Q = {q0,q1,q2,q3,q4}, initial configuration q0, final states F = {q3,q4} and
transitions given in Figure 1 (b), where missing rules, such as ∆(q0,b), are assumed to be
⊥. Rules ∆(q0,a) and ∆(q1,a) are universal and there are no existential nondeterministic
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q0

q1 q2

a
x=0

ꓥ y=0

a
x=&y+1

ꓥ y=&x+1

q3
b
&x≥&y q4

a
x>&x ꓥ y>&y

b
&x>&y

(a)

∆(q0,a) ≡ q1∧q2∧ x ≈ 0∧ y ≈ 0
∆(q1,a) ≡ q1∧q2∧ x ≈ y + 1∧ y ≈ x + 1
∆(q1,b) ≡ q3∧ x ≥ y
∆(q2,a) ≡ q2∧ x > x∧ y > y
∆(q2,b) ≡ q4∧ x > y

(b)

Fig. 1. Alternating Data Automaton Example

rules. Rules ∆(q1,a) and ∆(q2,a) compare past (x,y) with present (x,y) values, ∆(q0,a)
constrains the present and ∆(q1,b), ∆(q2,b) the past values, respectively. ut

Formally, let xk = {xk | x ∈ x}, for any k ≥ 0, be a set of time-stamped variables.
For an input event a ∈ Σ and a formula φ, we write ∆(φ,a) (respectively ∆k(φ,a)) for
the formula obtained from φ by simultaneously replacing each state q ∈ FVBool(φ) by
the formula ∆(q,a) (respectively ∆(q,a)[xk/x,xk+1/x], for k ≥ 0). Given a word w =

(a1, ν1)(a2, ν2) . . . (an, νn), the run ofA over w is the sequence of formulae:

φ0(Q)⇒ φ1(Q,x0∪x1)⇒ . . .⇒ φn(Q,x0∪ . . .∪xn)

where φ0 ≡ ι and, for all k ∈ [1,n], we have φk ≡ ∆
k(φk−1,ak). Next, we slightly abuse

notation and write ∆(ι,a1, . . . ,an) for the formula φn(x0, . . . ,xn) above. We say that A
accepts w iff I, ν |= ∆(ι,a1, . . . ,an), for some valuation ν that maps: (1) each x ∈ xk to
νk(x), for all k ∈ [1,n], (2) each q ∈ FVBool(φn)∩F to > and (3) each q ∈ FVBool(φn) \F
to ⊥. The language ofA is the set L(A) of words from Σ[x]∗ accepted byA.
Example The following sequence is a non-accepting run of the ADA from Figure 1
on the word (a, 〈0,0〉), (a, 〈1,1〉), (b, 〈2,1〉), where DataI = Z and the function symbols
have standard arithmetic interpretation:

q0
(a,〈0,0〉)
=⇒ q1 ∧q2 ∧ x1 ≈ 0∧ y1 ≈ 0

(a,〈1,1〉)
=⇒ q1 ∧q2 ∧ x2 ≈ y1 + 1∧ y2 ≈ x1 + 1︸                                     ︷︷                                     ︸

q1

∧ q2 ∧ x2 > x1 ∧ y2 > y1︸                     ︷︷                     ︸
q2

∧ x1 ≈ 0∧ y1 ≈ 0
(b,〈2,1〉)
=⇒

q3 ∧ x2 ≥ y2︸        ︷︷        ︸
q1

∧q4 ∧ x2 > y2︸        ︷︷        ︸
q2

∧x2 ≈ y1 + 1∧ y2 ≈ x1 + 1∧q4 ∧ x2 > y2︸        ︷︷        ︸
q2

∧x2 > x1 ∧ y2 > y1 ∧ x1 ≈ 0∧ y1 ≈ 0 ut

In this paper we tackle the following problems:
1. Boolean closure: given automata A1 and A2, both with the same set of variables

x, do there exist automata A∪, A∩ and A1 such that L(A∪) =A1 ∪A2, L(A∩) =

A1∩A2 and L(A1) = Σ[x]∗ \L(A1) ?
2. emptiness: given an automatonA, is L(A) = ∅ ?

It is well known that other problems, such as universality (given automatonA with
variables x, does L(A) = Σ[x]∗?) and inclusion (given automata A1 and A2 with the
same set of variables, does L(A1) ⊆ L(A2)?) can be reduced to the above problems.
Observe furthermore that we do not consider cases in which the sets of variables in
the two automata differ. An interesting problem in this case would be: given automata
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A1 and A2, with variables x1 and x2, respectively, such that x1 ⊆ x2, does L(A1) ⊆
L(A2)↓x1 , where L(A2)↓x1 is the projection of the set of words L(A2) onto the variables
x1? This problem is considered as future work.

3.1 Boolean Closure

Given a set Q of Boolean variables and a set x of variables of sort Data, for a formula
φ ∈ Form+(Q,x), with no negated occurrences of the Boolean variables, we define the
formula φ ∈ Form+(Q,x) recursively on the structure of φ:

φ1∨φ2 ≡ φ1∧φ2 φ1∧φ2 ≡ φ1∨φ2

¬φ ≡ ¬φ if φ not atom φ ≡ φ if φ ∈ Q
φ ≡ ¬φ if φ < Q atom

We have |φ| = |φ|, for every formula φ ∈ Form+(Q,x).
In the following letAi = 〈x,Qi, ιi,Fi,∆i〉, for i = 1,2, where w.l.o.g. we assume that

Q1∩Q2 = ∅. We define:

A∪ = 〈x,Q1∪Q2, ι1∨ ι2,F1∪F2,∆1∪∆2〉

A∩ = 〈x,Q1∪Q2, ι1∧ ι2,F1∪F2,∆1∪∆2〉

A1 = 〈x,Q1, ι1,Q1 \F1,∆1〉

where ∆1(q,a) ≡ ∆1(q,a), for all q ∈ Q1 and a ∈ Σ. The following lemma shows the
correctness of the above definitions:

Lemma 1. Given automataAi = 〈x,Qi, ιi,Fi,∆i〉, for i = 1,2, such that Q1∩Q2 = ∅, we
have L(A∪) = L(A1)∪L(A2), L(A∩) = L(A1)∩L(A2) and L(A1) = Σ[x]∗ \L(A1).

It is easy to see that |A∪| = |A∩| = |A1|+ |A2| and |A| = |A|, thus the automata for
the Boolean operations, including complementation, can be built in linear time. This
matches the linear-time bounds for intersection and complementation of alternating au-
tomata over finite alphabets [3].

4 Antichains and Interpolants for Emptiness

The emptiness problem for ADA is undecidable, even in very simple cases. For in-
stance, if DataI is the set of positive integers, an ADA can simulate an Alternating
Vector Addition System with States (AVASS) using only atoms x ≥ k and x = x + k, for
k ∈ Z, with the classical interpretation of the function symbols on integers. Since reach-
ability of a control state is undecidable for AVASS [14], ADA emptiness is undecidable.

Consequently, we give up on the guarantee for termination and build semi-algorithms
that meet the requirements below:

(i) given an automatonA, if L(A), ∅, the procedure will terminate and return a word
w ∈ L(A), and

(ii) if the procedure terminates without returning such a word, then L(A) = ∅.
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Let us fix an automaton A = 〈x,Q, ι,F,∆〉 whose (finite) input event alphabet is Σ,
for the rest of this section. Given a formula φ ∈ Form+(Q,x) and an input event a ∈Σ, we
define the post-image function PostA(φ,a) ≡ ∃x . ∆(φ[x/x],a) ∈ Form+(Q,x), mapping
each formula in Form+(Q,x) to a formula defining the effect of reading the event a. We
generalize the post-image function to finite sequences of input events, as follows:

PostA(φ,ε) ≡ φ PostA(φ,ua) ≡ PostA(PostA(φ,u),a)
AccA(u) ≡ PostA(ι,u)∧

∧
q∈Q\F(q→⊥), for any u ∈ Σ∗

Then the emptiness problem for A becomes: does there exist u ∈ Σ∗ such that the for-
mula AccA(u) is satisfiable? Observe that, since we ask a satisfiability query, the fi-
nal states of A need not be constrained2. A naı̈ve semi-algorithm enumerates all finite
sequences and checks the satisfiability of AccA(u) for each u ∈ Σ∗, using a decision
procedure for the theory T(S,I).

Since no Boolean variable from Q occurs under negation in φ, it is easy to prove
the following monotonicity property: given two formulae φ,ψ ∈ Form+(Q,x) if φ |=
ψ then PostA(φ,u) |= PostA(ψ,u), for any u ∈ Σ∗. This suggest an improvement of
the above semi-algorithm, that enumerates and stores only a set U ⊆ Σ∗ for which
{PostA(φ,u) | u ∈ U} forms an antichain3 w.r.t. the entailment partial order. This is be-
cause, for any u,v ∈ Σ∗, if PostA(ι,u) |= PostA(ι,v) and AccA(uw) is satisfiable for
some w ∈ Σ∗, then PostA(ι,uw) |= PostA(ι,vw), thus AccA(vw) is satisfiable as well,
and there is no need for u, since the non-emptiness of A can be proved using v alone.
However, even with this optimization, the enumeration of sequences from Σ∗ diverges
in many real cases, because infinite antichains exist in many interpretations, e.g. q∧ x ≈
0, q∧ x ≈ 1, . . . for DataI = N.

A safety invariant for A is a function I : (Q 7→ B)→ 2x7→DataI such that, for every
Boolean valuation β : Q→ B, every valuation ν : x 7→ DataI of the data variables and
every finite sequence u ∈ Σ∗ of input events, the following hold:
1. I,β∪ ν |= PostA(ι,u)⇒ ν ∈ I(β), and
2. ν ∈ I(β)⇒I,β∪ ν 6|= AccA(u).

If I satisfies only the first point above, we call it an invariant. Intuitively, a safety
invariant maps every Boolean valuation into a set of data valuations, that contains
the initial configuration ι ≡ PostA(ι,ε), whose data variables are unconstrained, over-
approximates the set of reachable valuations (point 1) and excludes the valuations sat-
isfying the acceptance condition (point 2). A formula φ(Q,x) is said to define I iff for
all β : Q→ B and ν : x→ DataI, we have I,β∪ ν |= φ iff ν ∈ I(β).

Lemma 2. For any automaton A, we have L(A) = ∅ if and only if A has a safety
invariant.

Turning back to the issue of divergence of language emptiness semi-algorithms in
the case L(A) = ∅, we can observe that an enumeration of input sequences u1,u2, . . . ∈Σ

∗

2 Since each state occurs positively in AccA(u), this formula has a model iff it has a model with
every q ∈ F set to true.

3 Given a partial order (D,�) an antichain is a set A ⊆ D such that a � b for any a,b ∈ A.
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can stop at step k as soon as
∨k

i=1 PostA(ι,ui) defines a safety invariant for A. Al-
though this condition can be effectively checked using a decision procedure for the
theory T(S,I), there is no guarantee that this check will ever succeed.

The solution we adopt in the sequel is abstraction to ensure the termination of in-
variant computations. However, it is worth pointing out from the start that abstraction
alone will only allow us to build invariants that are not necessarily safety invariants. To
meet the latter condition, we resort to counterexample guided abstraction refinement
(CEGAR).

Formally, we fix a set of formulae Π ⊆ Form(Q,x), such that ⊥ ∈ Π and refer to
these formulae as predicates. Given a formula φ, we denote by φ] ≡

∧
{π ∈ Π | φ |= π}

the abstraction of φ w.r.t. the predicates in Π. The abstract versions of the post-image
and acceptance condition are defined as follows:

Post]
A

(φ,ε) ≡ φ Post]
A

(φ,ua) ≡ (PostA(Post]
A

(φ,u),a))
]

Acc]
A

(u) ≡ Post]
A

(ι,u)∧
∧

q∈Q\F(q→⊥), for any u ∈ Σ∗

Lemma 3. For any bijection µ :N→ Σ∗, there exists k > 0 such that
∨k

i=0 Post]
A

(ι,µ(i))
defines an invariant I] forA.

We are left with fulfilling point (2) from the definition of a safety invariant. To
this end, suppose that, for a given set Π of predicates, the invariant I], defined by the
previous lemma, meets point (1) but not point (2), where PostA and AccA replace
Post]

A
and Acc]

A
, respectively. In other words, there exists a finite sequence u ∈ Σ∗ such

that ν ∈ I](β) and I,β∪ν |= Acc]
A

(u), for some Boolean β : Q→B and data ν : x→DataI

valuations. Such a u ∈ Σ∗ is called a counterexample.
Once a counterexample u is discovered, there are two possibilities. Either (i) AccA(u)

is satisfiable, in which case u is feasible and L(A) , ∅, or (ii) AccA(u) is unsatisfiable,
in which case u is spurious. In the first case, our semi-algorithm stops and returns a
witness for non-emptiness, obtained from the satisfying valuation of AccA(u) and in
the second case, we must strenghten the invariant by excluding from I] all pairs (β,ν)
such that I,β∪ ν |= Acc]

A
(u). This strenghtening is carried out by adding to Π several

predicates that are sufficient to exclude the spurious counterexample.
Given an unsatisfiable conjunction of formulae ψ1 ∧ . . .∧ ψn, an interpolant is a

tuple of formulae 〈I1, . . . , In−1, In〉 such that In ≡ ⊥, Ii ∧ψi |=T Ii+1 and Ii contains only
variables and function symbols that are common to ψi and ψi+1, for all i ∈ [n − 1].
Moreover, by Lyndon’s Interpolation Theorem [15], we can assume without loss of
generality that every Boolean variable with at least one positive (negative) occurrence
in Ii has at least one positive (negative) occurrence in both ψi and ψi+1. In the following,
we shall assume the existence of an interpolating decision procedure for T(S,I) that
meets the requirements of Lyndon’s Interpolation Theorem.

A classical method for abstraction refinement is to add the elements of the inter-
polant obtained from a proof of spuriousness to the set of predicates. This guarantees
progress, meaning that the particular spurious counterexample, from which the inter-
polant was generated, will never be revisited in the future. Though not always, in many
practical test cases this progress property eventually yields a safety invariant.
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Given a non-empty spurious counterexample u = a1 . . .an, where n > 0, we consider
the following interpolation problem:

Θ(u) ≡ θ0(Q0)∧ θ1(Q0∪Q1,x0∪x1)∧ . . . (1)
∧ θn(Qn−1∪Qn,xn−1∪xn)∧ θn+1(Qn)

where Qk = {qk | q ∈ Q}, k ∈ [0,n] are time-stamped sets of Boolean variables corre-
sponding to the set Q of states of A. The first conjunct θ0(Q0) ≡ ι[Q0/Q] is the initial
configuration ofA, with every q ∈ FVBool(ι) replaced by q0. The definition of θk, for all
k ∈ [1,n], uses replacement sets R` ⊆Q`, ` ∈ [0,n], which are defined inductively below:

– R0 = FVBool(θ0),
– θ` ≡

∧
q`−1∈R`−1 (q`−1→ ∆(q,a`)[Q`/Q,x`−1/x,x`/x]) and R` = FVBool(θ`)∩Q`, for

each ` ∈ [1,n].
– θn+1(Qn) ≡

∧
q∈Q\F(qn→⊥).

The intuition is that R0, . . . ,Rn are the sets of states replaced, θ0, . . . , θn are the sets of
transition rules fired on the run ofA over u and θn+1 is the acceptance condition, which
forces the last remaining non-final states to be false. We recall that a run ofA over u is
a sequence:

φ0(Q)⇒ φ1(Q,x0∪x1)⇒ . . .⇒ φn(Q,x0∪ . . .∪xn)

where φ0 is the initial configuration ι and for each k > 0, φk is obtained from φk−1 by
replacing each state q ∈ FVBool(φk−1) by the formula ∆(q,ak)[xk−1/x,xk/x], given by the
transition function of A. Observe that, because the states are replaced with transition
formulae when moving one step in a run, these formulae lose track of the control history
and are not suitable for producing interpolants that relate states and data.

The main idea behind the above definition of the interpolation problem is that we
would like to obtain an interpolant 〈>, I0(Q), I1(Q,x), . . . , In(Q,x),⊥〉 whose formulae
combine states with the data constraints that must hold locally, whenever the control
reaches a certain Boolean configuration. This association of states with data valuations
is tantamount to defining efficient semi-algorithms, based on lazy abstraction [8]. Fur-
thermore, the abstraction defined by the interpolants generated in this way can also
over-approximate the control structure of an automaton, in addition to the sets of data
values encountered throughout its runs.

The correctness of this interpolation-based abstraction refinement setup is captured
by the progress property below, which guarantees that adding the formulae of an inter-
polant for Θ(u) to the set Π of predicates suffices to exclude the spurious counterexam-
ple u from future searches.

Lemma 4. For any sequence u = a1 . . .an ∈Σ
∗, if AccA(u) is unsatisfiable, the following

hold:
1. Θ(u) is unsatisfiable, and
2. if 〈>, I0, . . . , In,⊥〉 is an interpolant forΘ(u) such that {Ii | i ∈ [0,n]} ⊆Π then Acc]

A
(u)

is unsatisfiable.
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5 Lazy Predicate Abstraction for ADA Emptiness

We have now all the ingredients to describe the first emptiness checking semi-algorithm
for alternating data automata. Algorithm4 1 builds an abstract reachability tree (ART)
whose nodes are labeled with formulae over-approximating the concrete sets of con-
figurations, and a covering relation between nodes in order to ensure that the set of
formulae labeling the nodes in the ART forms an antichain. Any spurious counterex-
ample is eliminated by computing an interpolant and adding its formulae to the set of
predicates (cf. Lemma 4). Formally, an ART is tuple T = 〈N,E,r,Λ,R,T,C〉, where:

– N is a set of nodes,
– E ⊆ N ×Σ ×N is a set of edges,
– r ∈ N is the root of the directed tree (N,E),
– Λ : N→ Form(Q,x) is a labeling of the nodes with formulae, such that Λ(r) = ι,
– R : N→ 2Q is a labeling of nodes with replacement sets, such that R(r) = FVBool(ι),
– T : E →

⋃∞
i=0 Form+(Qi,xi,Qi+1,xi+1) is a labeling of edges with time-stamped

formulae, and
– C ⊆ N ×N is a set of covering edges.

Each node n ∈ N corresponds to a unique path from the root to n, labeled by a
sequence λ(n) ∈ Σ∗ of input events. The least infeasible suffix of λ(n) is the smallest
sequence v = a1 . . .ak, such that λ(n) = wv, for some w ∈ Σ∗ and the following formula
is unsatisfiable:

Ψ (v) ≡ Λ(p)[Q0/Q]∧ θ1(Q0∪Q1,x0∪x1)∧ . . .∧ θk+1(Qk) (2)

where θ1, . . . , θk+1 are defined as in (1) and θ0 ≡ Λ(p)[Q0/Q]. The pivot of n is the
node p corresponding to the start of the least infeasible suffix. We assume the existence
of two functions FindPivot(u,T ) and LeastInfeasibleSuffix(u,T ) that return the pivot
and least infeasbile suffix of a sequence u ∈ Σ∗ in an ART T , without detailing their
implementation.

With these considerations, Algorithm 1 uses a worklist iteration to build an ART. We
keep newly expanded nodes of T in a queue WorkList, thus implementing a breadth-
first exploration strategy, which guarantees that the shortest counterexamples are ex-
plored first. When the search encounters a counterexample candidate u, it is checked
for spuriousness. If the counterexample is feasible, the procedure returns a data word
w ∈ L(A), which interleaves the input events of u with the data valuations from the
model of AccA(u) (since u is feasible, clearly AccA(u) is satisfiable). Otherwise, u is
spurious and we compute its pivot p (line 12), add the interpolants for the least unfea-
sible suffix of u to Π, remove and recompute the subtree of T rooted at p.

Termination of Algorithm 1 depends on the ability of a given interpolating decision
procedure for the combined Boolean and data theory T(S,I) to provide interpolants that
yield a safety invariant, whenever L(A) = ∅. In this case, we use the covering relation
C to ensure that, when a newly generated node is covered by a node already in N, it is
not added to the worklist, thus cutting the current branch of the search.

Formally, for any two nodes n,m ∈ N, we have nCm iff Post]
A

(Λ(n),a) |= Λ(m) for
some a ∈ Σ, in other words, if n has a successor whose label entails the label of m.

4 Though termination is not guaranteed, we call it algorithm for conciseness.
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Algorithm 1 Lazy Predicate Abstraction for ADA Emptiness
input: an ADAA = 〈x,Q, ι,F,∆〉 over the alphabet Σ of input events
output: true if L(A) = ∅ and a data word w ∈ L(A) otherwise

1: let T = 〈N,E,r,Λ,C〉 be an ART
2: initially N = E = C = ∅, Λ = {(r, ι)}, Π = {⊥}, WorkList = 〈r〉,
3: while WorkList , ∅ do
4: dequeue n from WorkList
5: N← N ∪{n}
6: let λ(n) = a1 . . .ak be the label of the path from r to n
7: if Post]

A
(λ(n)) is satisfiable then . counterexample candidate

8: if AccA(u) is satisfiable then . feasible counterexample
9: get model (β,ν1, . . . , νk) of AccA(λ(n))
10: return w = (a1, ν1) . . . (ak , νk) . w ∈ L(A) by construction
11: else . spurious counterexample
12: p← FindPivot(λ(n),T )
13: v← LeastInfeasibleSuffix(λ(n),T )
14: Π← Π∪{I0, . . . , I`}, where 〈>, I0, . . . , I` ,⊥〉 is an interpolant for Ψ (v)
15: let S = 〈N′,E′, p,Λ′,C′〉 be the subtree of T rooted at p
16: for (m,q) ∈ C such that q ∈ N′ do
17: remove m from N and enqueue m into WorkList
18: remove S from T
19: enqueue p into WorkList . recompute the subtree rooted at p
20: else
21: for a ∈ Σ do . expand n
22: φ← Post]

A
(Λ(n),a)

23: if exist m ∈ N such that φ |= Λ(m) then
24: C← C∪{(n,m)} . m covers n
25: else
26: let s be a fresh node
27: E← E∪{(n,a, s)}
28: Λ← Λ∪{(s,φ)}
29: R← {m ∈ WorkList | Λ(m) |= φ} . worklist nodes covered by s
30: for r ∈ R do
31: for m ∈ N such that (m,b,r) ∈ E, b ∈ Σ do
32: C← C∪{(m, s)} . redirect covered children from R into s
33: for (m,r) ∈ C do
34: C← C∪{(m, s)} . redirect covered nodes from R into s
35: remove R from T
36: enqueue s into WorkList
37: return true

Example Consider the automaton given in Figure 1. First, Algorithm 1 fires the se-
quence a, and since there are no other formulae than ⊥ in Π, the successor of ι ≡ q0 is
>, in Figure 2 (a). The spuriousness check for a yields the root of the ART as pivot and
the interpolant 〈q0,q1〉, which is added to the set Π. Then the > node is removed and
the next time a is fired, it creates a node labeled q1. The second sequence aa creates a
successor node q1, which is covered by the first, depicted with a dashed arrow, in Figure
2 (b). The third sequence is ab, which results in a new uncovered node > and triggers a
spuriousness check. The new predicate obtained from this check is x≤ 0∧q2∧y≥ 0 and
the pivot is again the root. Then the entire ART is rebuilt with the new predicates and
the fourth sequence aab yields an uncovered node >, in Figure 2 (c). The new pivot is
the endpoint of a and the newly added predicates are q1∧q2 and y > x−1∧q2. Finally,
the ART is rebuilt from the pivot node and finally all nodes are covered, thus proving
the emptiness of the automaton, in Figure 2 (d). ut

The correctness of Algorithm 1 is proved below:
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Fig. 2. Proving Emptiness of the Automaton from Fig. 1 by Algorithm 1

Theorem 1. Given an automaton A, such that L(A) , ∅, Algorithm 1 terminates and
returns a word w ∈ L(A). If Algorithm 1 terminates reporting true, then L(A) = ∅.

6 Checking ADA Emptiness with Impact

As pointed out by a number of authors, the bottleneck of predicate abstraction is the
high cost of reconstructing parts of the ART, subsequent to the refinement of the set
of predicates. The main idea of the Impact procedure [16] is that this can be avoided
and the refinement (strenghtening of the node labels of the ART) can be performed in-
place. This refinement step requires an update of the covering relation, because a node
that used to cover another node might not cover it after the strenghtening of its label.

We consider a total alphabetical order ≺ on Σ and lift it to the total lexicographical
order ≺∗ on Σ∗. A node n ∈ N is covered if (n, p) ∈ C or it has an ancestor m such that
(m, p) ∈ C, for some p ∈ N. A node n is closed if it is covered, or Λ(n) 6|= Λ(m) for all
m ∈ N such that λ(m) ≺∗ λ(n). Observe that we use the coverage relation C here with a
different meaning than in Algorithm 1.

The execution of Algorithm 2 consists of three phases5: close, refine and expand.
Let n be a node removed from the worklist at line 4. If AccA(λ(n)) is satisfiable, the
counterexample λ(n) is feasible, in which case a model of AccA(λ(n)) is obtained and
a word w ∈ L(A) is returned. Otherwise, λ(n) is a spurious counterexample and the
procedure enters the refinement phase (lines 11-18). The interpolant for Θ(λ(n)) (cf.
formula 1) is used to strenghten the labels of all the ancestors of n, by conjoining the
formulae of the interpolant to the existing labels.

In this process, the nodes on the path between r and n, including n, might become
eligible for coverage, therefore we attempt to close each ancestor of n that is impacted
by the refinement (line 18). Observe that, in this case the call to Close must uncover

5 Corresponding to the Close, Refine and Expand in [16].
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Algorithm 2 Impact for ADA Emptiness
input: an ADAA = 〈x,Q, ι,F,∆〉 over the alphabet Σ of input events
output: true if L(A) = ∅ and a data word w ∈ L(A) otherwise

1: let T = 〈N,E,r,Λ,R,T,C〉 be an ART
2: initially N = E = T = C = ∅, Λ = {(r, ι)}, R = FVBool(ι[Q0/Q]), WorkList = {r}
3: while WorkList , ∅ do
4: dequeue n from WorkList
5: N← N ∪{n}
6: let (r,a1,n1), (n1,a2,n2), . . . , (nk−1,ak ,n) be the path from r to n
7: if AccA(a1 . . .ak) is satisfiable then . counterexample is feasible
8: get model (β,ν1, . . . , νk) of AccA(λ(n))
9: return w = (a1, ν1) . . . (ak , νk) . w ∈ L(A) by construction
10: else . spurious counterexample
11: let 〈>, I0, . . . , Ik ,⊥〉 be an interpolant for Θ(a1 . . .ak)
12: b← false
13: for i = 0, . . . ,k do
14: if Λ(ni) 6|= Ii then
15: C← C \ {(m,ni) ∈ C | m ∈ N}
16: Λ(ni)← Λ(ni)∧ Ii . strenghten the label of ni
17: if ¬b then
18: b← Close(ni)
19: if n is not covered then
20: for a ∈ Σ do . expand n
21: let s be a fresh node and e = (n,a, s) be a new edge
22: E← E∪{e}
23: Λ← Λ∪{(s,>)}
24: T ← T ∪{(e, θk)}
25: R← R∪{(s,

⋃
q∈R(n) FVBool(∆(q,a)))}

26: enqueue s into WorkList
27: return true
1: function Close(x) returns Bool
2: for y ∈ N such that λ(y) ≺∗ λ(x) do
3: if Λ(x) |= Λ(y) then
4: C← (C \ {(p,q) ∈ C | q is x or a successor of x})∪{(x,y)}
5: return true
6: return false

each node which is covered by a successor of n (line 4 of the Close function). This is
required because, due to the over-approximation of the sets of reachable configurations,
the covering relation is not transitive, as explained in [16]. If Close adds a covering
edge (ni,m) to C, it does not have to be called for the successors of ni on this path,
which is handled via the Boolean flag b.

Finally, if n is still uncovered (it has not been previously covered during the refine-
ment phase) we expand n (lines 20-26) by creating a new node for each successor s via
the input event a ∈ Σ and inserting it into the worklist.
Example We show the execution of Algorithm 2 on the automaton from Figure 1. Ini-
tially, the procedure fires the sequence a, whose endpoint is labeled with >, in Figure
3 (a). Since this node is uncovered, we check the spuriousness of the counterexample a
and refine the label of the node to q1. Since the node is still uncovered, two successors,
labeled with > are computed, corresponding to the sequences aa and ab, in Figure 3
(b). The spuriousness check for aa yields the interpolant 〈q0, x ≤ 0∧q2∧ y ≥ 0〉 which
strenghtens the label of the endpoint of a from q1 to q1∧ x≤ 0∧q2∧y≥ 0. The sequence
ab is also found to be spurious, which changes the label of its endpoint from> to⊥, and
also covers it (depicted with a dashed edge). Since the endpoint of aa is not covered, it
is expanded to aaa and aab, in Figure 3 (c). Both sequences aaa and aab are found to be
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Fig. 3. Proving Emptiness of the Automaton from Fig. 1 by Algorithm 2

spurious, and the enpoint of aab, whose label has changed from > to ⊥, is now covered.
In the process, the label of aa has also changed from q1 to q1∧y > x−1∧q2, due to the
strenghtening with the interpolant from aab. Finally, the only uncovered node aaa is
expanded to aaaa and aaab, both found to be spurious, in Figure 3 (d). The refinement
of aaab causes the label of aaa to change from q1 to q1∧ y > x−1∧q2 and this node is
now covered by aa. Since its successors are also covered, there are no uncovered nodes
and the procedure returns true. ut

The correctness of Algorithm 2 is coined by the theorem below:

Theorem 2. Given an automaton A, such that L(A) , ∅, Algorithm 2 terminates and
returns a word w ∈ L(A). If Algorithm 2 terminates reporting true, then L(A) = ∅.
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7 Experimental Evaluation

We have implemented both Algorithm 1 and 2 in a prototype tool6 that uses the Math-
SAT5 SMT solver7 via the Java SMT interface8 for the satisfiability queries and inter-
polant generation, in the theory of linear integer arithmetic with uninterpreted Boolean
functions (UFLIA). We compared both algorithms with a previous implementation of
a trace inclusion procedure, called Includer9, that uses on-the-fly determinisation and
lazy predicate abstraction with interpolant-based refinement [11] in the LIA theory.

The results of the experiments are given in Table 1. We applied the tool first to
several array logic entailments, which occur as verification conditions for imperative
programs with arrays [2] (array shift, array simple, array rotation1+2) available online
[18]. Next, we applied it on proving safety properties of hardware circuits (hw1+2) [21].
Finally, we considered two timed communication protocols, consisting of systems that
are asynchronous compositions of timed automata, whom correctness specifications
are given by timed automata monitors: a timed version of the Alternating Bit Protocol
(abp) [24] and a controller of a railroad crossing (train) [9]. All results were obtained
on x86 64 Linux Ubuntu virtual machine with 8GB of RAM running on an Intel(R)
Xeon(R) CPU E5-2683 v3 @ 2.00GHz. The automata sizes are given in bytes needed
to store their ASCII description on file and the execution times are in seconds.

Example |A| (bytes) L(A) = ∅ ? Algorithm 1 (sec) Algorithm 2 (sec) Includer (sec)
simple1 309 no 0.774 0.064 0.076
simple2 504 yes 0.867 0.070 0.070
simple3 214 yes 0.899 0.095 0.095
array shift 874 yes 2.889 0.126 0.078
array simple 3440 yes timeout 9.998 7.154
array rotation1 1834 yes 7.227 0.331 0.229
array rotation2 15182 yes timeout timeout 31.632
abp 6909 no 9.492 0.631 2.288
train 1823 yes 19.237 0.763 0.678
hw1 322 yes 1.861 0.163 0.172
hw2 674 yes 24.111 0.308 0.473

Table 1.

As in the case of non-alternating nondeterministic integer programs [16], the al-
ternating version of Impact (Algorithm 2) outperforms lazy predicate abstraction for
checking emptiness by at least one order of magnitude. Moreover, Impact is compara-
ble, on average, to the previous implementation of Includer, which uses also MathSAT5
via the C API. We believe the reason for which Includer outperforms Impact on some
examples is the hardness of the UFLIA entailment checks used in Algorithm 2 (line 14
and line 3 in the function Close) as opposed to the pure LIA entailment checks used in
Includer. According to our statistics, Algorithm 2 spends more than 50% of the time
waiting for the SMT solver to finish answering entailment queries.

6 The implementation is available at https://github.com/cathiec/JAltImpact
7 http://mathsat.fbk.eu/
8 https://github.com/sosy-lab/java-smt
9 http://www.fit.vutbr.cz/research/groups/verifit/tools/includer/
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Proof of Lemma 1
Proposition 1. Given a formula φ ∈ Form+(Q,x) and a valuation νmapping each q ∈Q
to a value ν(q) ∈ B and each x ∈ x to a value ν(x) ∈ DataI, let ν′ be the valuation that
assigns each q ∈ Q the value ¬ν(q) and each x ∈ x the value ν(x). Then we have I, ν |= φ
if and only if I, ν′ 6|= φ.

Proof. Immediate, by induction on the structure of φ. ut

Proof. We prove L(A∪) = L(A1)∪ L(A2) first, the proof for A∩ being analogous. Let
w = (a1, ν1) . . . (an, νn) be a word, where n = 0 corresponds to the empty word. We
prove by induction on n ≥ 0 that ∆(ι1 ∨ ι2,a1 . . .an) ⇔ ∆(ι1,a1 . . .an)∨ ∆(ι2,a1 . . .an).
The case n = 0 follows from the definition of the initial configuration of A∪. For the
inductive step n > 0, ∆(ι1 ∨ ι2,a1 . . .an) is obtained from ∆(ι1 ∨ ι2,a1 . . .an−1) by re-
placing each variable q ∈ FVBool(∆(ι1 ∨ ι2,a1 . . .an−1)) with ∆(q,an)[xn−1/x,xn/x], de-
noted ∆n(∆(ι1∨ ι2,a1 . . .an−1),an). Since by induction hypothesis, ∆(ι1∨ ι2,a1 . . .an−1)⇔
∆(ι1,a1 . . .an−1)∨∆(ι2,a1 . . .an−1), we obtain:

∆n(∆(ι1∨ ι2,a1 . . .an−1),an) ⇔

∆n(∆(ι1,a1 . . .an−1),an)∨∆n(∆(ι2,a1 . . .an−1),an)⇔
∆(ι1,a1 . . .an)∨∆(ι2,a1 . . .an) .

To prove L(A1) = Σ[x]∗ \ L(A1), let w = (a1, ν1) . . . (an, νn) be a word and show that
∆(ι1,a1 . . .an) = ∆(ι1,a1 . . .an) by induction on n ≥ 0. The case n = 0 is immediate, be-
cause FV(ι1) ⊆ Q and thus ι1 ≡ ι1. For the case n > 0, we compute: ∆(ι1,a1 . . .an) =

∆(ι1,a1 . . .an) by induction on n ≥ 0.
In the case n = 0, we have ∆(ι1,a1 . . .an) ≡ ι1. Then ε is accepted by A1 iff ν0 |= ι1,

where ν0(q) = > if q ∈ F1 and ν0(q) = ⊥, otherwise. But ν0 |= ι1 iff ν0 |= ι1, where
ν0(q) = > if q < F1 and ν0(q) = ⊥, otherwise. Thus ε is accepted by A1 iff it is not
accepted byA1.

For the case n > 0, we compute:

∆
n
(∆(ι1,a1 . . .an−1),an)⇔ (by ind. hyp.)

∆
n
(∆(ι1,a1 . . .an−1),an)⇔ (by the def. of φ)

∆(ι1,a1 . . . ,an) .

Let ν,ν′ : (Q∪
⋃n

i=0 xi)→ (B∪DataI) be valuations such that:
– ν(q) = > and ν′(q) = ⊥, for each q ∈ F,
– ν(q) = ⊥ and ν′(q) = >, for each q ∈ Q \F,
– ν(x) = ν′(x), for each x ∈ x0,
– ν(x) = ν′(x) = νi(x), for each x ∈ xi and each i ∈ [1,n].

By Proposition 1, we have I, ν |= ∆(ι1,a1 . . .an) ⇐⇒ I, ν′ 6|= ∆(ι1,a1 . . .an) ⇐⇒ I, ν′ 6|=
∆(ι1,a1 . . .an). Thus for all w ∈ Σ[x]∗, we have w ∈ L(A1) ⇐⇒ w < L(A1). ut

Proof of Lemma 2
Proof. Let A = 〈x,Q, ι,F,∆〉 in the following. “⇐” This direction is trivial. “⇒” We
define I : (Q 7→B)→ 2x7→DataI as follows. For each β : Q→B, let I(β) = {ν : x→DataI |
∃u ∈ Σ∗ . β∪ν |= PostA(ι,u)}. Checking that I is a safety invariant is straightforward. ut
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Proof of Lemma 3

Proof. It is sufficient to show that there exists k ≥ 0 such that for all u ∈ Σ∗ there exists
i ∈ [0,k] such that PostA(ι,u) |= Post]

A
(ι,µ(i)). We have PostA(ι,u) |= Post]

A
(ι,u) for

all u ∈ Σ∗. But since Π is a finite set, also the set {Post]
A

(ι,u) | u ∈ Σ∗} is finite. Thus

there exists k ≥ 0 such that, for all u ∈ Σ∗ there exists i ∈ [0,k] such that Post]
A

(ι,u)⇔

Post]
A

(ι,µ(i)), which concludes the proof. ut

Proof of Lemma 4

Proposition 2. Given a formula φ ∈Form+(Q,x) and a ∈Σ, we have ∆(φ,a)⇔∃Q′ . φ[Q′/Q]∧∧
q∈Q(q′→ ∆(q,a)).

Proof. “⇒” If I,β∪ν∪ν |= ∆(φ,a), for some valuations β : Q→B and ν : x→DataI, ν :
x→DataI, then we build a valuation β′ : Q′→B such that I,β′∪β∪ν∪ν |= φ[Q′/Q]∧∧

q∈Q(q′→ ∆(q,a)). For each occurrence of a formula ∆(q,a) in ∆(φ,a) we set β′(q′) =

true if I,β∪ ν∪ ν |= ∆(q,a) and β′(q′) = false, otherwise. Since there are no negated
occurrences of such subformulae, the definition of β′ is consistent, and the check I,β′∪
β∪ ν∪ ν |= φ[Q′/Q]∧

∧
q∈Q(q′→ ∆(q,a)) is immediate. ′′⇐′′ This direction is an easy

check. ut

Proof. LetΘ(u)≡ θ0(Q0)∧θ1(Q0∪Q1,x0∪x1)∧ . . .∧θn(Qn−1∪Qn,xn−1∪xn)∧θn+1(Qn)
in the following.

(1) We apply Proposition 2 recursively and get:

PostA(ι,u)[Qn/Q,xn/x] ⇐⇒ ∃Q0 . . .∃Qn−1∃x0 . . .∃xn−1 .

n∧
i=0

θi

Assuming thatΘ(u) is satisfiable, we obtain a model for AccA(u)≡PostA(ι,u)∧θn+1[Q/Qn].
(2) If 〈>, I0, . . . , In,⊥〉 is an interpolant for Θ(u), the following entailments hold:

– θ0 |= I0[Q0/Q],
– Ik−1[Qk−1/Q,xk−1/x]∧ θk |= Ik[Qk/Q,xk/x], ∀k ∈ [1,n].
– In[Qn/Q]∧ θn+1 |= ⊥.

We prove that Post]
A

(ι,a1 . . .an) |= In by induction on n≥ 0. This is sufficient to conclude

because Acc]
A

(a1 . . .an) ≡ Post]
A

(ι,a1 . . .an)∧ θn+1[Q/Qn] |= In ∧ θn+1[Q/Qn] |= ⊥. For

the base case n = 0, we have Post]
A

(ι,ε) ≡ ι ≡ θ0[Q/Q0] |= I0. For the induction step
n > 0, we compute:

Post]
A

(ι,a1 . . .an)[Qn/Q] ≡ (by def. of Post]
A

)

∃xn−1 . ∆
n(Post]

A
(ι,a1 . . .an−1),an)

]
[Qn/Q] |= (by Prop. 2)

∃Qn−1∃xn−1 . Post]
A

(ι,a1 . . .an−1)[Qn−1/Q]∧ θn |= (ind. hyp.)
∃Qn−1∃xn−1 . In−1[Qn−1/Q]∧ θn |= In[Qn/Q] ut

18



Proof of Theorem 1

Proof. We prove the following invariant: each time Algorithm 1 reaches line 3, the set
W of nodes in WorkList contains all the frontier nodes in the ART 〈N ∪W,E,r,Λ,C〉
which are not covered by some node in N, namely that:

W = {n | ∀m ∈ N ∀a ∈ Σ . (n,a,m) < E ∧ (n,m) < C} (3)

Initially, this is the case because W = {r} and E =C= ∅. If the invariant holds previously,
at line 3, it will hold again after line 19 is executed, because, when the subtree rooted at
the pivot p is removed, p becomes a member of the set of uncovered frontier nodes, and
is added to W at line 19. Otherwise, the invariant holds at line 3 and the control follows
the else branch at line 20. In this case, the newly created frontier node s is added to W
only if it is not covered by an existing node in N (line 23).

Next we prove that, if Algorithm 1 returns true, then
∨

n∈N Λ(n) defines a safety
invariant. Suppose that Algorithm 1 returns at line 37. Then it must be that W = ∅.
Because (3) is invariant, each node in N is either covered by another node in N, or all
its successors are in N. We prove first that

∨
n∈N Λ(n) is an invariant: for any u ∈Σ∗, there

exists some node n ∈ N such that PostA(ι,u) |=Λ(n). Let u ∈Σ∗ be an arbitrary sequence.
If u labels the path from r to some n ∈ N, we have PostA(ι,u) |= Post]

A
(ι,u) |= Λ(n) and

we are done. Otherwise, let v be the (possibly empty) prefix of u which labels the path
from r to some n ∈ N, which is covered by another m ∈ N, where (n,a,m) ∈ E, that is
u = vav′, for some a ∈ Σ and v′ ∈ Σ∗. Moreover, we have PostA(ι,va) |= Post]

A
(ι,va) |=

Λ(m), by the construction of the set C of covering edges — lines 24, 32, 34. Continuing
this argument recursively from m, since |v′| < |u|, we shall eventually discover a node p
such that PostA(ι,u) |= Λ(p).

To prove that
∨

n∈N Λ(n) is, moreover, a safety invariant, suppose, by contradic-
tion, that there exists u ∈ Σ∗ such that AccA(u) is satisfiable. By the previous point,
there exists a node p ∈ N such that PostA(ι,u) |= Λ(p). But then we have AccA(ι,u) |=
AccA(ι,λ(p)), thus AccA(ι,λ(p)) is satisfiable as well. However, this cannot be the case,
because p has been processed at line 8 and Algorithm 1 would have returned a coun-
terexample, contradicting the assumption that it returns true. This concludes the proof
that
∨

n∈N Λ(n) is a safety invariant, thus L(A) = ∅, by Lemma 2. We have then proved
the second point of the statement.

For the first point, assume that L(A) , 0 and let w = (a1, ν1) . . . (ak, νk) ∈ L(A) be a
word. By the above, Algorithm 1 cannot return true. Suppose, by contradiction that
it does not terminate. Since the sequences from Σ∗ are explored in breadth-first order,
every sequence of length k is eventually explored, which leads to the discovery of w at
line 8. Then Algorithm 1 terminates returning w ∈ L(A). ut

Proof of Theorem 2

Lemma 5. Given an ARTT = 〈N,E,r,Λ,R,T,C〉 built by Algorithm 2, PostA(Λ(n),a) |=
Λ(m), for all (n,a,m) ∈ E.

Proof. We distinguish two cases. First, if (n,a,m) occurs on a path in T that has never
been refined, then Λ(m) = > and the entailment holds trivially. Otherwise, let Ω be the
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set of pathsω= (n0,a1,n1), . . . , (nk−1,ak,nk), where n0 = r and (n,a,m) = (ni−1,ai,ni), for
some i ∈ [1,k] and, moreover, a1 . . .ak was found, at some point, to be a spurious coun-
terexample. Let 〈>, Iω0 , . . . , I

ω
k ,⊥〉 be an interpolant for Φ(a1 . . .ak) ≡ Λ(r)∧

∧k
i=1 θi ∧∧

q∈R(nk)(qk →⊥), such that Iωi ∈ Form+(Q,x), for all i ∈ [0,k]. According to Lyndon’s
Interpolation Theorem, it is possible to build such an interpolant, when Φ(a1 . . .ak) is
unsatisfiable. By Proposition 2, we obtain ∆i(Iωi−1,ai)[Qi/Q]⇔∃Qi−1 . Iωi−1[Qi−1/Q,xi−1/x]∧
θi and, since Iωi−1[Qi−1/Q,xi−1/x]∧θi |= Iωi [Qi/Q,xi/x], we obtain that ∆i(Iωi−1,ai)[Qi/Q] |=
Iωi [Qi/Q,xi/x]. SinceΛ(ni−1) =

∧
ω∈Ω Iωi−1 andΛ(ni) =

∧
ω∈Ω Iωi , we obtain PostA(Λ(ni−1),ai) |=

Λ(ni). ut

Proof. We prove first that, each time Algorithm 2 reaches the line 3, we have:

W = {n | n uncovered, ∃a ∈ Σ ∀s ∈ N . (n,a, s) < E} (4)

Initially, W = {r} and E = C = ∅, thus (4) holds trivially. Suppose that (4) holds at
when reaching line 3 and some node n was removed from W and inserted into N. We
distinguish two cases, either:

– n is covered, in which case W becomes W \ {n} and (4) holds, or
– n is not covered, in which case W becomes (W \{n})∪S , where S = {s < N | (n,a, s) ∈ E,a ∈ Σ}

is the set of fresh successors of n. But then no node s ∈ S is covered and has suc-
cessors in E, thus (4) holds.

Then the condition (4) holds next time line 3 is reached, thus it is invariant.
Suppose first that Algorithm 2 returns true, thus W = ∅ and, by (4), for each node

in n ∈ N one of the following hold:
– n is covered, or
– for each a ∈ Σ there exists s ∈ N such that (n,a, s) ∈ E.

We prove that, in this case,
∨

n∈N Λ(n) defines a safety invariant and conclude that
L(A) = ∅, by Lemma 2. To this end, let u = a1 . . .ak ∈ Σ

∗ be an arbitrary sequence
and let v1 be the largest prefix of u that labels a path from r to some node n1 ∈ N.
If v1 = u we are done. Otherwise, by the choice of v1, it must be the case that a suc-
cessor of n1 is missing from (N,E), thus n1 must be covered, by (4) and the fact that
W = ∅. Let n′1 be the closest ancestor of n1 such that (n′1,n

′′
1 ) ∈ C, for some n′′1 ∈ N,

and let v′1 be the prefix of v1 leading to n′1. By the construction of C (line 4 in function
Close), we have Λ(n′1) |= Λ(n′′1 ). Applying Lemma 5 inductively on v′1, we obtain that
PostA(ι,v′1) |=Λ(n′1), thus PostA(ι,v′1) |=Λ(n′′1 ). Continuing inductively from n′′1 , we ex-
hibit a sequence of strings v′1, . . . ,v

′
` ∈ Σ

∗ and nodes r = m0,m1, . . . ,m` such that, for all
i ∈ [1, `]:

– v′i labels the path between mi−1 and mi in (N,E),
– PostA(ι,v′1 . . .v

′
i ) |= Λ(mi).

Moreover, we have u = v′1 . . .v
′
`, thus PostA(ι,u) |= Λ(m`) and we are done showing that∨

n∈N Λ(n) is an invariant.
To prove that

∨
n∈N Λ(n) is, moreover, a safety invariant, suppose that AccA(u) is

satisfiable, for some u ∈ Σ∗ and let n ∈ N be a node such that PostA(ι,u) |= Λ(n).
By the previous point, such a node must exist. But then AccA(u) |= AccA(λ(n)), thus
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AccA(λ(n)) is satisfiable, and Algorithm 2 returns at line 9, upon encountering λ(n). But
this contradicts the assumption that Algorithm 2 returns true, hence we have proved
that
∨

n∈N Λ(n) is a safety invariant, and L(A) = ∅ follows, by Lemma 2. We have then
proved the second point of the statement.

To prove the first point, assume that L(A) , ∅. By the previous point, Algorithm 2
does not return true. Suppose, by contradiction, that it does not terminate and conclude
using the breadth-first argument from the proof of Theorem 1. ut
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