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Introduction

In this paper, we consider the fragment of separation logic formulae known as symbolic heaps, defined as (separated) conjunctions of atoms. Such atoms may be either equational atoms, asserting equalities or disequalities between memory locations, points-to atoms asserting that some location refers to a given record, or may be built on additional predicates that assert that a part of the memory has a specific shape. For genericity, such predicates are associated with user-provided inductive definitions that allow one to describe custom data-structures. Satisfiability is EXPTIME-complete for such formulae [START_REF] Brotherston | A decision procedure for satisfiability in separation logic with inductive predicates[END_REF], but entailment is not decidable in general 3 [START_REF] Iosif | Deciding entailments in inductive separation logic with tree automata[END_REF][START_REF] Antonopoulos | Foundations for decision problems in separation logic with general inductive predicates[END_REF]. However, the entailment problem was proven to be decidable for a large class of inductive definitions, whose syntactical restrictions ensure that the generated heap structures have a bounded-tree width [START_REF] Iosif | The tree width of separation logic with recursive definitions[END_REF], using a reduction to monadic second order logic interpreted over graphs. A EXPTIMEhard bound was established in [START_REF] Iosif | Deciding entailments in inductive separation logic with tree automata[END_REF], and very recently, a 2EXPTIME algorithm has been proposed [START_REF] Katelaan | Effective entailment checking for separation logic with inductive definitions[END_REF]. However, personal communication with the authors of [START_REF] Katelaan | Effective entailment checking for separation logic with inductive definitions[END_REF] revealed several problems related to quantifier instantiation that are potential sources of incompleteness. Thus we believe that their decision procedure might not cover the entire class of entailments between symbolic heaps and is complete for a strict subclass in which the existential quantifiers of the right-hand side of entailments can be instantiated by the free variables on the left. In this paper, we show that the problem is 2EXPTIME-hard, even if only entailment between predicate atoms is considered. The proof uses a reduction from the membership problem for alternating Turing machines [START_REF] Ashok | [END_REF] whose working tape is exponentially bounded in the size of the input. Proving a matching 2EXPTIME upper bound reduces essentially to fixing the issues of the algorithm proposed in [START_REF] Katelaan | Effective entailment checking for separation logic with inductive definitions[END_REF] and is considered for future work.

Separation Logic with Inductive Definitions

For a finite set S , we denote by ||S || ∈ N its cardinality. For a partial mapping f : A B, let dom( f ) def = {x ∈ A | f (x) ∈ B} and img( f ) def = { f (x) | x ∈ A} be its domain and range, respectively, and we write f : A fin B if ||dom( f )|| < ∞. Given integers n ≤ m, we denote by n . . m the set {n, n + 1, . . . , m}. For a tuple t = (t 1 , . . . , t n ) and i ∈ 1 . . n , we denote by t i the element on the i-th position in t. By slight abuse of notation, we write t ∈ t if t = t i , for some i ∈ 1 . . n .

Let Var = {x, y, . . .} be an infinite countable set of logical first-order variables and Pred = {p, q, . . .} be an infinite countable set of uninterpreted relation symbols, called predicates. Each predicate p has an arity #p ≥ 1, denoting the number of arguments. In addition, we consider a special function symbol nil, of arity zero. A term is an element of the set Term def = Var ∪{nil}. Let k ≥ 1 be an integer constant fixed throughout this paper. The logic SL k is the set of formulae generated inductively as follows:

φ := emp | t 0 → (t 1 , . . . , t k ) | p(t 1 , . . . , t #p ) | t 1 =t 2 | t 1 ˙ t 2 | φ 1 * φ 2 | ∃x . φ 1
where p ∈ Pred, t 1 , t 2 , . . . , t #p ∈ Term and x ∈ Var. We write ⊥ for t ˙ t, for any t ∈ Term.

A ground formula is a formula of SL k in which no predicates occur. We write fv(φ) for the set of free variables, that occur in φ not within the scope of an existential quantifier. By writing φ(x 1 , . . . , x n ) we mean x 1 , . . . , x n ∈ fv(φ) and φ[y 1 /x 1 , . . . , y n /x n ] is the formula obtained from φ by simultaneously substituting each x i with y i , for i ∈ 1 . . n . A substitution is a mapping σ : Var → Term and we denote by φσ the formula φ[σ(x 1 )/x 1 , . . . , σ(x n )/x n ].

To interpret SL k formulae, we consider an infinite countable set Loc of locations and a designated location nil ∈ Loc. Let Loc i def = {( 1 , . . . , i ) | 1 , . . . , i ∈ Loc}. The semantics of SL k formulae is defined in terms of structures (s, h, I), where:

s : Term → Loc is a total mapping of terms into locations, called store, such that always s(nil) = nil, h : Loc fin Loc k is a finite partial mapping of locations into k-tuples of locations, called heap, such that nil dom(h). Let Heaps denotes the set of heaps, and -I : Pred → i≥1 2 Loc i ×Heaps is an interpretation associating each predicate p a set of pairs ( 1 , . . . , #p ), h ∈ Loc #p × Heaps. Two heaps h 1 and h 2 are disjoint iff dom(h 1 ) ∩ dom(h 2 ) = ∅, in which case their disjoint union is denoted h 1 h 2 , undefined otherwise. The satisfaction relation | = between structures and SL k formulae is defined, as usual, recursively on the syntax of formulae:

(s, h, I) | = t 1 =t 2 ⇔ h = ∅ and s(t 1 ) = s(t 2 ) (s, h, I) | = t 1 ˙ t 2 ⇔ h = ∅ and s(t 1 ) s(t 2 ) (s, h, I) | = emp ⇔ h = ∅ (s, h, I) | = t 0 → (t 1 , . . . , t k ) ⇔ dom(h) = {s(t 0 )} and h(s(t 0 )) = (s(t 1 ), . . . , s(t k )) (s, h, I) | = p(t 1 , . . . , t #p ) ⇔ (s(t 1 ), . . . , s(t #p )), h ∈ I(p) (s, h, I) | = φ 1 * φ 2
⇔ there are disjoint heaps h 1 and h 2 , such that h = h 1 h 2 and (s,

h i , I) | = φ i , for each i = 1, 2 (s, h, I) | = ∃x . φ ⇔ (s[x ← ], h, I) | = φ, for some ∈ Loc
where s[x ← ] is the store mapping x into and behaving like s for all t ∈ Term \ {x}.

Given formulae φ and ψ, we write φ ac = ψ if ψ is obtained from φ by a reordering of *connected subformulae. Since * is associative and commutative, any two such formulae are equivalent. It is known that, for any formulae φ and ψ, if x fv(ψ) then the formulae (∃x . φ) * ψ and ∃x . φ * ψ are equivalent [START_REF] Samin | Bi as an assertion language for mutable data structures[END_REF]. Thus, each SL k formula φ can be written as ∃x 1 . . . ∃x n . ψ * * m j=1 p j (u j 1 , . . . , u j #p j ), where φ def = ψ is a ground formula, called the hat of φ. Note that, moreover, φ is unique, up to the ac = relation. In the rest of this paper, we consider that the predicates are intepreted by a set S of rules p(x 1 , . . . , x #p ) ⇐ ρ, where ρ is an SL k formula, such that fv(ρ) ⊆ {x 1 , . . . , x # p }. We refer to p(x 1 , . . . , x #p ) as to the head and to ρ as to the body of the rule. A rule is a base rule if its body is a ground formula. W.l.o.g., we assume that any two heads with the predicate symbol p share the same tuple of variables x p (this can be achieved by variable renaming) and by writing p(x p ) we mean that x p is the unique tuple of variables associated with p. We write p(x p ) ⇐ S ρ if the rule p(x p ) ⇐ ρ belongs to S.

A set S of rules defines a transformer function T S on interpretations of predicates. For an interpretation I, the interpretation T S (I) is defined as:

T S (I) def = λp . , h | ([x p ← ], h, I) | = ρ, p(x p ) ⇐ S ρ
where x p = (x 1 , . . . , x #p ), = ( 1 , . . . , #p ) and [x p ← ] is any store mapping x i into i , for all i ∈ 1 . . #p . It is not hard to prove that the set of interpretations forms a complete lattice, equipped with the pointwise inclusion as a partial order, union as join and intersection as meet. Moreover, the transformer function is monotonic, because no predicate symbol occurs under negation in a rule body. Consequently, T S has a unique least fixed point T µ S . In the rest of this paper, given a set of rules S, we write (s, h) | = S φ for (s, h, T µ S ) | = φ and refer also to the pairs (s, h) as structures. We are now ready to define the class of entailment problems, which are the concern of this paper: Definition 1 (Entailment Problem). Given a set of rules S and two SL k formulae φ and ψ is it the case that for every store s and every heap h such that (s, h) | = S φ, we have (s, h) | = S ψ ? Instances of the entailment problem are denoted φ | = S ψ.

Unfolding Trees

In many cases it is useful to think of heaps from the least fixed point interpretation of a predicate symbol as obtained by a finite unfolding of the predicate, which produces a ground formula in which all the predicate symbols have been successively replaced with the bodies of their defining rules. In this section, let S be a given set of rules.

Definition 2 (Unfolding).

A formula ψ is a 1-unfolding of a formula φ, written φ =⇒ S ψ, if ψ is obtained by substituting an occurrence of an atom p(y 1 , . . . , y #p ) in φ with ρ[y 1 /x 1 , . . . , y #p /x #p ], where (p(x 1 , . . . , x #p ), ρ) ∈ S is a rule. An unfolding of φ is a formula ψ such that φ =⇒ * S ψ, where =⇒ * S is the reflexive and transitive closure of =⇒ S . Moreover, ψ is a ground unfolding of φ if ψ is a ground formula.

It is often convenient to place the steps of an unfolding sequence in a tree that records the partial order in which these steps occur. We assume the set of nodes in a tree t, denoted as nodes(t), to be a finite prefix-closed subset of N * , where N * is the set of finite sequences of positive integers, such that if w and wi are nodes of t, for some i ∈ N \ {0}, then so are w j, for all j ∈ 0 . . i -1 . We write |w| for the lenght of the sequence w and λ for the empty sequence (|λ| = 0). The label of a node w ∈ nodes(t) is denoted by t(w) and the subtree of t rooted at w by t |w . The height of a tree is height(t) def = max w∈nodes(t) |w|. A traversal of a tree t is an enumeration of nodes(t) such that the index of a node is smaller than all indices of its successors.

Definition 3 (Unfolding Tree). Given a formula φ, an unfolding tree for φ is a tree u, labeled with pairs (p, ψ), where p ∈ Pred ∪ {⊥} and ψ is a formula, such that:

t(λ) = (⊥, φ), and if u(w) = (p, ψ), then there exists a bijective mapping from the set of occurrences of atoms q(t 1 , . . . , t #q ) in ψ and the children of w, such that if q(t 1 , . . . , t #q ) is mapped to wi, then u(wi) = (q(t 1 , . . . , t #q ), ρ[t 1 /x 1 , . . . , t #q /x #q ]), where q(x 1 , . . . , x #q ) ⇐ S ρ. We denote by T S (φ) the set of unfolding trees for φ.

Clearly, every traversal of an unfolding tree u ∈ T S (φ 0 ) corresponds to a ground unfolding sequence σ : φ 0 =⇒ S φ 1 =⇒ S . . . =⇒ S ψ where, for each node w i of label (q(t), ψ) in σ, φ i is obtained from φ i-1 by replacing q(t) by ψ. It is easy to check that the outcome ψ only depends on u, not on σ. In other words, all traversals of u yield the same ground formula, denoted by F (t). By convention, we let F (u) def = φ if nodes(u) = {λ}. The following lemma provides an equivalent definition for the semantics of SL k formulae: Lemma 1. Given a SL k formula φ, for any store s and any heap h, we have (s, h) | = S φ if and only if (s, h) | = F (u), for some unfolding tree u ∈ T S (φ).

Proof : It is sufficient to give the proof only in the case φ = p(t 1 , . . . , t #p ), for a predicate symbol p ∈ Pred and terms t 1 , . . . , t #p ∈ Term, the generalization to the case where φ is any SL k formula being immediate. We start by proving the following fact: Fact 1 Let u ∈ T S p(t 1 , . . . , t #p ) be an unfolding tree, such that (necessarily) u(0) = (p(t 1 , . . . , t #p ), ρσ), for some rule: p(x 1 , . . . , x #p ) ⇐ ∃y 1 . . . ∃y n . ρ * m * j=1 p j (t j 1 , . . . , t j #p j ) ρ and some substitution σ such that σ(x k ) = t k , for all k ∈ 1 . . #p , then F (u) ac = ∃y 1 . . . ∃y n . ρσ * * m j=1 F (u j ), where u j ∈ T S p j (t j 1 , . . . , t j #p j )σ , for all j ∈ 1 . . m . Proof : Let s : φ 0 = p(t 1 , . . . , t #p ) =⇒ S φ 1 = ρσ =⇒ S . . . =⇒ S φ r = F (u) be a ground unfolding sequence. Then there exists ∈ 1 . . m and a position j ∈ 1 . . r in this sequence such that the sequence φ 1 =⇒ S . . . =⇒ S φ j traverses all nodes from u | . W.l.o.g., let and j be the least such numbers, respectively. We re-organize the unfolding sequence s into s 1 by moving all steps between 1 and j, corresponding to visits of nodes from u | , for ∈ 1 . . m \ { }, after j and let k ≤ j be the new position of φ j in s 1 . Clearly this re-organization does not change the outcome φ r , who is the same for s and s 1 . Because all nodes from u | j are visited by s 1 :

φ 1 0 = φ 0 =⇒ S φ 1 1 = φ 1 =⇒ S . . . =⇒ S φ 1
k =⇒ S . . . =⇒ S φ 1 r = φ r , we obtain:

φ 1 k ac = ∃y 1 . . . ∃y n . ρσ * * j∈ 1. .m \ p j (t j 1 , . . . , t j #p j ) * F (u )
The unfolding sequence φ 1 k =⇒ S . . . =⇒ S φ r is strictly smaller than s and we apply the same argument inductively until the ground formula F (u) is derived.

Let

t def = (t 1 , . . . , t #p ) and s(t) def = (s(t 1 ), . . . , s(t #p )). Let T 0 S def = λp.
∅ be the interpretation mapping each predicate symbol into the empty set. We have (s, h)

| = S p(t) if and only if s(t), h ∈ T µ S (p) = ∞ i=0 T i S (p).
The last equality uses the fact that T S is monotone and continuous which, by Kleene's Fixpoint Theorem, guarantees that its least fixpoint is the limit of the increasing sequence of approximants T i S i≥0

. For any predicate symbol p ∈ Pred and any tuple of terms t = (t 1 , . . . , t #p ), we prove the following equivalence by induction on i ≥ 0:

s(t), h ∈ T i S (p) ⇔ (s, h) | = F (u)
, for some u ∈ T S (p(t)), such that height(u) ≤ i In the base case i = 0, the equivalence holds because both s(t), h ∈ T 0 S (p) is false and T S (p(t)) contains no unfolding tree of height 0. For the induction step i ≥ 1, we consider two directions:

"⇒" If s(t), h ∈ T i S (p) then s, h, T i-1 S | = ρσ, for some rule: p(x 1 , . . . , x #p ) ⇐ S ∃y 1 . . . ∃y n . ρ * m * j=1 p j (t j 1 , . . . , t j #p j ) ρ
and substitution σ such that σ(x k ) = t k , for all k ∈ 1 . . #p . Then there exists locations 1 , . . . , n ∈ Loc and heaps h 0 , h 1 , . . . , h m such that h = m j=0 h j and the following hold: -(s , h 0 ) | = ρσ, and s (t j σ), h j ∈ T i-1 S (p j ), for all j ∈ 1 . . m , where s def = s[y 1 ← 1 , . . . , y n ← n ] and t j def = (t j 1 , . . . , t j #p j ), for all j ∈ 1 . . m . By the induction hypothesis, we obtain unfolding trees u j ∈ T S p j (t j σ) , of height at most i -1, such that (s , h j ) | = F (u j ), for all j ∈ 1 . . m . Note that, by Definition 3, the root of each u j has a single child and let u j |0 be the subtree of u j rooted at the child of λ. Then we define an unfolding tree u, such that u(λ

) def = (⊥, p(t)), u(0) def = (p, ρσ) and u | j def = u j |0 , for all j ∈ 1 . . m . It is straightforward to check that u ∈ T S (p(t)
) and that the height of u is at most i. We are left with proving that (s, h) | = F (u), which follows from Fact 1 and the inductive hypothesis (s ,

h j ) | = F (u j ), for all j ∈ 1 . . m . "⇐" If (s, h) | = F (u)
then, by Definition 3, the root of u has a single child 0 whose label is u(0) = (p(t), ρσ), for a rule:

p(x 1 , . . . , x #p ) ⇐ S ∃y 1 . . . ∃y n . ρ * m * j=1 p j (t j 1 , . . . , t j #p j )
ρ and a substitution σ(x k ) = t k , for all k ∈ 1 . . #p . By Fact 1, we obtain:

F (u) ac = ∃y 1 . . . ∃y n . ρσ * m * j=1 F (u j )
for some unfolding trees u j ∈ T S p j (t j 1 , . . . , t j #p j ) , of height at most i -1, for j ∈ 1 . . m . Since (s, h) | = F (u), there exists locations 1 , . . . , n ∈ Loc, such that:

-(s , h 0 ) | = ρσ and -(s , h j ) | = F (u j ), for all j ∈ 1 . . m ,
where

s def = s[y 1 ← 1 , . . . , y n ← n ] and h = m j=0 h j .
By the inductive hypothesis, we obtain:

s (t j σ), h j ∈ T i-1 S (p j ) ⊆ T µ S (p j )
where

t j def = (t j 1 , . . . , t j #p ), for all j ∈ 1 . . m . But then (s , h j ) | = S p j (t j σ), for all j ∈ 1 . . m , thus (s, h) | = S ρσ and (s, h) | = S p(t) follows.

A Decidable Class of Entailments

In general, the entailment problem is undecidable, proofs can be found in [START_REF] Iosif | Deciding entailments in inductive separation logic with tree automata[END_REF][START_REF] Antonopoulos | Foundations for decision problems in separation logic with general inductive predicates[END_REF]. Thus we consider a subclass of entailments for which decidability (with elementary recursive complexity) was proved in [START_REF] Iosif | The tree width of separation logic with recursive definitions[END_REF] and provide a 2EXPTIME lower bound for this problem. The decidable class is given by three restrictions of the systems used for the interpretation of predicates, namely progress, connectivity and establishment, defined in the rest of this section.

First, the progress condition requires that each rule adds to the heap exactly one location, namely the one associated to the first parameter of the head. Second, the connectivity condition requires that all locations added during an unfolding of a predicate atom p(t) form a connected tree-like structure.

Definition 4 (Progress & Connectivity).

A set of rules S is progressing if and only if, the body ρ of each rule p(x 1 , . . . , x #p ) ⇐ S ρ is of the form ∃z 1 . . . ∃z m . x 1 → (y 1 , . . . , y k ) * ψ and ψ contains no occurrence of a → atom. If, moreover, each occurrence of a predicate atom in ψ is of the form q(y i , u 1 , . . . , u #q-1 ), for some i ∈ 1 . . k , then S is connected.

For upcoming developments, we make the connection between heaps and unfolding trees more precise, in the context of progressing connected sets of rules. Lemma 2. Assume that S is a progressing and connected set of rules and that (s, h) is a structure such that (s, h) | = S p(t 1 , . . . , t #p ), for some predicate symbol p ∈ Pred and terms t 1 , . . . , t #p ∈ Term. Then there exists an unfolding tree u ∈ T S p(t 1 , . . . , t #p ) and a bijection Λ : dom(h) → nodes(u)\{λ} such that (s, h) | = F (u) and for each node wi ∈ nodes(u)\{λ}, where i ∈ N, we have Λ -1 (wi) ∈ h(Λ -1 (w)).

Proof : If (s, h) | = S p(t 1 , . . . , t #p ), by Lemma 1, there exists u ∈ T S p(t 1 , . . . , t #p ) , such that (s, h) | = F (u). Note that, by Definition 3, the root of u is labeled by u(λ) = (⊥, p(t 1 , . . . , t #p )) and has a single child, namely 0. The bijection Λ is built inductively on the structure of the subtree u |0 of u, rooted at 0, taking into account Definition 4.

Given a structure (s, h) such that (s, h) | = S p(t 1 , . . . , t #p ), for any location ∈ dom(h), necessarily must be allocated by a 1-unfolding of some atom q(t), which corresponds to a node in an unfolding tree Λ( ) ∈ T S p(t 1 , . . . , t #p ) . In the following, we shall denote by Pr s,h,Λ ( ) the predicate symbol q. Note that the existence of the unfolding tree u and bijection Λ : dom(h) → nodes(u) \ {λ} are guaranteed by Lemmas 1 and 2, respectively. The notation Pr( ) stands for Pr s,h,Λ ( ), for some Λ as in Lemma 2, where the structure (s, h) is clear from the context.

The third condition requires that all the existentially quantified variables introduced during a can only be associated with locations from the heap, in every ground unfolding of a formula. To formalize this condition, for a ground formula φ, we define the partial satisfaction relation as (s, h) φ iff h = h 1 h 2 and (s, h 1 ) | = φ and partial entailment as

φ ψ iff (s, h) ψ for each structure (s, h), such that (s, h) | = φ. If φ is ground, its set of allocated variables is alloc(φ) def = {x ∈ fv(φ) | x → (y 1 , . . . , y k ) occurs in φ and φ x =x }.
Note that alloc(φ) = fv(φ) if φ is unsatisfiable. Extending this notion to formulae that are not necessarily ground, we define alloc S (φ) def = u∈T S (φ) alloc(F (u)), i.e. a variable is allocated in φ iff it is allocated in every ground unfolding of φ w.r.t. a set of rules S.

Definition 5 (Establishment).

A set of rules S is established if and only if, for each rule (p(x p ), ∃z 1 . . . ∃z m . ψ) ∈ S, where ψ is quantifier-free, we have z 1 , . . . , z m ∈ alloc S (ψ).

In the following, we consider only sets of rules that are progressing, connected and established (PCE). The interest for PCE sets of rules is motivated by the following decidability result, proved in [START_REF] Iosif | The tree width of separation logic with recursive definitions[END_REF]: Theorem 1 (Decidability). Given a PCE set of rules S and two formulae φ and ψ such that the free variables of ψ are also free in φ, the problem φ | = S ψ belongs to

ELEMENTARY.

The rest of this paper is concerned with proving that the entailment problem φ | = S ψ, for PCE sets of rules S, is 2EXPTIME-hard. Previously, a EXPTIME-hard bound for this problem was established in [START_REF] Iosif | Deciding entailments in inductive separation logic with tree automata[END_REF].

Syntactic Shorthands

Before proving 2EXPTIME-hardness by reduction from the membership problem of alternating Turing machines running in exponential space, we define several syntactical shorthands that simplify the presentation.

Given a term t and n ≥ 0, we denote by t n the tuple consisting of n occurrences of t. In the rest of the paper we silently assume that any heap entry of the form h( ) = ( 1 , . . . , k ) is represented by a binary heap h 2 :

Loc fin Loc 2 such that dom(h 2 ) = { } ∪ i 0 | i ∈ 1 . . k -1 , h 2 ( ) = ( 1 0 , 1 ) and h 2 ( i 0 ) = ( i+1 0 , i+1 ), for all i ∈ 1 . . k -1 , with k 0 = nil.
This allows one to encode records of non constant length (for instance tuples of length N) by using only a constant number of record fields (i.e., k = 2).

Deep Hats For a tuple t = (t 1 , . . . , t j ) ∈ Term j , j ≥ 1 and n ≥ 0, by writing:

p(x 1 , . . . , x #p ) ⇐ ∃y 1 . . . ∃y r . x 1 → (u 1 , . . . , u i-1 , [t] n , u i+1 , . . . , u m ) * ψ
we denote the rules: p(x 1 , . . . , x #p ) ⇐ ∃y 1 . . . ∃y r . x 1 → (u 1 , . . . , u i-1 , t 1 , . . . , t j , u i+1 , . . . , u m ) * ψ, if n = 0 and, recursively, for all n > 0:

p(x 1 , . . . , x #p ) ⇐ ∃y 1 . . . ∃y r ∃z . x 1 → (u 1 , . . . , u i-1 , z, u i+1 , . . . , u m ) * p n-1 (z, x 1 , . . . , x #p , y 1 , . . . , y r ) * ψ p (z 1 , . . . , z #p+r+1 ) ⇐ ∃z 1 . z 1 → (z 1 ) * p -1 (z 1 , z 2 , . . . , z #p+r+1 ), for ∈ 1 . . n -1 p 0 (z 1 , . . . , z #p+r+1 ) ⇐ z 1 → (t 1 , . . . , t j ) * ψ
where p , for ∈ 0 . . n -1 are fresh predicate symbols of arity # p = #p + r + 1 and ψ (resp. ψ ) is the separating conjunction of all atoms of ψ whose first argument is in t (resp. is not in t). Clearly, ψ * ψ ac = ψ, and the obtained rules are connected.

Special Variables

We assume the existence of the following special variables that occur free in each formula: 0, 1, γ 1 , . . . , γ N , for some fixed constant N ≥ 2, used throughout the paper. These variables will always be allocated and denote separate locations, as required by the following rule:

Const(x) ⇐ x → (0, 1, γ 1 , . . . , γ N ) * 0 → (nil) * 1 → (nil) * * N i=1 γ i → (nil) (1) 
Considering special variables is without loss of generality in the following, because these variables can be added to the parameter list of each head in the system, at the expense of cluttering the presentation.

Binary Choices

The symbol • occurring in the body of a rule ranges over the special variables 0 and 1. Thus any rule of the form: Note that eliminating the occurrences of • will increase the number of rules in S by a constant at most 2 k , because k is assumed to be constant (i.e. independent of the input of a decision procedure).

p(
Binary Variables A binary variable b is understood as ranging over the domain of the interpretation of 0 and 1, namely the locations assigned to 0 and 1 by the formula Const (1). Additionally, for each binary variable b, we consider the associated variable b, intended to denote the complement of b. More precisely, the formula ∃b . ψ is understood as ψ[0/b, 1/b] ∨ ψ[1/b, 0/b]. However, this direct substitution of the (existentially quantified) binary variables by 0 and 1 within the rules of an established system would break the establishment condition (Definition 5), because 0 and 1 are not necessarily allocated within the body of the rule 4 . This problem can be overcome by passing 0 and 1 as parameters to a fresh predicate. More precisely, a rule of the form:

p(x 1 , . . . , x #p ) ⇐ ∃b 1 . . . ∃b i ∃y 1 . . . ∃y n . x 1 → ([t] m ) * ψ (2) 
where 1 ≤ i ≤ m, is a shorthand for the following set of rules:

p(x 1 , . . . , x #p ) ⇐ ∃y . x 1 → (y) * p (y, x 1 , . . . , x #p , 0, 1) p(x 1 , . . . , x #p ) ⇐ ∃y . x 1 → (y) * p (y, x 1 , . . . , x #p , 1, 0) p (y, x 1 , . . . , x #p , b 1 , b 1 ) ⇐ ∃b 2 . . . ∃b i ∃y 1 . . . ∃y n . y → ([t] m-1 ) * ψ
Clearly, the elimination of the binary existential quantifiers from the rule (2) will add 2i rules to the set. Note that the hat [t] m , of height m ≥ i decreases at each step of the elimination. This guarantees that rules resulting from the elimination of ∃b 1 , . . . , ∃b i respectively, are progressing (Definition 4).

Next, for a vector b = (b 1 , . . . , b n ) of binary variables, we denote by b the vector (b 1 , . . . , b n ). The following rule:

p(x 1 , . . . , x #p ) ⇐ ∃y 1 . . . ∃y m . x 1 → t * ψ | (b 1 , . . . , b n ) (c 1 , . . . , c n ) (3) 
where b 1 , . . . , b n ∈ {x 2 , . . . , x #p , y 1 , . . . , y m } occur only once in t and do not occur in ψ and c 1 , . . . , c n ∈ {x 2 , . . . , x #p , y 1 , . . . , y m }, is a shorthand for the following set of rules:

p(x 1 , . . . , x #p ) ⇐ ∃y 1 . . . ∃y m . x 1 → (t[c i /b i ]) [•/b j ] j∈ 1. .n \{i} * ψ, i ∈ 1 . . n (4) 
Intuitively, the rule (3) introduces new binary variables b 1 , . . . , b n , such that not all of them are equal to the complement of c 1 , . . . , c n , respectively. In other words, at least one b i must be equal to c i , for some i ∈ 1 . . n . Note that expanding the rule (3) as described above results in at most n rules of the form (2), hence the full elimination of binary variables from the system is possible in polynomial time.

Alternating Turing Machines

An Alternating Turing Machine (ATM) is a tuple M = (Q, Γ, δ, q 0 , g) where:

-Q is a finite set of control states, -Γ = {γ 1 , . . . , γ N , b} is a finite alphabet, b is the blank symbol and each symbol from Γ \ {b} is named after a special variable, -δ ⊆ Q×Γ × Q×(Γ \{b})×{←, →} is the transition relation, (q, a, q , b, µ) ∈ δ meaning that, in state q, upon reading symbol a, the machine moves to state q , writes b b to the tape 5 and moves the head by one to the left (resp. right) if µ =← (resp. µ =→), q 0 ∈ Q is the initial state, and g : Q → {∨, ∧} partitions the set of states into existential (g(q) = ∨) and universal (g(q) = ∧) states. A configuration of M is a tuple (q, w, i) where q ∈ Q is the current state, w : N → Γ is (the contents of) the tape, such that ||{ j ∈ N | w( j) b}|| < ∞ and i ∈ 0 . . max { j ∈ N | w( j) b}+ 1 is the current position of the head on the tape. We denote by the empty word over Γ. For any tape w and integer i, we denote by w[i ← a] the tape w such that w (i) = a and w ( j) = w( j) for all j i. In the following, we write w i def = w(i), i ← def = i -1 and i → def = i + 1. The step relation of M is the following relation between configurations: we write (q, w, i) (q,a,q ,b,µ) -------→ (q , w , j) if and only if there exists a transition (q, a, q , b, µ) ∈ δ such that w i = a, w = w[i ← b] and j = i µ . We write (q, w, i) -→ (q , w , j) when the applied transition is not important. An execution is a sequence (q 0 , w 0 , 0)

(q 0 ,a 0 ,q 1 ,b 0 ,µ 0 ) ----------→ (q 1 , w 1 , i 1 ) (q 1 ,a 1 ,q 2 ,b 1 ,µ 1 )
----------→ . . . Note that an execution is entirely determined by the initial configuration (q 0 , w 0 , 0) and the sequence (q 0 , a 0 , q 1 , b 0 , µ 0 ), (q 1 , a 1 , q 2 , b 1 , µ 1 ), . . . of transition rules applied to it.

Given a function f : N → N, an execution is f -space bounded if and only if there exists a constant c > 0 such that |w i | ≤ c• f (|w 0 |), for all i > 0. The ATM M is exponentialspace bounded if it admits only f -space bounded executions, where f (x) = 2 g(x) and g is a univariate polynomial function. Definition 6. A derivation of an ATM M = (Q, Γ, δ, q 0 , g), starting from a configuration (q 0 , w 0 , 0), is a tree t, whose nodes are either:

1. branching nodes labeled with configurations (q, w, i) ∈ Q × Γ * × N, or 2. action nodes labeled with tuples (a, b, µ) ∈ Γ × Γ \ {b} × {←, →}, where a is the symbol read, b is the symbol written and µ is the move of the head at that step, such that the root of t is a branching node, t(λ) = (q 0 , w 0 , 0) and, moreover: a. each branching node labeled by (q, w, i), such that g(q) = ∨, has exactly one successor, that is an action node labeled by (a, b, µ), where (q, a, q , b, µ) ∈ δ, whose successor is a branching node labeled by (q , w , j) such that (q, w, i) (q,a,q ,b,µ)

-------→ (q , w , j), b. each branching node labeled by (q, w, i), such that g(q) = ∧ has exactly one successor for each tuple (q, a, q , b, µ) ∈ δ such that a = w(i), and the successor associated with a transition (q, a, q , b, µ) is a branching node, labeled by (q , w , j) with (q, w, i) (q,a,q ,b,µ)

-------→ (q , w , j). We say that M accepts (q 0 , w 0 , i 0 ) iff it has a derivation starting from (q 0 , w 0 , i 0 ). Definition 7. The membership problem (M, w) asks the following: given an ATM M = (Q, Γ, δ, q 0 , g) and an input word w ∈ (Γ \ {b}) * does M accept (q 0 , w, 0) ?

The complexity class AEXPSPACE is the class of membership problems where M is exponential-space bounded. It is known that AEXPSPACE=co-AEXPSPACE=2EXPTIME [START_REF] Ashok | [END_REF], where co-AEXPSPACE is the complement class of AEXPSPACE 6 . In the following, we shall w.l.o.g. consider only the membership problem (M, ). Indeed, let (M, w) be any instance of the membership problem, and let c and g be the constant and polynomial function witnessing the fact that M is exponential-space bounded. Let M w be the ATM that produces w starting from input . Clearly, M w uses at most |w| working space, thus the machine M w ; M which runs M w on the empty word and then continues with M runs in space c • 2 g(|w|) and accepts (q 0 , , 0) if and only if M accepts (q 0 , w, 0). If N ≥ log 2 (c) + g(w), then M w ; M runs in space 2 N . Therefore, we assume from now on that M = (Q, Γ, δ, q 0 , g) is an ATM started in the configuration (q 0 , , 0) and that M runs in space at most 2 N on (q 0 , , 0), where N is polynomial w.r.t. the length of w.

Pseudo-derivations as Heaps

Given an ATM M = (Q, Γ, δ, q 0 , g), we consider its pseudo-derivations, which are the trees of Definition 6 relaxed so that any sequence of three consecutive branching-actionbranching node labels (q, w, i), (a, b, µ) and (q , w , i ) only needs to ensure the existence of a transition (q, a, q , b, µ) ∈ δ, i.e. we drop the requirements w i = a, w = w[i ← b] and i = i µ from the condition (q, w, i) (q,a,q ,b,µ) -------→ (q , w , i ) in Definition 6. Clearly, the leaves of a pseudo-derivation are all labeled by universal states.

We represent the pseudo-derivations of M as tree-shaped heaps generated by a set of rules where, intuitively, each predicate q(x) allocates a branching node labeled by a configuration (q, w, i), for some w ∈ Γ * and some i ∈ 0 . . 2 N -1 , and each predicate q(x, a, b, µ) allocates an action node labeled (a, b, µ). Importantly, since M starts on the empty word , the tape contents in a branching node can be derived from the sequence of actions along the path from the root to that node. For this reason, we shall not explicitly represent tape contents within the configurations and label branching nodes with pairs (q, i)

∈ Q × 0 . . 2 N -1 .
We represent each position i ∈ 0 . . 2 N -1 on the tape succintly, by an N-tuple of binary digits bin(i) ∈ {0, 1} N and encode the left and right moves as

← def = 0 and → def = 1. Let τ(q, a) def = δ ∩ ({q} × {a} × Q × Γ \ {b} × {←, →}
) be the set of transitions of M with source state q, reading symbol a from the tape.

As previously mentioned, we simplify the presentation by considering atoms of the form x → (y 1 , . . . , y m ) for an arbitrary m ≥ 1, with the understanding that the heap corresponding to this atom is uniquely encoded by a binary heap. This is without loss of generality, because a rule containing such atoms can be transformed into a finite set of rules containing only atoms of the form x → (y 1 , y 2 ), resulting in a progressing, connected and established set of rules. With this in mind, we consider the following rules, for each state q ∈ Q:

q(x) ⇐ ∃x . x → (• N , x ) * q (x , a, b, µ) (5) if g(q) = ∨ and (q, a, q , b, µ) ∈ τ(q, a) q(x) ⇐ ∃y 1 . . . ∃y n . x → (• N , y 1 , . . . , y m ) * m * j=1 q j (y j , a, b j , µ j ) (6) if g(q) = ∧ and τ(q, a) = {(q, a, q 1 , b 1 , µ 1 ), . . . , (q, a, q m , b m , µ m )} q(x, y, z, u) ⇐ ∃x . x → (y, z, u, x ) * q(x ) (7) 
The heaps defined by the above rules ensure only that the control structure of a derivation of M is respected, namely that the branching and action nodes alternate correctly, and that the sequence of control states labeling the branching nodes on any path is consistent with the transition relation of M. In other words, these trees encode pseudoderivations of M. Further, we introduce a top-level predicate p M (x) that allocates the special variables 0, 1, γ 1 , . . . , γ N and ensures that the initial state q 0 of M is the first control state that occurs on an path of a pseudo-derivation:

p M (x) ⇐ ∃y 0 ∃z 0 . x → ([y 0 ] N , z 0 ) * q 0 (y 0 ) * Const(z 0 ) (8) 
Note that the hat [y 0 ] N above ensures that every heap in the least fixed point interpretation of p begins with a tree of height N. The use of this tree will be made clear below.

For now, let S be the set consisting of the rules above. We formalize the encoding of a pseudo-derivation by a structure:

Definition 8. A structure (s, h) such that (s, h) | = S p M (x)
encodes a pseudo-derivation t of M, written as (s, h) t, if and only if there exists a injective mapping f : nodes(t) → dom(h) \ s(Γ ∪ {0, 1}) such that, for all w ∈ nodes(t), the following hold:

1. for all i ∈ N, if wi ∈ nodes(t) then f (wi) ∈ h( f (w)), 2. if w is a branching node and t(w) = (q, i) then Pr( f (w)) = q and h( f (w)) = ( 1 , . . . , N+1 ), where j = s(bin(i) j ), for all j ∈ 1 . . N and N+1 ∈ dom(h), 3. if w is an action node and t(w) = (a, b, µ) then h( f (w)) = (s(a), s(b), s( µ), 4 ), where 4 ∈ dom(h), We write (s, h) > t instead of (s, h) t if condition (2) above is replaced by the weaker: 2'. if w is a branching node and t(w) = (q, i) then h( f (w)) = ( 1 , . . . , N+1 ), where j = s(bin(i) j ), for all j ∈ 1 . . N and N+1 ∈ dom(h).

Note that, by Lemma 1 (s, h) | = S p M (x) iff there exists an unfolding tree u ∈ T S (p M (x)) such that (s, h) | = F (u) and, by Lemma 2, there exists a bijection Λ : dom(h) → nodes(u)\ {λ}, such that Λ -1 (wi) ∈ h(Λ -1 (w)), for all wi ∈ nodes(u). Then the occurrence of Pr(.) at point (2) of Definition 8 stands for Pr s,h,Λ (.), the structure (s, h) being clear from the context and the existence of Λ being guaranteed by Lemma 2. The weaker relation (s, h) > t shall be used next to encode pseudo-derivations by structures that are not necessarily models of the above rules (more rules will be added later).

Lemma 3. (A) For each pseudo-derivation t of an ATM M = (Q, Γ, δ, q 0 , g), there exists a structure (s, h) | = S p M (x) such that (s, h) t. (B) Dually, for each structure (s, h) | = S p M (x), there exists an accepting pseudo-derivation t of M such that (s, h) t.

Proof : (A) Let t be a pseudo-derivation of M. We build an isomorphic tree u, such that nodes(t) = nodes(u) and the labels of u are of the form (q, φ), where q ∈ Pred and φ is a formula. The definition of u is top-down on the structure of t, for each node w ∈ nodes(t), with label t(w) = (q, i):

if g(q) = ∨ , where t(w0) = (a, b, µ) and t(w00) = (q , i ) (we have necessarily w0, w00 ∈ nodes(t), where w0 and w00 are the only children of w and w0, respectively), then we define:

u(w) def = (q, ∃x . x → (bin(i), x ) * q(x , a, b, µ)) (see rule 5) u(w0) def = (q, ∃x . x → (a, b, µ, x ) * q(x )) (see rule 7)
otherwise, g(q) = ∧ and t(w j) = (a j , b j , µ j ) for j ∈ 1 . . n are the children of w, and t(w j0) = (q j , i j ), for all j ∈ 1 . . n , in which case we define: u(w) def = q, ∃y 1 . . . ∃y n . x → (bin(i), y 1 , . . . , y n ) * * n j=1 q j (y j , a j , b j , µ j ) (see rule 6) u(w j) def = q j , ∃x . y j → (a j , b j , µ j , x ) * q j (x ) (see rule 7)

Finally, either one of the following holds:

w = vi, for some v ∈ nodes(t), i ∈ N and the atom q(x) occurs exactly once in u(v), w = λ and the variable x in the definition of u(w) is the same as y 0 , in which case necessarily t(λ) = (q 0 , 0).

Next, we extend u to an unfolding tree û ∈ T S (p M (x)) by adding to it a hat of height N and a sibling tree u ∈ T S (Const(z 0 )). It is not hard to check that û ∈ T S (p M (x)) and that F (û) is satisfiable, since there are no equality or disequality atoms and no variable occurs allocated in two different subtrees of û. Then, let (s, h) be a structure such that (s, h) | = F (û). To check that (s, h) t, we need to exhibit an injective mapping f : nodes(t) → dom(h) that meets the conditions (1), ( 2) and (3) from Definition 8. Because S is a progressing and connected set of rules and (s, h) | = F (û), by Lemma 2, there exists a bijective mapping Λ : dom(h) → nodes(û) \ {λ} such that Λ -1 (wi) ∈ h(Λ -1 (w)), for all w ∈ nodes(û) \ {λ} and all i ∈ N, such that wi ∈ nodes(û). Let f be the restriction of Λ -1 to nodes(u). Point [START_REF] Antonopoulos | Foundations for decision problems in separation logic with general inductive predicates[END_REF] follows by the definition of Λ, whereas points (2) and ( 3) are simple checks.

(B) Conversely, if (s, h) | = S p M (x) then, by Lemma 1, there exists an unfolding tree u ∈ T S (p M (x)) such that (s, h) | = F (u). Since S is progressing and connected, by Lemma 2, there exists a bijective mapping Λ : dom(h) → nodes(u) \ {λ}, as before. By the definition of S, all nodes w ∈ nodes(u) \ {λ} that are labeled with predicates q and q, for some q ∈ Q, occur below a unique node w 0 ∈ nodes(u), such that t(w 0 ) = (q 0 , φ), for some formula φ. We build a pseudo-derivation t of M such that nodes(t) = nodes(u |w 0 ), by induction on the structure of u |w 0 . Namely, for each w ∈ nodes(u |w 0 ):

-If u |w 0 (w) = (q, φ) then φ is the body of a rule [START_REF] Iosif | Deciding entailments in inductive separation logic with tree automata[END_REF] or [START_REF] Samin | Bi as an assertion language for mutable data structures[END_REF]. In the case (5) (the other case is similar and left to the reader) we have h(Λ -1 (w)) = ( 1 , . . . , N+1 ), with 1 , . . . , N ∈ {s(0), s(1)} and let i be the integer such that bin(i) = (s -1 ( 1 ), . . . , s -1 ( N )). Note that, since 0 and 1 are always allocated separately in F (u), the restriction of s to the set {0, 1} is a bijection. In this case, we define t(w) def = (q, i). -Otherwise, u |w 0 (w) = (q, φ) and φ is the body of a rule [START_REF] Katelaan | Effective entailment checking for separation logic with inductive definitions[END_REF]. In this case, we have h(Λ -1 (w)) = ( 1 , 2 , 3 , 4 ), with 1 ∈ s(Γ), 2 ∈ s(Γ \ {b}) and 3 ∈ {s(0), s(1)}. Note that, since each γ ∈ Γ ∪ {0, 1} is allocated separately in F (u), the restriction of s to the set Γ ∪ {0, 1} is a bijection. In this case, we define t(w

) def = (s -1 ( 1 ), s -1 ( 2 ), µ), where µ =← if 3 = s(0) and µ =→ if 3 = s(1).
It is easy to check that, indeed t is a pseudo-derivation of M. To check that (s, h) t, we take f : nodes(t) → dom(h) as the restriction of Λ -1 to the nodes of u |w 0 . Clearly, f is injective and the conditions (1), ( 2) and (3) of Definition 8 are easy checks.

Encoding Complement Membership as Entailment Problems

Given an ATM M = (Q, Γ, δ, q 0 , g), a pseudo-derivation of M is a derivation of M if the contents of the tape is consistent with the sequence of the actions applied, in particular the following conditions must hold:

I. If a branching node labeled (q, i) is followed by an action node labeled (a, b, →) [resp. (a, b, ←)], itself followed by a branching node labeled (q , i ) then necessarily i = i + 1 [resp. i = i + 1], i.e. the position of the head changes according to the action executed between the adjacent configurations. II. For every i ∈ 0 . . 2 N -1 , if along a path from a branching node labeled (q, i),

followed by an action node labeled (a, b, µ), to another branching node labeled (q , i), followed by an action node labeled (a , b , µ ), there is no branching node labeled (q , i), then necessarily a = b. Indeed, the symbol read on position i must be the one previously written, since it was not changed in the meantime. III. For every i ∈ 0 . . 2 N -1 , if along a path from the root to a branching node labeled (q, i), followed by an action node labeled (a, b, µ), there is no branching node labeled (q , i), then necessarily a = b, i.e. the tape is initially empty. In the following, we shall not check that the above conditions hold for some derivation of M, but rather the opposite: that for each derivation of M, at least one of the above conditions is broken. In other words, we reduce from the complement of the membership problem (M, ) to an entailment problem, defined next. This does not change the final 2EXPTIME-hardness result, because 2EXPTIME=AEXPSPACE=co-AEXPSPACE, as previously mentioned.

In the following, we shall give the rules for a predicate c M (x) such that the entailment p M (x) | = S c M (x) holds, for a suitable set of rules S, containing the rules for p M (x) and c M (x), iff every pseudo-derivation of M breaks at least one of the conditions (I), (II) or (III), in other words, that M, started on input , has no derivation.

Let B def = max q∈Q,a∈Γ ||τ(q, a)|| be the maximum branching degree of a derivation of M. First, we define an auxiliary predicate r(x) that generates all tree-shaped heaps in which branching nodes correctly alternate with action nodes, with no regard to the labels of those nodes. In the following, we stick to the convention that predicate symbols p represent branching nodes, whereas p represent action nodes: r(x) ⇐ ∃y 1 . . . ∃y n . x → (• N , y 1 , . . . , y n ) * * n j=1 r(y j ), for each n ∈ 0 . . B r(x) ⇐ ∃y . x → (a, b, •, y) * r(y), for each a ∈ Γ and b ∈ Γ \ {b} Next, we define the heap encodings of those derivation trees that violate condition (I). To this end, we guess a vector b in {0, 1} N , encoding a position on the tape i ∈ 0 . . 2 N -1 , a shift µ ∈ {←, →}, encoded by µ ∈ {0, 1} and get the binary complement of the (encoding of the) position reached from b by applying µ. Here we distinguish two cases, depending on the choice of µ:

(a) if µ is → then bin(i) = b def = (b 1 , . . . , b n , 0, 1 N-1-n ) for some n ∈ 0 . . N -1 and let c def = (b 1 , . . . , b n , 0, 1 N-1-n ) be the complement of bin(i + 1) = (b 1 , . . . , b n , 1, 0 N-1-n ). (b) otherwise, bin(i) = b def = (b 1 , . . . , b n , 1, 0 N-1-n ) and let c def = (b 1 , . . . , b n , 1, 0 N-1-n ) be the complement of bin(i -1) = (b 1 , . . . , b n , 0, 1 N-1-n ).
For every n ∈ 0 . . N -1 and every m ∈ 0 . . B and i ∈ 1 . . m , we consider the rules: Then a path to the branching node, labeled (q , i ), that violates condition (I) is chosen, by alternating the branching and action nodes allocated by rules (11) and (13), respectively. The offending branching node is allocated by rule (15) and its predecessors are the branching and the action nodes, labeled with (q, i) and (i, a, b, µ), such that i i µ . These latter nodes are allocated by rules ( 12) and ( 14), respectively.

c 1 (x) ⇐ ∃b 1 . . .∃b n ∃y . x → ([y] N ) * d 1 (y, 1, b 1 . . . b n , 0, 1 N-n-1 b , b 1 . . . b n , 0, 1 N-n-1 c ) (9) c 1 (x) ⇐ ∃b 1 . . .∃b n ∃y . x → ([y] N ) * d 1 (y, 0, b 1 . . . b n , 1, 0 N-n-1 b , b 1 . . . b n , 1, 0 N-n-1 c ) (10) d 1 (x, u, b, c) ⇐ ∃y 1 . . . ∃y m .x → (• N , y 1 , . . . , y m ) * * j∈ 1. .m \{i} r(y j ) * d 1 (y i , u, b, c) (11) 
The pseudo-derivations of M that violate condition (II) are encoded by the treestructured heaps defined by the rules below. To this end, we guess a binary vector b ∈ {0, 1} N denoting the position of a write action that has an inconsistent read descendant and let c be its binary complement. Then, for every m ∈ 0 . . B and i ∈ 1 . . m , we consider the rules below: Next, a path to a second branching node labeled by the binary position b is nondeterministically chosen by an alternation of branching and action nodes allocated by the the rules ( 21) and ( 23) respectively, while checking that no branching node with the same position b occurs on this second path (23). At the end, we reach the offending branching node (24), whose predecessor is allocated by rule (22). At this point, we check that the symbol read by the last action node is different than the symbol previously written at position b, by rule (19). This check is done by rules ( 24) and (25), thus ensuring that condition (II) is indeed violated. Next, we define the tree-structured heap encodings of the derivation trees that violate condition (III). To this end, we guess a binary vector b ∈ {0, 1} N denoting the position where a symbol different from b has been read, with no previous write action at that position and let c be its complement. We consider the rules below, for every m ∈ 0 . . B and i ∈ 1 . . m : After the initial guess of the binary position b, by rule (26), a path to a branching node labeled by b is nondeterministically guessed, by an alternation of branching and action nodes corresponding to the rules ( 27) and (28), respectively, while checking that no branching node labeled with position b occurs on this path. Once this node is reached, by rule (29), we check that its action node successor reads a symbol different than b, by rules (30) and (31), which is in violation of condition (III). Finally, the predicate c M (x) that choses the condition (I), (II) or (III) to be violated, is defined by the following rules: c M (x) ⇐ ∃y 0 ∃z 0 . x → (y 0 , z 0 ) * c i (y 0 ) * Const(z 0 ), for all i ∈ {1, 2, 3, }

Let S denote the set of rules introduced so far. The following lemma states the property of the models of c M (x):

Lemma 4. Given a pseudo-derivation t of M and a structure (s, h), such that (s, h) > t, we have (s, h) | = S c M (x) if and only if t is not a derivation of M.

d 1 (

 1 x, u, b, c) ⇐ ∃y 1 . . . ∃y m .x → (b, y 1 , . . . , y m ) * * j∈ 1. .m \{i} r(y j ) * e 1 (y i , u, b, c) (12)d 1 (x, u, b, c) ⇐ ∃y . x → (a, b, •, y) * d 1 (y, u, b, c), for each a ∈ Γ, b ∈ Γ \ {b} (13) e 1 (x, u, b, c) ⇐ ∃y . x → (a, b, •, y) * f 1 (y, u, b, c), for each a ∈ Γ, b ∈ Γ \ {b} (14) f 1 (x,u, b, c) ⇐ ∃y 1 . . . ∃y m . x → (e, y 1 , . . . , y m ) * m * j=1 r(y j ) | e c (15) Intuitively, rules (9) and (10) choose the move u ∈ {0, 1} and the binary vectors b, c ∈ {0, 1} N , according to the cases (a) and (b) above, respectively. Note that we use the hat [y] N to eliminate the binary variables b 1 , . . . , b n , as n ≤ N, according to the elimination procedure described in §3.1.

c 2 (

 2 x) ⇐ ∃b 1 . . . ∃b N ∃y . x → ([y] N ) * d 2 (y, b 1 , . . . , b N b , b 1 , . . . , b N c ) (16)d 2 (x, b, c) ⇐ ∃y 1 . . . ∃y m . x → (• N , y 1 , . . . , y m ) * * j∈ 1. .m \{i} r(y j ) * d 2 (y i , b, c)(17)d 2 (x, b, c) ⇐ ∃y . x → (a, b, •, y) * d 2 (y, b, c), for each a ∈ Γ, b ∈ Γ \ {b} (18) d 2 (x, b, c) ⇐ ∃y . x → (a, b, •, y) * e 2 (y, b, b, c), for each a ∈ Γ, b ∈ Γ \ {b} (19)

e 2 (

 2 x, γ, b, c) ⇐ ∃y 1 . . . ∃y m . x → (b, y 1 , . . . , y m ) * * j∈ 1. .m \{i} r(y j ) * e 2 (y i , γ, b, c) (20)e 2 (x, γ, b, c) ⇐ ∃y . x → (a, b, •, y) * f 2 (y, γ, b, c), for each a ∈ Γ, b ∈ Γ \ {b} (21) e 2 (x, γ, b, c) ⇐ ∃y . x → (a, b, •, y) * g 2 (y, γ, b, c), for each a ∈ Γ, b ∈ Γ \ {b} (22) f 2 (x, γ, b, c) ⇐ ∃y 1 . . . ∃y m . x → (e, y 1 , . . . , y m ) * * j∈ 1. .m \{i} r(y j ) * e 2 (y i , γ, b, c) | e c (23) g 2 (x, γ, b, c) ⇐ ∃y 1 . . . ∃y m . x → (b, y 1 , . . . , y m ) * * j∈ 1. .m \{i} r(y j ) * g 2 (y i , γ)(24)g 2 (x, γ) ⇐ ∃y . x → (a, b, •, y) * r(y), for each a ∈ Γ \ {γ}, b ∈ Γ \ {b} (25) Intuitively, rule (16) uses the hat [y] N to choose the tuple of binary variables b = (b 1 , . . . , b N ) and their complements c = (b 1 , . . . , b N ). First, the path to a branching node labeled by the binary position b is non-deterministically chosen by an alternation of branching and action nodes allocated by the the rules (17) and (18), respectively, until the node and its predecessor are allocated by rules (20) and (19), respectively. The symbol written on the tape by this node is stored in the second parameter of e 2 (x, γ, b, c).

c 3 (

 3 x) ⇐ ∃b 1 . . . ∃b N ∃y . x → ([y] N ) * d 3 (y, b 1 , . . . , b N b , b 1 , . . . , b N c )(26)d 3 (x, b, c) ⇐ ∃y 1 . . . ∃y m . x → (e, y 1 , . . . , y m ) * * j∈ 1. .m \{i} r(y j ) * d 3 (y i , b, c) | e c (27) d 3 (x, b, c) ⇐ ∃y . x → (a, b, •, y) * d 3 (y, b, c), for all a ∈ Γ, b ∈ Γ \ {b}(28)d 3 (x, b, c) ⇐ x → (a, b, •, y) * e 3 (y, b, c), for all a ∈ Γ, b ∈ Γ \ {b}(29)e 3 (x, b, c) ⇐ ∃y 1 . . . ∃y m . x → (b, y 1 , . . . , y m ) * * j∈ 1. .m \{i} r(y j ) * f 3 (y i ) (30) f 3 (x) ⇐ ∃y . x → (a, b, •, y) * r(y), for all a, b ∈ Γ \ {b} (31)

Entailment does not reduce to satisfiability since the considered logic has no negation.

In fact they are allocated by the side condition Const.

A machine never writes blank symbols, that are used only for the initially empty tape cells.

Every ATM can be complemented in linear time, by interchanging the existential with the universal states, thus all alternating classes are closed under complement.

Proof : (sketch) Fact 2 Assume that (s, h) | = S c M (x). For all , ∈ dom(h) and i, j ∈ 1 . . k , h( ) i = h( ) j iff either (i) = h( ) i , (ii) h( ) i ∈ s(Γ ∪ {0, 1}), or (iii) = and i = j.

Proof : By close analysis of allocation within the rules of S.

"⇒" If (s, h) | = S c M (x) then, by Lemma 1, there exists an unfolding tree u ∈ T S (c M (x)) such that (s, h) | = F (u). Since S is a progressing and connected set of rules and, moreover (s, h) | = F (u), by Lemma 2, there exists a bijection Λ : dom(h) → nodes(u)\{λ} such that, for all wi ∈ nodes(u), where i ∈ N, we have Λ -1 (wi) ∈ h(Λ -1 (w)). Moreover, since (s, h) > t, there exists an injective mapping f : nodes(t) → dom(h)\s(Γ ∪{0, 1}) such that, for all w ∈ nodes(t) such that wi ∈ nodes(t), we have f (wi) ∈ h( f (w)). Consequently, we obtain the bijection Λ • f : nodes(t) → nodes(u) \ {λ} where, for all wi ∈ nodes(t), such that i ∈ N, there exists j ∈ N such that f (wi) = h( f (w)) j . Since Λ is bijective and λ img(Λ), there exists a node vk ∈ nodes(u), for some k ∈ N, such that h( f (w)) j = Λ -1 (vk). By Lemma 2, there exists m ∈ N such that

Then we obtain that, for all wi ∈ nodes(t), such that i ∈ N, there exists k ∈ N, such that:

We can conclude that t and u |0 are isomorphic, i.e. nodes(t) = nodes(u) \ {λ}.

By the definition of S, namely rule (32), there exists a unique node w 0 ∈ nodes(u) \ {λ} such that u(w 0 ) = (c i , φ i ), for some formula φ i , where i ∈ {1, 2, 3}. Distinguishing the cases i = 1, 2, 3 and using the fact that (s, h) > t, one shows that t breaks the one of the conditions (I), (II) or (III), respectively, thus t is not a derivation of M. The proof is along the lines of the second point of Lemma 3. "⇐" If t is an accepting pseudo-derivation but not a derivation of M, then t violates one of the conditions (I), (II) or (III). In each case, we build an unfolding tree u ∈ T S (c M (x)), along the lines of the proof of the first point of Lemma 3. Using the fact that (s, h) > t, we show that (s, h) | = F (u), leading to (s, h) | = S c M (x).

Note that, akin to the rule for p M (x) (8), the rules (32) contain an occurrence of Const(z 0 ) as a sibling to a hat of height N, that occurs in c i (y 0 ), for all i = 1, 2, 3. Then the entailment p M (x) | = c M (x) holds if and only if, for each structure (s, h) such that (s, h) | = p M (x) and each extension s[y 0 ← 0 ], for some location 0 ∈ Loc, the heap h is matched by the unfolding of one of the rules with head c 1 (y 0 ), c 2 (y 0 ) or c 3 (y 0 ). This is possible because each such rule uses a hat [y] N , matching the one from the rule with head p M (x) (8). Proof : "⇒" Suppose, for a contradiction, that M accepts (q 0 , , 0). By Definition 6 it has a derivation t. Since t is a derivation, it is also a pseudo-derivation of M and, by Lemma 3, there exists a structure (s, h) such that (s, h) | = S p M (x) and (s, h) t. Moreover, (s, h) > t follows from (s, h) t and, by Lemma 4, we obtain (s, h) | = S c M (x), thus p M (x) | = S c M (x), contradiction.

"⇐" Suppose, for a contradiction, that p M (x) | = S c M (x), hence there exists a structure (s, h) such that (s, h) | = S p M (x) and (s, h) | = S c M (x). By Lemma 3, there exists a pseudoderivation t of M such that (s, h) t, hence (s, h) > t. By Lemma 4, t is a derivation of M, hence (M, ) has a positive answer, contradiction.

We state the main result of this paper below:

Theorem 2. The entailment problem p(x) | = S q(x), where S is a progressing, connected and established set of rules and p, q are predicate symbols in Pred that occur as heads in S, is 2EXPTIME-hard.

Proof : Given an exponential-space bounded ATM M we define a set of rules S, based on the description of M, such that p M (x) | = S c M (x) if and only if (M, ) has a negative answer (Lemma 5). Moreover, the set of rules is easy shown to be progressing, connected and established. The reduction is possible in time polynomial in the size of the standard encoding of M. Indeed, the number of rules in S is O(||Q|| • N • B) and the succint representation of each rule, using deep hats, binary choices and binary variables can be generated in time O(||Γ|| • B • N). Finally, the complete elimination of binary variables is possible in polynomial time. Since we reduce from the complement of a AEXPSPACEcomplete membership problem and co-AEXPSPACE=AEXPSPACE=2EXPTIME, we obtain the 2EXPTIME-hardness result.

Conclusions

We show that the entailment problem, for symbolic heaps with inductively defined predicates, showed to be decidable (with elementary recursive time complexity) in [START_REF] Iosif | The tree width of separation logic with recursive definitions[END_REF] has an actual 2EXPTIME-hard lower bound. In the light of the recent results of [START_REF] Katelaan | Effective entailment checking for separation logic with inductive definitions[END_REF], we expect 2EXPTIME to be the tight complexity for what is currently the most general decidable class of entailments for Separation Logic with inductive definitions.